
PV177 – DataScience seminář
(ELK stack and Graph DBs)

Tomáš Rebok

Ústav výpočetní techniky MU

L04 (ELK and GraphDBs) - PV177/DataScience2

Data analysis with ELK framework

Logstash
Log Kibana

Elasticsearch ELK Software Stack

ELK consists of three open source software products provided by
the company “Elastic” (formerly Elasticsearch)

E => Elasticsearch
(Highly scalable search index server)

L => Logstash
(Tool for the collection, enrichment, filtering and
forwarding of data, e.g. log data)

K => Kibana
(Tool for the exploration and visualization of data)

L04 (ELK and GraphDBs) - PV177/DataScience3

L04 (ELK and GraphDBs) - PV177/DataScience4

ELK Architecture

L04 (ELK and GraphDBs) - PV177/DataScience5

ELK Architecture

L04 (ELK and GraphDBs) - PV177/DataScience6

ELK Architecture

L04 (ELK and GraphDBs) - PV177/DataScience7

ELK Architecture

Open source software to collect, transform, filter and forward data

(e.g. log data) from input sources to output sources (e.g.

Elasticsearch)

Implemented in JRuby and runs on a JVM (Java Virtual Machine)

Simple message-based architecture

Extendable by plugins (e.g. input, output, filter plugins)

Logstash

L04 (ELK and GraphDBs) - PV177/DataScience8

Configuration
Multiple inputs of

different types

Forward to

multiple outputs

Conditionally

filter and

transform data;

some common

formats are

already known

L04 (ELK and GraphDBs) - PV177/DataScience9

Console output processing Apache log files

L04 (ELK and GraphDBs) - PV177/DataScience10

Configuration for parsing syslog messages

Input filter receives messages directly

from tcp and udp ports

Filter splits messages and adds fields

L04 (ELK and GraphDBs) - PV177/DataScience11

Console output processing Syslog messages

L04 (ELK and GraphDBs) - PV177/DataScience12

file -> for processing files

tcp, udp, unix -> reading directly from network sockets

http -> for processing HTTP POST requests

http_poller -> for polling HTTP services as input sources

imap -> accessing and processing imap mail

Different input plugins to access MOM („Message-Oriented Middleware“,
message queues)

Rabbitmq, stomp, …

Different plugins for accessing database systems
jdbc, elasticsearch, …

Plugins to read data from system log services and from command line
syslog, eventlog, pipe, exec

and more …

Input Plugins

L04 (ELK and GraphDBs) - PV177/DataScience13

The “Elastic Beats” framework allows to forward input from a set of “data
sources” to a Logstash instance for processing

Filebeat, Packetbeat, Winlogbeat, Metricbeat, Functionbeat, etc.

The “Beats plugin” can then be configured to consume messages from
“Elastic Beats”

Transfer can be secured by security certificate and encrypted transmission

authentication and confidentiality

Elastic Beats framework + Beats plugin

L04 (ELK and GraphDBs) - PV177/DataScience14

stdout, pipe, exec -> show output on console, feed to a command

file -> store output in file

email -> send output as email

tcp, udp, websocket -> send output over network connections

http -> send output as HTTP request

Different plugins for sending output to database systems, index server or
cloud storage

elasticsearch, solr_http, mongodb, google_bigquery, google_cloud_storage, opentsdb

Different output plugins to send output to MOM (message queues)
Rabbitmq, stomp, …

Different output plugins for forwarding messages to metrics applications
graphite, graphtastic, ganglic, metriccatcher

Output plugins

L04 (ELK and GraphDBs) - PV177/DataScience15

The Logstash output plugin can write to multiple Elasticsearch nodes

It will distribute output objects to different nodes (“load balancing”)

