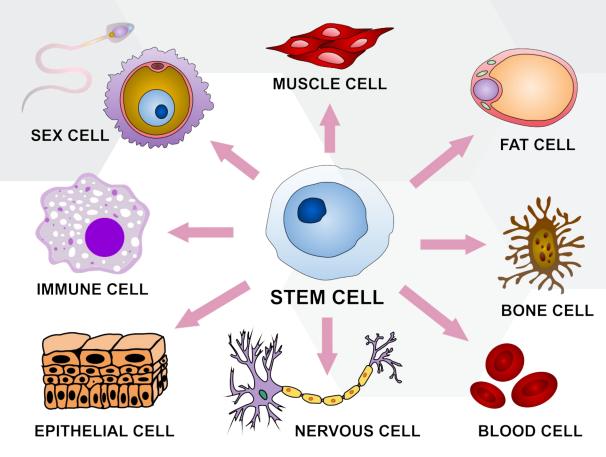


Central European Institute of Technology BRNO | CZECH REPUBLIC

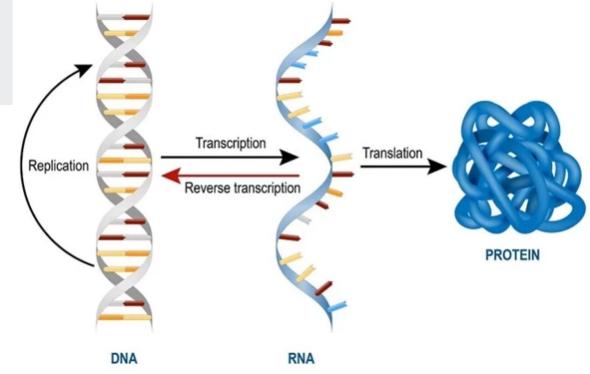
Modeling Small RNA binding rules using Machine Learning

Katarína Grešová

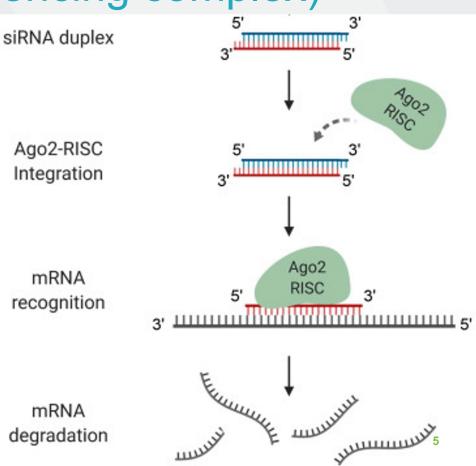

Outline

- Biological background
- Data description
- Current state of the art
- Proof of concept work
- Ideas and plan

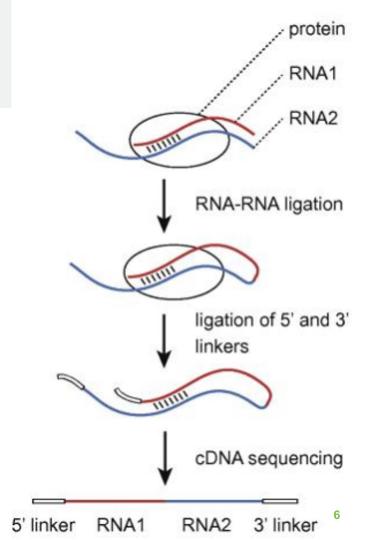
Cells


- Single cell organisms
 - Whole life in one cell
- Multi cell organisms
 - Different types of cells
 - But each cell has exactly the same instructions (DNA) for operating

Central Dogma of Molecular Biology

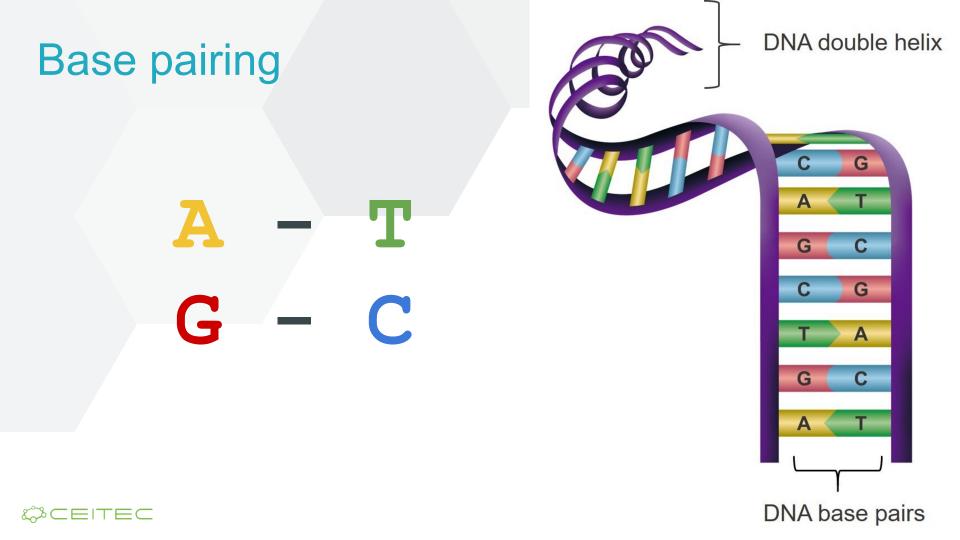

- DNA
 - stores all the instructions for functioning of a cell
- RNA
 - created as a copy of some instruction from DNA
 - can be used to create Protein or it can do some work in cell in a form of RNA
- Protein
 - product of instruction stored in RNA
 - do most of the work in the cell

