
Apache Hadoop & others

general introduction

Open-Source Solution for Huge Data Sets

Tomáš Rebok

Masaryk University

Slides inspired by: Zheng Shao



⚫ Open-source software framework designed for 

storage and processing of large-scale data on clusters 

of commodity hardware

⚫ Created by Doug Cutting and Mike Carafella in 2005.

⚫ Cutting named the program after his son’s toy 

elephant.

What is Apache Hadoop?



⚫ Data-intensive text processing

⚫ Assembly of large genomes

⚫ Graph mining

⚫ Machine learning and data mining

⚫ Large scale social network analysis

Uses for Hadoop



Who Uses Hadoop?



• Contains Libraries and other 
modules

Hadoop 
Common

• Hadoop Distributed File SystemHDFS

• Yet Another Resource Negotiator
Hadoop 
YARN

• A programming model for large 
scale data processing

Hadoop 
MapReduce

The Hadoop Ecosystem



The Hadoop Ecosystem



Motivations for Hadoop
What considerations led to its design



⚫ What were the limitations of earlier large-scale 

computing?

⚫ What requirements should an alternative approach 

have?

⚫ How does Hadoop address those requirements?

Motivations for Hadoop



⚫ Historically computation was processor-bound
⚫ Data volume has been relatively small

⚫ Complicated computations are performed on that data

⚫ Advances in computer technology has historically 

centered around improving the power of a single 

machine

Early Large Scale Computing



Cray-1



⚫ Moore’s Law
⚫ The number of transistors on a dense integrated 

circuit doubles every two years

⚫ Single-core computing can’t scale with 

current computing needs

Advances in CPUs



⚫ Power consumption limits the speed 

increase we get from transistor density

Single-Core Limitation



⚫ Allows developers 

to use multiple 

machines for a 

single task

Distributed Systems



⚫ Programming on a distributed system is much more 

complex
⚫ Synchronizing data exchanges

⚫ Managing a finite bandwidth

⚫ Controlling computation timing is complicated

⚫ Communication overhead

⚫ …

Distributed System: Problems



“You know you have a distributed system when the 

crash of a computer you’ve never

heard of stops you from getting any work done.” –

Leslie Lamport

⚫ Distributed systems must be designed with the 

expectation of failure

Distributed System: Problems



⚫ Typically divided into Data Nodes and Compute 

Nodes

⚫ At compute time, data is copied to the Compute 

Nodes

⚫ Fine for relatively small amounts of data

⚫ Modern systems deal with far more data than was 

gathering in the past

Distributed System: Data Storage



⚫ Facebook
⚫ 500 TB per day

⚫ Yahoo
⚫ Over 170 PB

⚫ eBay
⚫ Over 6 PB

⚫ Getting the data to the processors becomes the 

bottleneck

How much data?



⚫ Must support partial 

failure

⚫ Must be scalable

Requirements for Hadoop



⚫ Failure of a single component must not 
cause the failure of the entire system only a 
degradation of the application performance

Partial Failures

 Failure should not 
result in the loss of 
any data



⚫ If a component fails, it should be able to recover 

without restarting the entire system

⚫ Component failure or recovery during a job must not 

affect the final output

Component Recovery



⚫ Increasing resources should increase load capacity

⚫ Increasing the load on the system should result in a 

graceful decline in performance for all jobs
⚫ Not system failure

Scalability



⚫ Based on the work done by Google in the early 2000s
⚫ “The Google File System” in 2003

⚫ “MapReduce: Simplified Data Processing on Large Clusters” in 

2004

⚫ The core idea was to distribute the data as it is initially 

stored

⚫ Each node can then perform computation on the data it stores 

without moving the data for the initial processing

Hadoop



⚫ Applications are written in a high-level programming 

language
⚫ No network programming or temporal dependency

⚫ Nodes should communicate as little as possible

⚫ A “shared nothing” architecture

⚫ Data is spread among the machines in advance
⚫ Perform computation where the data is already stored as often as 

possible

Core Hadoop Concepts



⚫ When data is loaded onto the system it is divided into 

blocks
⚫ Typically 64MB or 128MB

⚫ Tasks are divided into two phases

⚫ Map tasks which are done on small portions of data where the 

data is stored

⚫ Reduce tasks which combine data to produce the final output

⚫ A master program allocates work to individual nodes

High-Level Overview



⚫ Failures are detected by the master program which 

reassigns the work to a different node

⚫ Restarting a task does not affect the nodes working 

on other portions of the data

⚫ If a failed node restarts, it is added back to the system 

and assigned new tasks

⚫ The master can redundantly execute the same task to 

avoid slow running nodes

Fault Tolerance



Hadoop Overview

⚫ Open Source Apache Project 

⚫ http://hadoop.apache.org/

⚫ Book: http://oreilly.com/catalog/9780596521998/index.html

⚫ Written in Java

⚫ Does work with other languages

⚫ Runs on

⚫ Linux, Windows and more

⚫ Commodity hardware with high failure rate



Current Status of Hadoop

⚫ Largest Cluster (Facebook)
⚫ 2000 nodes (1200 nodes with 8 cores + 800 nodes with 16 

cores)

⚫ 21 PB HDFS storage (12 TB per node)