A Logstash instance can also be part of a Elasticsearch cluster and

write data through the cluster protocol

Multiple node writes

L04 (ELK and GraphDBs) - PV177/DataScience16

grok -> parse and structure arbitrary text: best generic option to interpret text as
(semi-)structured objects

alternative: dissect (faster, but does not use regular expressions)

filter for parsing different data formats

csv, json, kv (key-valued paired messages), xml, …

multiline -> collapse multiline messages to one logstash event

split -> split multiline messages into several logstash events

aggregate -> aggregate several separate message lines into one Logstash event

mutate -> perform mutations of fields (rename, remove, replace, modify)

dns -> lookup DNS entry for IP address

geoip -> find geolocation of IP address

and more

Filter plugins

L04 (ELK and GraphDBs) - PV177/DataScience17

Input: 55.3.244.1 GET /index.html 15824 0.043

grok filter

filter {
grok { match => { "message" => "%{IP:client} %{WORD:method}

%{URIPATHPARAM:request} %{NUMBER:bytes} %{NUMBER:duration}" }
}

Then the output will contain fields like:
client: 55.3.244.1

method: GET

request: /index.html

bytes: 15824

duration: 0.043

grok usage example

L04 (ELK and GraphDBs) - PV177/DataScience18

Scaling and high availability

L04 (ELK and GraphDBs) - PV177/DataScience19

ElasticSearch

Server environment for storing large-scale structured index

entries and query them
Written in Java

Based on Apache Lucene

Uses Lucene for index creation and management

Document-oriented (structured) index entries which can (but must not) be associated

with a schema

Combines “full text”-oriented search options for text fields with more precise search

options for other types of fields, like date + time fields, geolocation fields, etc.

Near real-time search and analysis capabilities

Provides Restful API as JSON over HTTP

L04 (ELK and GraphDBs) - PV177/DataScience20

Elasticsearch can run as one integrated application on multiple nodes of a
cluster

Indexes are stored in Lucene instances called “Shards” which can be
distributed over several nodes

Ability to subdivide your (large) index into multiple pieces

Each shard is in itself a fully-functional and independent "index" that can be hosted on any node in the cluster

There a two types of “Shards”
Primary Shards

Replica

Replicas of “Primary Shards” provide
Failure tolerance and therefore protect data

Make queries (searches) faster

Scalability of Elasticsearch

L04 (ELK and GraphDBs) - PV177/DataScience21

Send JSON documents to server, e.g. use REST API
No schema necessary => ElasticSearch determines types of attributes

But it‘s possible to explicitly specify schema, i.e. types for attributes

Like string, byte, short, integer, long, float, double, boolean, date

Analysis of text attributes for fulltext-oriented search
Word extraction, reduction of words to their base form (stemming)

Stop words

Support for multiple languages (including czech, but not slovak yet)

Automatically generates identifiers for data sets or allows to

specify them while indexing

Indexing data with Elasticsearch

L04 (ELK and GraphDBs) - PV177/DataScience22

PUT request inserts the JSON payload into the index with name “megacorp” as object of type
“employee”

Schema for type can be explicitly defined (at time of index creation or automatically
determined)

Text field (e.g. “about”) will be analyzed if analyzers are configured for that field

Request URL specifies the identifier “1” for the index entry

Indexing data using the REST API

L04 (ELK and GraphDBs) - PV177/DataScience23

GET /megacorp/employee/1

A “GET” REST API call with “/megacorp/employee/1” will retrieve
the entry with id 1 as JSON object

Retrieval of an index entry

L04 (ELK and GraphDBs) - PV177/DataScience24

GET /megacorp/employee/_search

GET request with “_search”

at the end of the URL

performs query

Search results are returned

in JSON response as “hits”

array

Further metadata specifies

count of search results

(“total”) and max_score

Simple Query

L04 (ELK and GraphDBs) - PV177/DataScience25

GET /megacorp/employee/_search?q=last_name:Smith

Simple Query with search string

L04 (ELK and GraphDBs) - PV177/DataScience26

Query DSL is a JSON language for more complex queries

Will be sent as payload with the search request

Match clause has the same semantics as in simple query

More complex queries with Query DSL

L04 (ELK and GraphDBs) - PV177/DataScience27

Consist of a query and a

filter part

Query part matches all

entries with last_name

“smith” (2)

Filter will then only select

entries which fulfill the

range filter (1)

“age”: {“gt” : 30 }

More complex queries with Query DSL

L04 (ELK and GraphDBs) - PV177/DataScience28

Combined search on different attributes and different indices
Many possibilities for full-text search on attribute values

Exact, non-exact, proximity (phrases), partial match

Support well-known logical operators

(And / or, …)

Range queries (i.e. date ranges)

…

Control relevance and ranking of search results, sort them
Boost relevance while indexing

Boost or ignore relevance while querying

Different possibilities to sort search results otherwise

Some query possibilities

L04 (ELK and GraphDBs) - PV177/DataScience29

Web-based application for exploring and visualizing data

Modern Browser-based interface (HTML5 + JavaScript)

