
Getting Dynamic,Getting Dynamic,
State Machine DiagramState Machine Diagram

PB007 Software Engineering I

Lukáš Daubner

daubner@mail.muni.cz

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram1



State Machine DiagramState Machine Diagram

̶ Models the dynamic behavior (life cycle) of one subject
̶

̶

̶ Models the dynamic behavior (life cycle) of one subject
̶ Class instantiation (Object)

̶ Use Case

̶ System

̶

̶

Event

̶

̶

̶ System

̶ Subsystem

̶ Component

̶ …

̶

Event
̶

̶

̶ …

̶ Main components are:
̶

̶

State
̶

̶ States

̶ Transitions

̶ Events

State

Transition

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram2



State Machine Diagram
States

State Machine Diagram

̶ Represents semantically important situation

̶

̶ Represents semantically important situation

̶ In case of (OOP) object, it is determined by attribute values, 

relations with others, and performed activity.

̶

relations with others, and performed activity.

Entry action
Performed when entering the state

Deferrable Trigger
Event, which is registered but its

processing is left for other states

Internal activity
Ongoing behavior while

in the state

Exit action
Performed when exiting the state

Internal Transition
Transition, which is processed

without exiting the sate

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram3



State Machine Diagram
Transitions

State Machine Diagram

̶ Defines how to get from one state to another

̶

̶

̶ Defines how to get from one state to another

̶ Syntax: event [guard condition] / action

̶ Semantics: At the occurrence of event, if the guard condition

̶

̶ Semantics: At the occurrence of event, if the guard condition

holds, perform action and go to the new state.

Event Condition (bool) ActionEvent Condition (bool) Action

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram4



State Machine Diagram
Events

State Machine Diagram

̶ Stimulus on which the subject may react by changing the state or ̶ Stimulus on which the subject may react by changing the state or 

performing an operation.

̶̶ Types of events:
̶ Call event – Calling operation of the subject.

̶ Signal event – Asynchronous sending a receiving a signal between subjects

̶

̶

̶

̶ Signal event – Asynchronous sending a receiving a signal between subjects

̶ Change event – Boolean expression. The event occurs when the value is changed from 

false to true.

̶ Time event – Event occur at a certain time t (when(t)) or after a certain time t (after(t)).

̶

̶ Time event – Event occur at a certain time t (when(t)) or after a certain time t (after(t)).

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram5



State Machine Diagram
Events

State Machine Diagram

(excerpt from diagram)

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram6



Composite States
Simple composite state

Composite States

̶ Useful for simplifying the diagram

̶

̶

̶ Useful for simplifying the diagram

̶ Capturing inheritance between states

̶ Consist of a single region

̶

̶ Consist of a single region

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram7



Composite States
Orthogonal composite state

Composite States

̶ Capturing parallel behavior 

̶

̶ Capturing parallel behavior 

̶ Consist of a two and more regions

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram8



State Machine Diagram in OOP worldState Machine Diagram in OOP world

̶ In our case, state machine diagram is used to represent lifecycle 

̶

̶ In our case, state machine diagram is used to represent lifecycle 

of an object

̶ Context of the diagram is only the instance of a class from ̶ Context of the diagram is only the instance of a class from 

design class diagram
̶ All methods and events must be supported by the design class diagram

̶ Initial transition means calling the constructor

̶

̶

̶ Initial transition means calling the constructor

̶ Final transition means deleting the object from system

̶ Object saves its state even outside main memory (persistence)

̶

̶

̶ Object saves its state even outside main memory (persistence)

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram9



State Machine Diagram in OOP worldState Machine Diagram in OOP world

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram10



Task for this week
You gotta do what you gotta do

Task for this week

̶ Process the feedback

̶

̶ Process the feedback

̶ Choose a suitable object for modeling - ride
̶

̶ Choose a suitable object for modeling - ride
̶ Something with non-trivial lifecycle

̶ Create a state machine diagram for this object
̶

̶

̶ Create a state machine diagram for this object
̶ Revise design class diagram if needed

PB007 Software Engineering I — Getting Dynamic, State Machine Diagram11