RISC (RNA-induced silencing complex)


- RNA note (called mRNA) transcribed from DNA floats in cell
- Ago protein attaches small RNA onto itself
- Ago uses this small RNA to find specific mRNA
- Identified mRNA is destroyed

Biological experiment

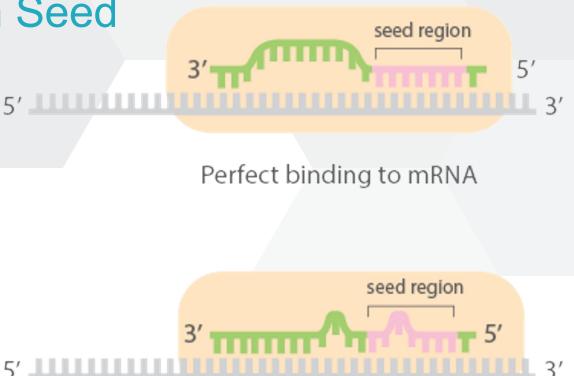
- 1. Find RISC complex (Ago, small RNA, target RNA)
- 2. Connect ends of small RNA and target RNA
- 3. Remove Ago
- Add specific sequences to ends of connected RNAs
- 5. Read connected RNAs using PCR



Data

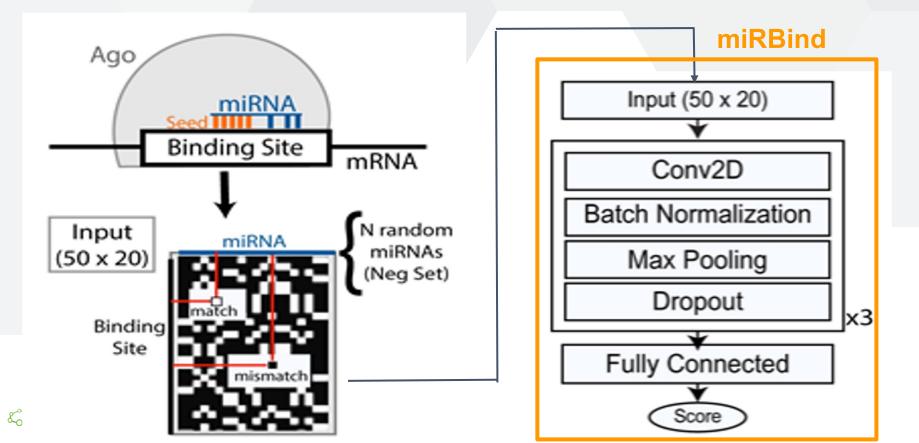
30 785 samples

miRNA	gene	label
AACTGGCCCTCAAAGTCCCG	TGGAGAGCGGGCTTAAGAAGTGGCGGTTCGGCCGGAGGTTCCATCGTATC	1
ATCAGGGCTTGTGGAATGGG	CTCGCTGGCGTTCTCCGGGGTGGTTGGCATTGTGTCCTGGAAGCGGCCAT	0
TGGGGAGCTGAGGCTCTGGG	CTACACCTCAGCCCGGGGCTGCACTGCCACCCTGGGCAACTTCGCCAAGG	0
GTGAGGGCATGCAGGCCTGG	GTAAGGAGCTGGAGTCGCTGGTAGAGAACGAGGGCAGTGAGGTGCTGGCG	0
ATGCACCTGGGCAAGGATTC	GCATATGGGGGCCTTAAGGAATAACAGTGTGCGTGGTGGTGTGCAGGAGA	0
TGCACGGCACTGGGGACACG	TCAGGGTTTCTTGGGGGGCTTATGAGTCTCACCGGTCAACCCAGGAGGCCT	0
AACTGGCCCTCAAAGTCCCG	ACCTCTTAATGGGCCAGTGAATAACACTCACTGCTGGCATTTAATGTGCA	1
TGGGTTCCTGGCATGCTGAT	CACCTGCTGCCCCTTCTACCCCAGCTCCACCACCTGCAGTCCCTAAAGAA	0
TCAGTGCATCACAGAACTTT	ACCCGCACAGCAAGCACCTGTACACGGCCGACATGTTCACGCACG	0
CTGGCCCTCTCTGCCCTTCC	CTGATTGTGGCAGAGGGGCCACTACCCAAGGTCTAGCTAG	1
TGAGGTAGTAGGTTGTATAG	ATGACCCAACCTACCACCTGTTTTTACATATCCAATTCCAGTAACTCTC	1
TAAAGTGCTTATAGTGCAGG	CAAAAGCATACCTACCTTCCCCTAGAGGTCTGTAACATTGTGGCTGGGCA	1
TGAGAACTGAATTCCATGGG	CCTGGGACCCCCAGGCGTGGAGGACAGTCAAGCCGTGGAGGCCGTGGAGG	0
TGAGGTAGTAGGTTGTATAG	CCCAACCTCAACCTCCAACCTCCCAGCACCACATCATGCCAGGGGTTGG	1
CTGTACAGGCCACTGCCTTG	GAAGGTAAAGAGGGTCATTGGGGTCGAGCTATGCCCAGAGGCTGTGGAGG	0