Ships with its own web server for easy setup

Seamless integration with Elasticsearch

Kibana

L04 (ELK and GraphDBs) - PV177/DataScience30

After installation first configure Kibana to access Elasticsearch
server(s)

Should be done by editing the Kibana config file

Then use web UI to configure indexes to use

Configure Kibana

L04 (ELK and GraphDBs) - PV177/DataScience31

Discover data

L04 (ELK and GraphDBs) - PV177/DataScience32

Create a visualization

L04 (ELK and GraphDBs) - PV177/DataScience33

Different types of visualizations

L04 (ELK and GraphDBs) - PV177/DataScience34

Combine visualizations to a Dashboard

L04 (ELK and GraphDBs) - PV177/DataScience35

L04 (ELK and GraphDBs) - PV177/DataScience36

Typical ELK use cases

Log data management and analysis

Monitor systems and/or applications and notify operators about critical

events

Collect and analyze other (mass) data

i.e. business data for business analytics

Energy management data or event data from smart grids

Environmental data

Use the ELK stack for search driven access to mass data in web-based

information systems

Some use cases of the ELK stack

L04 (ELK and GraphDBs) - PV177/DataScience37

Many different types of logs

Application logs

Operating system logs

Network traffic logs from routers, etc.

Different goals for analysis

Detect errors at runtime or while testing applications

Find and analyze security threats

Aggregate statistical data / metrics

Log data management and analysis

L04 (ELK and GraphDBs) - PV177/DataScience38

No centralization
Log data could be everywhere

on different servers and different places within the same server

Accessibility Problems
Logs can be difficult to find

Access to server / device is often difficult for analyst

High expertise for accessing logs on different platforms necessary

Logs can be big and therefore difficult to copy

SSH access and grep on logs doesn’t scale or reach

No Consistency
Structure of log entries is different for each app, system, or device

Specific knowledge is necessary for interpreting different log types

Variation in formats makes it challenging to search

Many different types of time formats

Problems of log data analysis

L04 (ELK and GraphDBs) - PV177/DataScience39

The ELK stack provides solutions

Logstash allows to collect all log entries at a central place (e.g.

Elasticsearch)

End users don’t need to know where the log files are located

Big log files will be transferred continuously in smaller chunks

Log file entries can be transformed into harmonized event objects

Easy access for end users via Browser-based interfaces (e.g.

Kibana)

Elasticsearch / Kibana provide

advanced functionality for

analyzing and visualizing the log data

L04 (ELK and GraphDBs) - PV177/DataScience40

The ELK stack also provides good solutions for monitoring data
and alerting users

Logstash can check conditions on log file entries and even aggregated metrics

And conditionally sent notification events to certain output plugins if monitoring criteria are
met

E.g. forward notification event to email output plugin for notifying user (e.g. operators) about the
condition

Forwarding notification event to a dedicated monitoring application

Elasticsearch in combination with Watcher (another product of Elastic)

Can instrument arbitrary Elasticsearch queries to produce alerts and notifications

These queries can be run at certain time intervals

When the watch condition happens, actions can be taken (sent an email or forwarding an event to
another system)

Monitoring

L04 (ELK and GraphDBs) - PV177/DataScience41

Logging and analyzing network traffic
https://operational.io/elk-stack-for-network-operations-reloaded/

How to Use ELK to Monitor Performance
http://logz.io/blog/elk-monitor-platform-performance/

How Blueliv Uses the Elastic Stack to Combat Cyber Threats
https://www.elastic.co/blog/how-blueliv-uses-the-elastic-stack-to-
combat-cyber-threats

Centralized System and Docker Logging with ELK Stack
http://www.javacodegeeks.com/2015/05/centralized-system-and-
docker-logging-with-elk-stack.html

Log analysis examples from the Internet

L04 (ELK and GraphDBs) - PV177/DataScience42

http://logz.io/blog/elk-monitor-platform-performance/
https://www.elastic.co/blog/how-blueliv-uses-the-elastic-stack-to-combat-cyber-threats
http://www.javacodegeeks.com/2015/05/centralized-system-and-docker-logging-with-elk-stack.html

Summary

The ELK stack is easy to use and has many use cases
Log data management and analysis

