Interaction Diagrams,

Sequence Diagram
PB007 Software Engineering |

Lukas Daubner
daubner@mail.muni.cz

1 PBO007 Software Engineering | — Interaction Diagrams, Sequence Diagram

L
la S a r'lls LAB OF SOFTWARE ARCHITECTURES
NNNNNNNNNNNNNNNNNNNNN

— Design class diagram S o e T

2

Previous diagrams

Exhibit

-coordX : double
-coordY : double
-axhibitEquipment : List=string>

animals

Animal

-name | string

+getCoord¥() : doubls

— get / set methods for associations O Eeuipment() Liststing>
+addAnimal{newAnimal | Animal)

+gethnimals() : List<Animal=

fo-

— State Machine diagram
— All used operations and attributes are present in the design class diagram

— Transitions are not described with natural language

7 |+pethame() : string

+sathame{name : string) : void

— Call and change events only use operations and attributes from the respective class

Change events do not use attributes of different objects

PBO007 Software Engineering | — Interaction Diagrams, Sequence Diagram

MUNI
F 1

Interaction Diagrams

— Model collaboration between classes/objects/actors
— i.e., communication between them

— Describes:

— Method execution
— Scenarios
— Collaboration of subsystems

— In general, they model behavior and communication between two

and more objects
— In contrast to State Diagram, which focuses only on inner behavior of one object

MUNI
F 1

3 PBO0O07 Software Engineering | — Interaction Diagrams, Sequence Diagram

Communication Diagram

— Captures the communication with focus on relationships between

objects
— Interaction is considered as their entanglement

— From the object point of view, they describes detailed execution of

a use case (or its part)

— Again, everything must be consistent with Class Diagram

— Link can exist only if there is a reference (association or dependency)
— Messages are method calls on receiving object

— We work with object — instances of classes

. . . MUNI
4 PBO007 Software Engineering | — Interaction Diagrams, Sequence Diagram I

F

5

Communication Diagram — Example

ZeppelinService

+/eppelinService()
+isZeppelinAvailable(zeppelin : Zeppelin) : boolean
+checkMaintenancePeriod() : void
+register/ eppelininame : string, type : stiing, registration : string, manufacturer : string) : Zeppelin
+discontinueZeppelin(zeppelin ;. Zeppelin) : void

1

Message Object Creation Message v
0.* manages
Zeppelin
1:registerZeppelin(n, t, r, m) - -name : string
. CZeppelinService type - string
“anager 1.6 zeppelin 1.1: <<create>> -registration : string
= 1.2 setName(n) -manufacturer : string
1.3 setType(t) +Zeppelin()
+ 1.4 setRegistration(r) +gethame() : string
L|nk 1.5: setManufacturer{im) |+setName(name : string) : void
Retu rn Message zeppelin : Zeppelin +getType(). str.mg. -
+setTypeltype : string) : void
* +getRegistration() : string
+setReqgistration(registration : string) : void
Object +getManufacturer() : string
+getManufacturer(manufacturer : string) : void
PB007 Software Engineering | — Interaction Diagrams, Sequence Diagram

mul—
— &&=

Sequence Diagram

— Captures the communication with focus on time-based ordering of

mesSsages
— Interaction is considered as a sequence of messages

— From the object point of view, they describes detailed execution of

a use case (or its part)

— Again, everything must be consistent with Class Diagram

— Link can exist only if there is a reference (association or dependency)

— Messages are method calls on receiving object

— We work with object — instances of classes

— Mind the ordering, objects cannot receive message before their creation
— Calls in one context must be in the same activation (focus of control)

6 PBO0O07 Software Engineering | — Interaction Diagrams, Sequence Diagram

MUNI
F 1

Sequence Diagram — Example

X

Message : ZeppelinService

: Manager !
] . . L
1: registerZeppelin(n, t, r, m) >
Time e
Activation
1.6: zeppelin

{___________;_P __________

- Return message
7 PBO007 Software Engineering | — Interaction Diagrams, Sequence Diagram

Creation message

/

1.1: <<create>> |
—————————————— | zeppelin : Zeppelin

1.2: setName(n) :
1.3: setType(t) ’D

1.4: setRegistration(r) >¢]
1.5; setManufacturer(m) bg]

|
|
|
Lifeline = |

MUNI
F 1

8

Sequence Diagram — Example

% : ZeppelinService zeppelin : Zeppelin

: Manager |
= |
1: discontinueZeppelin(registration) :

1.1: findZeppelin(registration)

Nested activation = ||~ |
 1.1.1: zeppelin

|
I
I
I
!
I
!
!
!
I
I
I
!
1.2: <<destroy>> ’[Ij
| X

Destruction message

—

PB007 Software Engineering | — Interaction Diagrams, Sequence Diagram

mul—
— &&=

Combined Fragments

— Divides the sequence diagram into areas with different behavior

— They include operator, at least one operand and zero or more
conditions

— Examples of major operators:

— opt (option) — one operand, which is executed only if the specified condition is satisfied
— alt (alternatives) — multiple operands, only the one with the satisfied condition is executed

— loop — repeated execution of the operand
— break — executed if its condition is satisfied, and it terminates the execution cycle

9 PBO0O07 Software Engineering | — Interaction Diagrams, Sequence Diagram

MUNI
F 1

Combined Fragments — Example

% - RentalService

: Customer

1. rentZeppelin(customer, zeppelins, from, to)

[zeppelins.count == 0]

1.1: error
<_ _______________________________

i)

shortRental :
ShortTermRental

[to - from >=30] || 1.2 <<create>> longRental :
LongTermRental
I
I e
[else] 1.3, <<create>> |
_________________________ L3

1

10 PBO007 Software Engineering | — Interaction Diagrams, Sequence Diagram

mul—
— &&=

11

Combined Fragments — Example

X

: Customer

1: findRoom(roomCode)

: RoomService

room : Room

Ll

; 1.1: rooms = getRooms()

loo p)

[foreach room in rooms]

1.2: code = getCode()

break)

[roomCode == code]

1.3: room
< _________________
1.4 null
1A il
I
PB007 Software Engineering | — Interaction Diagrams, Sequence Diagram

.

mul—
— &&=

Task for this week

You gotta do what you gotta do

— Process the feedback

— Based on the Use Case Diagram and Design Class Diagram, think
about the interaction between the objects that are participating in

the use case
— You can write it down as a pseudocode — it could help you

— Choose three cases and model them into three Sequence

Diagram
— If you need to change something in Design Class Diagram, just do it, no worries.

12 PBO007 Software Engineering | — Interaction Diagrams, Sequence Diagram