⚫ 32 GB of RAM per node

⚫ Used by 40+ companies / universities over the 
world
⚫ Yahoo, Facebook, etc

⚫ Cloud Computing Donation from Google and IBM

⚫ Startup focusing on providing services for 
Hadoop
⚫ Cloudera



Hadoop Components

⚫ Hadoop Distributed File System (HDFS)

⚫ Hadoop Map-Reduce

⚫ Contributes

⚫ Hadoop Streaming

⚫ Pig / JAQL / Hive

⚫ HBase

⚫ Hama / Mahout

⚫ …



Hadoop Distributed File 

System (HDFS)
A distributed file system designed to run on commodity hardware



⚫ Responsible for storing data on the cluster

⚫ Data files are split into blocks and distributed across 

the nodes in the cluster

⚫ Each block is replicated multiple times

Overview



⚫ HDFS is a file system written in Java based on the 

Google’s GFS

⚫ Provides redundant storage for massive amounts of 

data

HDFS Basic Concepts



⚫ HDFS works best with a smaller number of large files
⚫ Millions as opposed to billions of files

⚫ Typically 100MB or more per file

⚫ Files in HDFS are write once

⚫ Optimized for streaming reads of large files and not 

random reads

HDFS Basic Concepts



⚫ Files are split into blocks
⚫ 128 MB by default

⚫ can be adapted based on requirements

⚫ Blocks are split across many machines at load time
⚫ Different blocks from the same file will be stored on different 

machines

⚫ Blocks are replicated across multiple machines

⚫ The NameNode keeps track of which blocks make up 

a file and where they are stored

How are Files Stored



⚫ Default replication is 3-fold

Data Replication



⚫ When a client wants to retrieve data

⚫ Communicates with the NameNode to determine which blocks 

make up a file and on which data nodes those blocks are stored

⚫ Then communicated directly with the data nodes to read the data

Data Retrieval



HDFS Architecture



HDFS User Interface (client)

⚫ Java API

⚫ Command Line
⚫ bin/hdfs dfs -mkdir /foodir

⚫ bin/hdfs dfs -cat /foodir/myfile.txt

⚫ bin/hdfs dfs -cp /foodir/myfile.txt /foodir/myfile-backup.txt

⚫ bin/hdfs dfs -mv /foodir/myfile-backup.txt /foodir/myfile.txt

⚫ bin/hdfs dfs -rm /foodir/myfile.txt

⚫ bin/hdfs dfsadmin -report

⚫ bin/hdfs dfsadmin -decommission datanodename

⚫ Web Interface
⚫ http://host:port/dfshealth.jsp



More about HDFS

⚫ http://hadoop.apache.org/core/docs/current/hdfs_design.html

⚫ Hadoop FileSystem API
⚫ HDFS

⚫ Local File System

⚫ Kosmos File System (KFS)

⚫ Amazon S3 File System

http://hadoop.apache.org/core/docs/current/hdfs_design.html


MapReduce
Distributing computation across nodes



⚫ A method for distributing computation across multiple 
nodes
⚫ Fits a lot of batch processing applications

‒ Log processing

‒ Web index building

⚫ Each node processes the data that is stored at that node

⚫ Consists of two main phases
⚫ Map

⚫ Reduce

MapReduce Overview



⚫ Automatic parallelization and distribution

⚫ Fault-Tolerance

⚫ Provides a clean abstraction for programmers to use

MapReduce Features



⚫ Reads data as key/value pairs
⚫ The key is often discarded

⚫ Outputs zero or more key/value pairs

The Mapper



⚫ Output from the mapper is sorted by key

⚫ All values with the same key are guaranteed to go to 

the same machine

Shuffle and Sort



⚫ Called once for each unique key

⚫ Gets a list of all values associated with a key as input

⚫ The reducer outputs zero or more final key/value pairs

⚫ Usually just one output per input key

The Reducer



MapReduce: Word Count



⚫ When employed, two principal questions have to 

be answered:

1. Which key-value pairs should be provided by Mappers?

2. How to combine values with the same keys during the

Reduce stage?

Map/Reduce Usage Examples



Example tasks:

1. From a CSV file, extract all the records having X 

value lower than 5.

2. Combine (sets union) entries of 2 CSV files into single 

one.

3. Perform set intersection of entries of 2 CSV files.

4. Given 2 CSV files X and Y. Perform set difference, ie. 

X-Y.

Map/Reduce Usage Examples



Hadoop Streaming

⚫ Allow to write Map and Reduce functions in any 

languages
⚫ because Hadoop Map/Reduce only accepts Java

⚫ makes development easier

⚫ Example: Word Count
⚫ hadoop streaming

-input /user/zshao/articles

-mapper ‘tr “ ” “\n”’

-reducer ‘uniq -c‘

-output /user/zshao/

-numReduceTasks 32



Hadoop Usage
Other available tools



Czech infrastructures (presented earlier) provide access

to prepared Hadoop cluster:

⚫ https://wiki.metacentrum.cz/wiki/Kategorie:Hadoop

⚫ current resources:
⚫ 27 nodes ⨉ 16 cores

⚫ 27 nodes ⨉ 128 GB RAM

⚫ 1 PB HDFS storage

⚫ documentation: 

https://wiki.metacentrum.cz/wiki/Hadoop

Hadoop Usage in e-INFRA CZ

https://wiki.metacentrum.cz/wiki/Kategorie:Hadoop
https://wiki.metacentrum.cz/wiki/Hadoop