Monitor systems and / or applications and notify operators about critical events

Collect and analyze other (mass) data

Providing access to big data in large scale web applications

Thereby solving many problems with these types of use cases
compared to “handmade”-solutions

Because of its service orientation and cluster readiness it fits
nicely into bigger service-oriented applications

L04 (ELK and GraphDBs) - PV177/DataScience43

L04 (ELK and GraphDBs) - PV177/DataScience44

ELK deployment made easy

45

Introducing CopAS

CopAS – Cops Analytic System
▪ fine-tuned production-ready framework running Elastic Platform

developed in collaboration with Police CR (PCR)

▪ Bro, LogStash, ElasticSearch, and Kibana

▪ graphical user interface (Neck)

▪ a set of pre-prepared dashboards and visualizations

▪ main emphasis on user-friendliness and ease of deployment & use
‒ employs Docker for easier deployment

‒ runs on all systems with Docker available (Windows, Linux, MacOS, …)

L04 (ELK and GraphDBs) - PV177/DataScience

L04 (ELK and GraphDBs) - PV177/DataScience46

KIBANA vs. CopAS

47

CopAS container

L04 (ELK and GraphDBs) - PV177/DataScience

48

CopAS – container management

copas ACTION [container name]

▪ a tool for CopAS container management

L04 (ELK and GraphDBs) - PV177/DataScience

49

CopAS – example

Example:

▪ $ copas info

L04 (ELK and GraphDBs) - PV177/DataScience

L04 (ELK and GraphDBs) - PV177/DataScience50

CopAS – old user environment (version 1.0)

L04 (ELK and GraphDBs) - PV177/DataScience51

CopAS – old user environment (version 2.0)

52

CopAS version 3.1

Main changes in workflow and GUI

New functionality
▪ large files analysis support

‒ limited only by available resources

▪ local files analysis support
▪ (g)zipped files support
▪ support for PCAPs and CSVs
▪ automated files import – CopAS WatchDog

‒ one can define monitored directories

▪ backup and restore of containers
‒ copas backup and copas import

‒ ability to move containers among different analytical systems

▪ extended Logstash configuration
▪ integrated Molo.ch analytic tool (PCAPs only)

L04 (ELK and GraphDBs) - PV177/DataScience

L04 (ELK and GraphDBs) - PV177/DataScience53

CopAS – user environment (version 3.1)

L04 (ELK and GraphDBs) - PV177/DataScience54

CopAS – user environment (version 3.1)

L04 (ELK and GraphDBs) - PV177/DataScience55

CopAS – user environment (version 3.1)

L04 (ELK and GraphDBs) - PV177/DataScience56

CopAS – user environment (version 3.1)

L04 (ELK and GraphDBs) - PV177/DataScience57

CopAS – user environment (version 3.1)

58

CopAS development and future

CopAS – main development
▪ great work made by previous PV177/DataScience students

‒ K. Gutič and V. Lazárik

▪ CopAS v. 4.0 alpha – several improvements ongoing (O. Machala)
‒ modular design, unified GUI

CopAS – not only PCR tool
▪ PCR specifics are just pre-defined

visualizations, dashboards, searches, etc.
‒ without specific addons, it is a

generic ES-based data analytic tool

▪ assumes multiple input formats support
in Neck GUI
‒ (proposals for input formats welcomed)

L04 (ELK and GraphDBs) - PV177/DataScience

59

CopAS availability

CopAS v. 3.1 installation (Linux OS)
▪ https://frakira.fi.muni.cz/~jeronimo/PV177/copas-install.tgz

CopAS v. 3.1 offline image
▪ 5,8 GB – not necessary, but easier to deploy
▪ https://frakira.fi.muni.cz/~jeronimo/PV177/copasimg-20200915.tgz

CopAS v. 4.0 alpha
▪ https://frakira.fi.muni.cz/~jeronimo/PV177/v4.0/copas-src.tar (2,2 GB)

Testing datasets:
▪ PCAPs: https://tcpreplay.appneta.com/wiki/captures.html

L04 (ELK and GraphDBs) - PV177/DataScience

https://frakira.fi.muni.cz/~jeronimo/PV177/copas-install.tgz
https://frakira.fi.muni.cz/~jeronimo/PV177/copasimg-20200915.tgz
https://frakira.fi.muni.cz/~jeronimo/PV177/v4.0/copas-src.tar
https://tcpreplay.appneta.com/wiki/captures.html

L04 (ELK and GraphDBs) - PV177/DataScience60

Graph databases

Object (Vertex, Node)

Link (Edge, Arc, Relationship)

What is a Graph?