GTCCCTCTCCAAATGTGTCT	GCTGGCCAGCGGACTTCTGGAGTTAGCCTTTGCTTTTGGAGGACTGTGTG	0
TTAGGGCCCTGGCTCCATCT	ACACAGGAAGAGGAGCCAGGCCCTTGTACCTATGGGATTGGACAGGACTG	1
TAGGTAGTTTCATGTTGTTG	TCCGCCCTCTTTTGCCAGCCCAGCCCCTCCATGCACATTTGGACGCTGTC	0
TAAAGAGCCCTGTGGAGACA	TCCTGAGGCCTGGGGCACCTTTCGTCTGATGAGCCTCTGCATGGAGAGAG	7 0
GTGGGTACGGCCCAGTGGGG	CATCTTGTCCTCACAGCCCAGAGCATGTTCCAGATCCCAGAGTTTGAGCC	0

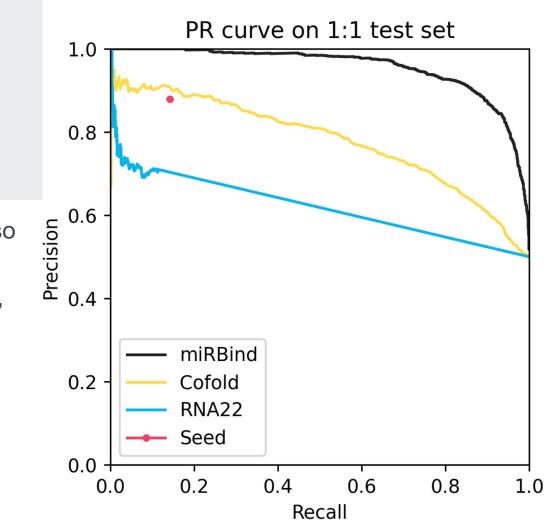

Some of current solutions

- Based on seed
- Based on base pairing

Solution based on Seed


- Heuristic
- Looks for base pairing in seed region
- Finds only 40% of interaction

Imperfect binding to mRNA



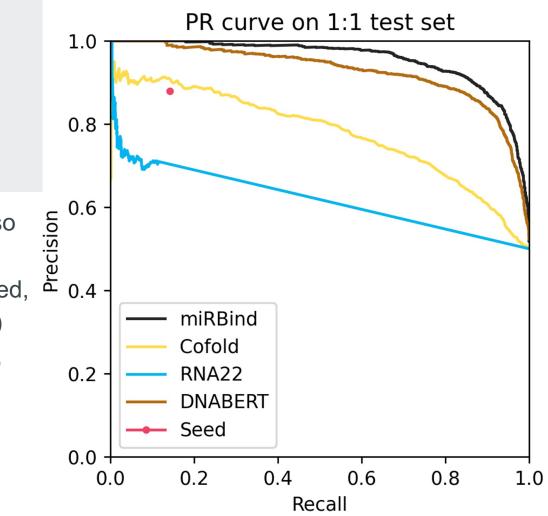
Solution based on base pairing

Comparison

- miRBind base pairing method (the best results)
- Cofold and RNA22 not mentioned methods, but also used for prediction
- Seed seed based method, most used

My approach

- Sequence
- Pretrained BERT model DNABERT



DNABERT

First try

- miRBind base pairing method (the best results)
- Cofold and RNA22 not mentioned methods, but also used for prediction
- **DNABERT** sequence based, finetuned DNABERT (mine)
- Seed seed based method, most used

Experiments

- Batch size 12, 32 and 64
 - No significant change
- Using [SEP] token instead of 'NNNN'
 - No significant change
- Trained from scratch
 - Worse result

Ideas and Plans

- Do hyperparameter search how to do it optimally?
- Use RNABERT instead of DNABERT
- Pre-train my own model based only on RNA
- Add training tasks (DNABERT did only [MASK] prediction)
 - Next sequence prediction as in BERT
 - Structure prediction as in RNABERT

