Commands, Queries, and Facades

Lukas Daubner

Contents

e CQRS (Command Query Responsibility Segregation) Pattern
e Mediator Pattern and MediatR Library
e Facade Pattern

CQRS (Command Query
Responsibility Segregation)

Why CQRS

Models the reads (queries) and changes (commands) independently
Enables separation of "read" and "write" data store
Independent scaling of reads/writes

Optimization of data schemes

Without CQRS

service provides
maodel reads from information for the
database presantation

Application
ul

—
\ user makes a

change in the LI

I~ change forwarded fo
mode!

model updates
database

model execules
validation, and
conseguential logic

Image by Martin Fowler (https://www.martinfowler.com/bliki/CQRS.html)

https://www.martinfowler.com/bliki/CQRS.html

With CQRS

query services update
presentations from
query mode/ query model
reads from
database

command modef
updates database

command model
executes validations, and
consequential logic

.+ - u

_
. user makesa

‘\ changein the Ul

§
appfication routes
change information
to command mode!

Image by Martin Fowler (https://www.martinfowler.com/bliki/CQRS.html)

https://www.martinfowler.com/bliki/CQRS.html

Query

Encapsulated query to a data store
Does not change a state

Plain object

Encapsulates what you are asking for

Similar concept to QueryObject, but it is typically purpose-made

Command

Does change a state

Plain object

Does not return value
Encapsulates request into an object
It is also a pattern

Easy to implement "undo" operation

When to use CQRS

Dos Don'ts
Collaborative, parallel apps e Simple app
Reads and writes are e |[nterface is CRUD-focused

disproportional
nterface is task-focused

Different model versions

ntegration with other systems

Event Sourcing

Implementing CQRS

e By hand

o Create "Handlers" classes which will process commands/queries
e Mediator

o Decouple the processing using a Mediator pattern

o MediatR library

10

Mediator & MediatR

11

Mediator

Reduction of dependencies between objects

o When "everyone talks to everyone"

Communication between objects is "mediated" by a single object
Eases reuse as components are independent

Beware of creating a God Object

12

Mediator

ComponentA

—>| - m: Mediator

+ operationA()

«interface»
Mediator

ComponentC | 7

+ notify(sender)

—>| - m: Mediator

A

+ operation(()

ConcreteMediator

\ 4

- componentA
- componentB
- componentC
- componentD

@

ComponentB

- m: Mediator

+ operationB()

ComponentD

- m: Mediator

+ operationD()

m.notify(this)

if (sender == componentA)
reactOnA()

+ notify(sender)
+ reactOnA()
+ reactOnB|()
+ reactOnC()
+ reactOnD()

Image by Refactoring Guru (https://refactoring.guru/)

13

https://refactoring.guru/

MediatR

NET library implementing Mediator pattern
In-process messaging

Supports pipelines (aspect-like interceptors)
IRequest - Message that will be send

IRequestHandler - Message consumer

14

CQRS with MediatR

Command

EnrollToCourseCommand : IRequest

Course Course { ; ;)

Guid UserId { . C}
string ContactEmail {

15

{
}

CQRS with MediatR

Command Handler

EnrollToCourseCommandHandler : IRequestHandler<EnrollToCourseCommand>
IEnrollmentRepository _enrollmentRepository;
EnrollToCourseCommandHandler (IEnrollmentRepository enrollmentRepository)

_enrollmentRepository = enrollmentRepository;

Task<Unit> Handle(EnrollToCourseCommand request, CancellationToken cancellationToken)

// Handling code

16

CQRS with MediatR
Query

GetCoursesQuery : IRequest<IEnumerable<Course>>

// Option is (one of) implementation of Maybe monad in C#
// It is safe way of expressing null object, without actually using nulls

Option<DateTime> Before { ;
Option<DateTime> After { ;
Option<string> AtlLocation {

17

CQRS with MediatR
Query Handler

GetCoursesQueryHandler : IRequestHandler<GetCoursesQuery, IEnumerable<Course>>

ICourseRepository _courseRepository;
GetCoursesQueryHandler (ICourseRepository courseRepository)

_courseRepository = courseRepository;

Task<IEnumerable<Course>> Handle(GetCoursesQuery request, CancellationToken cancellationToken)

// Handling code

18

Demo

19

CQRS Task

Implement Query for pending enrollment of a single user
Implement Command for canceling an enrollment

HINT: Use the console project for testing. Dependency injection is
automated, so don't worry about it, yet.

HINT: Focus on the BL project. But feel free to implement new
method in the repository.

Bonus: How would you handle rollbacks? What if during
enrollment the email is not send? Can you fix it?

20

Facade

21

Facade

Provides a simpler interface

Hides underlining complexity of library/framework/etc...

-acade do not need to implement everything just the most

important stuff. The complex things can be done without facade.

o Think how Newtonsoft.JSON API is implemented

It is basically just a single class that is delegating work to others

22

Facade

Facade
il s e mmol e Facade
- linksToSubsystemObjects S

Client —=>
- optionalAdditionalFacade
+ subsystemOperation() e + anotherOperation()
.~ ; N \\\\ ' \
" \\ k \\ " :
1 2\ A v)
\ Subsvst Subsystem W /
ubsys
\\ J. 4 rlJ Subsystem ¥
It s Subsystem class
class Lyctem
Subsystem [¥
class
class
class

Image by Refactoring Guru (https://refactoring.guru/)

https://refactoring.guru/

Facade Task

e Create a Facade for your CQRS infrastructure
e Implement a Facade that easily exposes the core functionality
o Hiding the underlining complexity and usage of MediatR

o Try to make it as simple as possible. Just a few method calls

24