• Formally, a graph is a collection of vertices and edges

• Less Formally Defined:

• A graph is a set of nodes, relationships, and properties

• A network of connected objects Graph

L04 (ELK and GraphDBs) - PV177/DataScience61

INTRODUCTION TO THE GRAPH MODEL

name: bode
miller

Nodes

➢Nodes represent entities and complex types

➢Nodes can contain properties

➢Each node can have different properties

Think of nodes as documents that store properties in the form of
arbitrary key-value pairs.

L04 (ELK and GraphDBs) - PV177/DataScience62

INTRODUCTION TO THE GRAPH MODEL

Olympic
_Address

Relationships

➢Every relationship has a name and direction

➢Relationships can contain properties, which can further clarify the
relationship

➢Must have a start and end node

Relationships connect and structure nodes.

L04 (ELK and GraphDBs) - PV177/DataScience63

INTRODUCTION TO THE GRAPH MODEL name: bode
miller

Address:123
Fake Street

Address
Type:Olympic

Properties

➢Key value pairs used for nodes and relationships

➢Adds metadata to your nodes and relationships

➢Entity attributes

➢Relationship qualities

Allows you to create additional semantics to entities and relationships.

L04 (ELK and GraphDBs) - PV177/DataScience64

Megan

Ross

Jack knows

knows knows

Node
Property

Relationship

Basic Graph

L04 (ELK and GraphDBs) - PV177/DataScience66

Different Kinds of Graphs

• Undirected Graph

• Directed Graph

• Pseudo Graph

• Multi Graph

• Hyper Graph

L04 (ELK and GraphDBs) - PV177/DataScience67

More Kinds of Graphs

• Weighted Graph

• Labeled Graph

• Property Graph

L04 (ELK and GraphDBs) - PV177/DataScience68

What is a Graph Database?

• A database with an explicit graph structure

• Each node knows its adjacent nodes

• As the number of nodes increases, the cost of a local step (or

hop) remains the same

• Plus an Index for lookups

L04 (ELK and GraphDBs) - PV177/DataScience69

Relational Databases

L04 (ELK and GraphDBs) - PV177/DataScience70

Relational To Graph Databases …

L04 (ELK and GraphDBs) - PV177/DataScience71

L04 (ELK and GraphDBs) - PV177/DataScience72

Graph Databases

Name: Ross
Age: 34

Name: Jack
Age: 7

Type: Activity
Name: Martial

Arts

Label: Knows
Since: 5/20/2006 Label: Knows

Since 5/20/2008

Label: isMember
Since: 1/20/2014

Label: Member

Label: isMember
Since: 6/15/2013

Label: Member

Another graph example

L04 (ELK and GraphDBs) - PV177/DataScience75

• Each entity table is represented by a label on nodes

• Each row in an entity table is a node

• Columns on those tables become node properties

• Join tables are transformed into relationships, columns on

those tables become relationship properties

L04 (ELK and GraphDBs) - PV177/DataScience76

GRAPH DB VS RELATIONAL DB

Pros:

✓Easy to query

✓Ability to connect disparate data easily
without needing a common data model

Cons:

▪Requires a different way to think about
data

▪No single graph query language

GRAPH DATABASES: PROS AND CONS

L04 (ELK and GraphDBs) - PV177/DataScience77

L04 (ELK and GraphDBs) - PV177/DataScience78

WHEN TO USE / NOT USE GRAPH DBS?

Graph DBs are great for:
▪ data, which are connected and/or where relationships matter

▪ data, which you want to query using various graph algorithms

but not ideal for:
▪ not optimized for massive graph traversing

‒ MATCH (n) WHERE n.name=`Jenifer` RETURN n
• but great for particular graph traversing like

MATCH (n:Person {name: `Jenifer`})-[r:KNOWS]->(p:Person) RETURN p

‒ it will work, but the performance will not be very good

L04 (ELK and GraphDBs) - PV177/DataScience79

Neo4j vs. RDBMS (book „Neo4j in action“)

Example: in a social network, find all the friends of a user’s

friends. Even more so, for friends of friends of friends.

