
Design Class DiagramDesign Class Diagram

PB007 Software Engineering I

Lukáš Daubner

daubner@mail.muni.cz

PB007 Software Engineering I — Design Class Diagram1



Design Class DiagramDesign Class Diagram

̶ Focus on implementation details

̶

̶ Focus on implementation details

̶ It goes further than capturing domain
̶

̶ It goes further than capturing domain
̶ Solutions to more technical problems

̶ Extends and enrich the analytical

̶

̶ Extends and enrich the analytical

class diagram

PB007 Software Engineering I — Design Class Diagram2



Design Class Diagram
How should it look like?

Design Class Diagram

̶ All that you need for implementation
̶

̶

̶ All that you need for implementation
̶ Except method body (we will get to that)

̶ Detailed specification of analytical class

̶ Technology-related class (Service, Controller, DBContext, etc.)

̶

̶

̶

̶ Technology-related class (Service, Controller, DBContext, etc.)

̶ Visibility and types are specified
̶ Attributes

̶

̶

̶

̶

̶ Attributes

̶ Method arguments

̶ Return values

̶ Constructor

̶

̶

̶

̶

̶ Constructor

̶ Properties (Getters, Setters)

̶ Methods needed for implementation
PB007 Software Engineering I — Design Class Diagram3

̶

̶

̶ Methods needed for implementation



Design Class Diagram
Analytical VS. Design class

Design Class Diagram

PB007 Software Engineering I — Design Class Diagram4



Design Class Diagram – ExampleDesign Class Diagram – Example

PB007 Software Engineering I — Design Class Diagram5



InterfaceInterface

̶ Defines set of public services
̶

̶

̶ Defines set of public services
̶ Methods

̶ Attributes

̶ Relationships

̶

̶

̶

̶ Relationships

̶ Does not contain implementation

̶

̶

̶ Defines so called “Contract”

PB007 Software Engineering I — Design Class Diagram6



Specialized AssociationsSpecialized Associations

̶ Specification of aggregation and composition (see following slides)
̶

̶ Specification of aggregation and composition (see following slides)
̶ There is a lot of confusion regarding this topic.

See https://bellekens.com/2010/12/20/uml-composition-vs-aggregation-vs-association/

̶

̶

̶ Names, navigability, and multiplicities
̶ Afterall, it is an important part of the specification 

̶

̶

̶ Afterall, it is an important part of the specification 

̶ Decomposition of bidirectional associations

̶

̶

̶ Decomposition of M:N associations and association classes

PB007 Software Engineering I — Design Class Diagram7



Specialized Associations – AggregationSpecialized Associations – Aggregation

̶ Whole-part relationship
̶

̶

̶ Whole-part relationship
̶ The whole may and may not exit without its parts

̶ Parts can exist independently from the whole

̶ The whole is in some sense incomplete if some parts are missing (but still valid)

̶

̶

̶

̶

̶ The whole is in some sense incomplete if some parts are missing (but still valid)

̶ Parts can be shared by multiple wholes

̶ Transitive and asymmetrical (without cycles)

PB007 Software Engineering I — Design Class Diagram8



Specialized Associations – CompositionSpecialized Associations – Composition

̶ “Stronger” form of aggregation
̶

̶

̶ “Stronger” form of aggregation
̶ The part belong to exactly one whole in the given time

̶ The part is not valid without the whole

̶ The whole is responsible for lifecycle of its parts

̶

̶

̶

̶

̶ The whole is responsible for lifecycle of its parts

̶ When deleting, the whole must take care of its parts (delete or transfer them)

̶ Transitive and asymmetrical (without cycles)

PB007 Software Engineering I — Design Class Diagram9



Aggregation vs. Composition
Code comparison

Aggregation vs. Composition

public class Ship

{

private Engine _engine;

public class Ship

{

private Engine _engine;private Engine _engine;

public Ship(Engine engine)

{

private Engine _engine;

public Ship()

{{

_engine = engine;

}

{

_engine = new Engine();

}}

}

}

}

PB007 Software Engineering I — Design Class Diagram10



Association Decomposition – M:NAssociation Decomposition – M:N

̶ Analytical̶ Analytical

̶̶ Design
̶

̶ Design
̶ Decompose if there is

a need for additional attributes

̶̶ Someone must “own” it

PB007 Software Engineering I — Design Class Diagram11



Association Decomposition – BidirectionalAssociation Decomposition – Bidirectional

̶ Someone must “own” it
̶

̶ Someone must “own” it
̶ To ensure consistency

PB007 Software Engineering I — Design Class Diagram12



Task for this week
You gotta do what you gotta do

Task for this week

̶ Process the feedback

̶

̶ Process the feedback

̶ Copy and extend analytical class diagram to design class diagram
̶

̶

̶ Copy and extend analytical class diagram to design class diagram
̶ Add all required methods, properties, constructors, etc.

̶ Specialize and decompose associations when suitable

̶ Type everything

̶

̶

̶

̶

̶ Type everything

̶ Add technology-related and service classes

̶ NB! Do not delete the original analytical class diagram ̶ NB! Do not delete the original analytical class diagram 

PB007 Software Engineering I — Design Class Diagram13


