Dependency Injection & Mocking

Lukas Daubner



Contents

e Dapper
e Dependency Injection

e Mocking



Dapper



Dapper

So-called micro-ORM

Lightweight

Basically a wrapper around ADO.NET
Uses a lot of SQL



SELECT

_connection = SgliteConnection(
_connection.Open();

selectQuery =

)
Course course = _connection.QueryFirstAsync<Course>(selectQuery,

courseld




INSERT

_connection = SgliteConnection(
_connection.Open();

insertQuery =

_connection.ExecuteAsync(insertQuery,

Id = Guid.NewGuid(),

Name = course.Name,

Start = course.Start,
Location = course.Location,
Contact = course.Contact,




Dependency Injection



Inversion of Control (loC)

e A.K.A. Hollywood principle

o Don't call us, we'll call you
e A general idea that a framework should instantiate dependencies
e Framework is the coordinator

e We just implement the parts that the framework can bind



Dependency Injection (DI)

e Concrete |oC technique

e All the dependencies are bind outside of the class that needs them
e When framework instantiates a class, it provides the dependencies
e They are "injected" into the class

e By constructor/property/method



Dependency Inversion Principle
(soliD)

"High-level modules should not depend on low-level modules. Both
should depend on abstractions."

"Abstractions should not depend on details. Details should depend
on abstractions."

Essentially this forces loose coupling

Instead of calling (depending on) a concrete class, we depend on an
Interface.

10



Example

CourseService
CourseRepository _courseRepository;

CourseService()

_courseRepository = CourseRepository();

11



Example

CourseService : ICourseService

ICourseRepository _courseRepository;

CourseService(ICourseRepository courseRepository)

_courseRepository = courseRepository;

12



loC/DI Containers

e Frameworks implementing dependency injection
e Handling the RRR lifecycle
o Register

o Resolve

o Release
e How exactly they treat the objects depends on the container
o Some track the whole object lifecycle

o Some just returns an object based on specification

13



1o0C/DI Containers in .NET

e Many to choose from
o AutoFac
o Simplelnjector
o CastleWindsor

o Ninject
e They have different features, support different object lifecycles

e Currently, they are quite overshadowed by
Microsoft.Extensions.Dependencylnjection

14



Lifecycles

e Typical lifecycles are:
e Transient - each resolution gives new instance
e Singleton - one global instance
o Preferred way of implementing singleton!
e Scoped - depending on an explicit scope
e PerGraph - one per dependency graph

e Keep in mind that not every container implements them or calls
them the same

15



AutoFac Example

Register

builder
.RegisterType<CourseService>()

.InstancePerDependency ()
.As<ICourseService>();

Resolve

courseService = scope.Resolve<ICourseService>();

16



Demo

17



Mocking

18



Mock

e Mock is a fake object used for testing

e The aimis to remove dependencies and focus on the tested
component

e Allows us to define deterministic behavior for the tests

e Essential for true unit testing

19



Mocking, DI, and soliD

e Dependency Injection and Dependency Inversion Principle allows
easy definition of mocks

o Because the dependencies are always outside of the tested class

o The class depends on interfaces, they do not care about
implementation (which can be the mock)

20



Mocking using Moq

expectedGuid = Guid.NewGuid();

Mock<ICourseRepository> _courseRepositoryMock =
Mock<ICourseRepository>();

_courseRepositoryMock

.Setup(x => x.CreateAsync(It.IsAny<Course>()).Result)

.Returns(expectedGuid) ;

CourseService service =

CourseService(_courseRepositoryMock.Object) ;

21



Demo

22



Task

e Register the CourseService and EnrollmentService to AutoFac and
try to resolve it

e Implement CourseService and EnrollmentService using TDD
o First write the tests
o Then write the code

e Mock all dependencies

o HINT: Keep it simple, do not re-implement the code using mocks

23