▪ 1.000.000 users, query for 1.000 users

▪ max. time 1 hour

Popular Graph DB Engines

L04 (ELK and GraphDBs) - PV177/DataScience80

Cons:

➢ No native windows installation

➢Docker could be used

Pros:

➢Open-source version available

➢Runs complex distributed queries

➢Scales out through sharded storage

➢Returns data natively in JSON, making it ideally

suited for web development

➢Written on top of GraphQL

L04 (ELK and GraphDBs) - PV177/DataScience81

Cons:

➢Requires more schema design up front

Pros:

➢ Multi model DB – both graph and document DB

➢ Easily add users/roles

➢ Supports multiple databases

L04 (ELK and GraphDBs) - PV177/DataScience82

Cons:

➢ Only one DB can be running on a single port
at a time

Pros:

➢ Open-source version available

➢ Steep learning curve, more user-friendly

➢ Runs on Windows natively - in either a

console or as a service

➢ Large and active user community

L04 (ELK and GraphDBs) - PV177/DataScience83

NEO4J – WHAT DOES IT PROVIDE?

✓Full ACID (atomicity, consistency, isolation, durability)

✓REST API

✓Property Graph

✓Lucene Full-Text Index

✓High Availability (with Enterprise Edition)

L04 (ELK and GraphDBs) - PV177/DataScience84

Node in Neo4j

L04 (ELK and GraphDBs) - PV177/DataScience85

Relationships in Neo4j

• Relationships between nodes are a key part of Neo4j

L04 (ELK and GraphDBs) - PV177/DataScience86

Relationships in Neo4j

L04 (ELK and GraphDBs) - PV177/DataScience87

Twitter and relationships

L04 (ELK and GraphDBs) - PV177/DataScience88

Properties

• Both nodes and relationships can have properties

• Properties are key-value pairs where the key is a string

• Property values can be either a primitive or an

array of one primitive type

For example String, int and int[] values are valid for properties

L04 (ELK and GraphDBs) - PV177/DataScience89

Properties

L04 (ELK and GraphDBs) - PV177/DataScience90

Paths in Neo4j

• A path is one or more nodes with connecting relationships,

typically retrieved as a query or traversal result

L04 (ELK and GraphDBs) - PV177/DataScience91

Creating a small graph

L04 (ELK and GraphDBs) - PV177/DataScience92

Print the data

L04 (ELK and GraphDBs) - PV177/DataScience93

Remove the data

L04 (ELK and GraphDBs) - PV177/DataScience94

L04 (ELK and GraphDBs) - PV177/DataScience95

Graph DB example

SELECT

Me.PersonId AS MeId,

Me.Name,

FriendOfFriend.RelatedPersonId AS SuggestedFriendId,

FriendOfAFriend.Name

FROM

Person AS Me

INNER JOIN

PersonRelationship AS MyFriends

ON MyFriends.PersonId = Me.PersonId

INNER JOIN

PersonRelationship AS FriendOfFriend

ON MyFriends.RelatedPersonId = FriendOfFriend.PersonId

INNER JOIN

Person AS FriendOfAFriend

ON FriendOfFriend.RelatedPersonId = FriendOfAFriend.PersonId

LEFT JOIN

PersonRelationship AS FriendsWithMe

ON Me.PersonId = FriendsWithMe.PersonId

AND FriendOfFriend.RelatedPersonId = FriendsWithMe.RelatedPersonId

INNER JOIN

PersonDisease

ON PersonDisease.PersonId = FriendOfAFriend.PersonId

WHERE

FriendsWithMe.PersonId IS NULL

AND Me.PersonId <> FriendOfFriend.RelatedPersonId

AND Me.Name = 'Bill'

AND PersonDisease.DiseaseId = 1

FIND FRIENDS OF FRIENDS THAT HAVE TYPE 1 DIABETES – RDBMS

L04 (ELK and GraphDBs) - PV177/DataScience96

NEO4J MODEL

L04 (ELK and GraphDBs) - PV177/DataScience97

MATCH (user:Person {name:'Bill'})-[:FRIENDS_WITH*2..5]->(fof)-

[:DIAGNOSED_WITH]->(disease)

return fof

FIND FRIENDS OF FRIENDS THAT HAVE TYPE 1 DIABETES – GRAPHDB

L04 (ELK and GraphDBs) - PV177/DataScience98

L04 (ELK and GraphDBs) - PV177/DataScience99

100 L04 (ELK and GraphDBs) - PV177/DataScience

