
Dependency Injection & Mocking

Lukáš Daubner

1

Contents

Dapper

Dependency Injection

Mocking

2

Dapper

3

Dapper

So-called micro-ORM

Lightweight

Basically a wrapper around ADO.NET

Uses a lot of SQL

4

SELECT

var _connection = new SqliteConnection("Filename=:memory:");

_connection.Open();

var selectQuery = @"SELECT Id, Name, Start, Location, Contact

 FROM Courses WHERE Id = @Id;";

Course course = await _connection.QueryFirstAsync<Course>(selectQuery, new

{

 Id = courseId

});

5

INSERT

var _connection = new SqliteConnection("Filename=:memory:");

_connection.Open();

var insertQuery = @"INSERT INTO Courses (Id, Name, Start, Location, Contact)

 VALUES (@Id, @Name, @Start, @Location, @Contact);";

await _connection.ExecuteAsync(insertQuery, new

{

 Id = Guid.NewGuid(),

 Name = course.Name,

 Start = course.Start,

 Location = course.Location,

 Contact = course.Contact,

});

6

Dependency Injection

7

Inversion of Control (IoC)

A.K.A. Hollywood principle

Don't call us, we'll call you

A general idea that a framework should instantiate dependencies

Framework is the coordinator

We just implement the parts that the framework can bind

8

Dependency Injection (DI)

Concrete IoC technique

All the dependencies are bind outside of the class that needs them

When framework instantiates a class, it provides the dependencies

They are "injected" into the class

By constructor/property/method

9

Dependency Inversion Principle
(soliD)

"High-level modules should not depend on low-level modules. Both
should depend on abstractions."

"Abstractions should not depend on details. Details should depend
on abstractions."

Essentially this forces loose coupling

Instead of calling (depending on) a concrete class, we depend on an
interface.

10

Example

public class CourseService

{

private readonly CourseRepository _courseRepository;

public CourseService()

 {

 _courseRepository = new CourseRepository();

 }

 ...

}

11

Example

public class CourseService : ICourseService

{

private readonly ICourseRepository _courseRepository;

public CourseService(ICourseRepository courseRepository)

 {

 _courseRepository = courseRepository;

 }

 ...

}

12

IoC/DI Containers

Frameworks implementing dependency injection

Handling the RRR lifecycle

Register

Resolve

Release

How exactly they treat the objects depends on the container

Some track the whole object lifecycle

Some just returns an object based on specification

13

IoC/DI Containers in .NET

Many to choose from

AutoFac

SimpleInjector

Castle.Windsor

Ninject

They have different features, support different object lifecycles

Currently, they are quite overshadowed by

Microsoft.Extensions.DependencyInjection

14

Lifecycles

Typical lifecycles are:

Transient - each resolution gives new instance

Singleton - one global instance

Preferred way of implementing singleton!

Scoped - depending on an explicit scope

PerGraph - one per dependency graph

Keep in mind that not every container implements them or calls
them the same

15

AutoFac Example

Register

builder

.RegisterType<CourseService>()

.InstancePerDependency()

.As<ICourseService>();

Resolve

var courseService = scope.Resolve<ICourseService>();

16

Demo

17

Mocking

18

Mock

Mock is a fake object used for testing

The aim is to remove dependencies and focus on the tested
component

Allows us to define deterministic behavior for the tests

Essential for true unit testing

19

Mocking, DI, and soliD

Dependency Injection and Dependency Inversion Principle allows
easy definition of mocks

Because the dependencies are always outside of the tested class

The class depends on interfaces, they do not care about
implementation (which can be the mock)

20

Mocking using Moq

var expectedGuid = Guid.NewGuid();

Mock<ICourseRepository> _courseRepositoryMock =

new Mock<ICourseRepository>();

_courseRepositoryMock

 .Setup(x => x.CreateAsync(It.IsAny<Course>()).Result)

 .Returns(expectedGuid);

CourseService service = new CourseService(_courseRepositoryMock.Object);

21

Demo

22

Task

Register the CourseService and EnrollmentService to AutoFac and
try to resolve it

Implement CourseService and EnrollmentService using TDD

First write the tests

Then write the code

Mock all dependencies

HINT: Keep it simple, do not re-implement the code using mocks

23

