
Commands, Queries, and Façades

Lukáš Daubner

1

Contents

CQRS (Command Query Responsibility Segregation) Pattern

Mediator Pattern and MediatR Library

Façade Pattern

2

CQRS (Command Query
Responsibility Segregation)

3

Why CQRS

Models the reads (queries) and changes (commands) independently

Enables separation of "read" and "write" data store

Independent scaling of reads/writes

Optimization of data schemes

4

Without CQRS

Image by Martin Fowler (https://www.martinfowler.com/bliki/CQRS.html) 5

https://www.martinfowler.com/bliki/CQRS.html

With CQRS

Image by Martin Fowler (https://www.martinfowler.com/bliki/CQRS.html) 6

https://www.martinfowler.com/bliki/CQRS.html

Query

Encapsulated query to a data store

Does not change a state

Plain object

Encapsulates what you are asking for

Similar concept to QueryObject, but it is typically purpose-made

7

Command

Does change a state

Plain object

Does not return value

Encapsulates request into an object

It is also a pattern

Easy to implement "undo" operation

8

When to use CQRS

Dos

Collaborative, parallel apps

Reads and writes are
disproportional

Interface is task-focused

Different model versions

Integration with other systems

Event Sourcing

Don'ts

Simple app

Interface is CRUD-focused

9

Implementing CQRS

By hand

Create "Handlers" classes which will process commands/queries

Mediator

Decouple the processing using a Mediator pattern

MediatR library

10

Mediator & MediatR

11

Mediator

Reduction of dependencies between objects

When "everyone talks to everyone"

Communication between objects is "mediated" by a single object

Eases reuse as components are independent

Beware of creating a God Object

12

Mediator

Image by Refactoring Guru (https://refactoring.guru/) 13

https://refactoring.guru/

MediatR

.NET library implementing Mediator pattern

In-process messaging

Supports pipelines (aspect-like interceptors)

IRequest - Message that will be send

IRequestHandler - Message consumer

14

CQRS with MediatR

Command

public class EnrollToCourseCommand : IRequest

 {

public Course Course { get; set; }

public Guid UserId { get; set; }

public string ContactEmail { get; set; }

 }

15

CQRS with MediatR

Command Handler

public class EnrollToCourseCommandHandler : IRequestHandler<EnrollToCourseCommand>

 {

private IEnrollmentRepository _enrollmentRepository;

public EnrollToCourseCommandHandler(IEnrollmentRepository enrollmentRepository)

 {

 _enrollmentRepository = enrollmentRepository;

 }

public async Task<Unit> Handle(EnrollToCourseCommand request, CancellationToken cancellationToken)

 {

// Handling code

 }

 }

16

CQRS with MediatR

Query

public class GetCoursesQuery : IRequest<IEnumerable<Course>>

 {

// Option is (one of) implementation of Maybe monad in C#

// It is safe way of expressing null object, without actually using nulls

public Option<DateTime> Before { get; init; }

public Option<DateTime> After { get; init; }

public Option<string> AtLocation { get; init; }

 }

17

CQRS with MediatR

Query Handler

public class GetCoursesQueryHandler : IRequestHandler<GetCoursesQuery, IEnumerable<Course>>

 {

private ICourseRepository _courseRepository;

public GetCoursesQueryHandler(ICourseRepository courseRepository)

 {

 _courseRepository = courseRepository;

 }

public async Task<IEnumerable<Course>> Handle(GetCoursesQuery request, CancellationToken cancellationToken)

 {

// Handling code

 }

 }

18

Demo

19

CQRS Task

Implement Query for pending enrollment of a single user

Implement Command for canceling an enrollment

HINT: Use the console project for testing. Dependency injection is
automated, so don't worry about it, yet.

HINT: Focus on the BL project. But feel free to implement new
method in the repository.

Bonus: How would you handle rollbacks? What if during
enrollment the email is not send? Can you fix it?

20

Façade

21

Façade

Provides a simpler interface

Hides underlining complexity of library/framework/etc...

Facade do not need to implement everything just the most
important stuff. The complex things can be done without facade.

Think how Newtonsoft.JSON API is implemented

It is basically just a single class that is delegating work to others

22

Façade

Image by Refactoring Guru (https://refactoring.guru/) 23

https://refactoring.guru/

Façade Task

Create a Facade for your CQRS infrastructure

Implement a Facade that easily exposes the core functionality

Hiding the underlining complexity and usage of MediatR

Try to make it as simple as possible. Just a few method calls

24

