
Milan Patnaik

Indian Institute of Technology Madras

https://www.cvedetails.com/

BUFFER OVERFLOWS

BUFFER OVERFLOWS : STACK

https://www.mitre.org/

BUFFER OVERFLOWS : STACK

https://www.mitre.org/

CVE-2021 : 1
52

AGENDA : CLASS

5

 Buffer Overflow

• Executable Stack Attacks

• Executable Stack Attack Prevention
 Canaries, W^X

• Non-Executable Stack Attacks
 Return-to-Libc attack
 Return Oriented Programming

• Non-Executable Stack Attack Prevention
 ASLR

• Heap Exploits

AGENDA : LABS

6

 Lab1a.

• Executable Stack Attacks.
 Lab1b.

• Return-to-Libc attack.
 Lab2a.

• Return Oriented Programming.
 Lab2b.

• Exploiting Large Binaries.

7

EXECUTABLE STACK ATTACKS

7

8
8

 Two parts

• Subvert execution:

• change the normal execution behavior of the program.
 Payload:

• the code which the attacker wants to execute.

PARTS OF BINARY EXPLOITS

SUBVERT EXECUTION

 In application software.
• SQL Injection.

 In system software.
• Buffers overflows and overreads.
• Heap: double free, use after free.
• Integer overflows.
• Format string.
• Control Flow.

 In peripherials.
• USB drives in Printers.

 In Hardware.
• Hardware Trojans.

 Covert Channels.
• Can exist in hardware or

software.

These do not really subvert execution,
but can lead to confidentiality attacks.

BUFFER OVERFLOWS IN THE STACK

 We need to first know how a stack is managed.

[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

BUFFER OVERFLOWS IN THE STACK

• Executable stacks.

11

[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

STACK IN A PROGRAM
(WHEN FUNCTION IS EXECUTING)

EBP

Parameters
for function

return Address

Locals of
function

prev frame
pointer

push $3
push $2
push $1

Stack

call function

push %ebp
movl %esp, %ebp

sub $20, %esp
%ebp: Frame Pointer

In main In function

ESP

ESP

ESP

ESP

ESP

ESP

%esp : Stack Pointer

STACK USAGE (EXAMPLE)

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored
frame pointer)

(%ebp)980 to 976 buffer1

975 to 966 buffer2

(%esp) 965stack pointer

Parameters
for function

Return Address

Locals of function

prev frame pointer
frame pointer

STACK USAGE contd

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored
frame pointer)

(%ebp)980 to 976 buffer1

975 to 966 buffer2

(%esp) 965

What is the output of the following?
 printf(“%x”, buffer2) : 966
 printf(“%x”, &buffer2[10])

 976 buffer1[0]

Therefore buffer2[10] = buffer1[0]

 A BUFFER OVERFLOW

MODIFYING THE RETURN ADDRESS

buffer2[19] =

 &arbitrary memory location

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985

984 to 981 %ebp (stored
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%esp) 965

Return Address

19

MODIFYING THE RETURN ADDRESS

buffer2[19] =

 &arbitrary memory location

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985

984 to 981 %ebp (stored
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%esp) 965

Return Address

19

Payload Location

16

BIG PICTURE OF THE EXPLOIT

Fill the stack as follows.
(where BA is buffer address)

stack pointer

Parameters
for function

Return Address

buffer

prev frame pointer
frame pointer

Exploit code

BA

BA
buffer Address

BA

BA

BA

BA

BA

BA

BA

FIND LOCATION OF RETURN ADDRESS

 Fill the stack with random values and run the program.
 Check the address in fault.
 Find the offset from values.

stack pointer

Parameters
for function

Return Address

buffer

prev frame pointer
frame pointer

R3

R4

R5

R6

R7

R8

R9

R10

18

R2

R1

Segmentation
Fault
R6 ??

PAYLOAD

 Lets say the attacker wants to spawn a shell
 ie. do as follows:

19

STEP 1 : GET MACHINE CODES

 objdump –disassemble-all shellcode.o
 Get machine code : “eb 1e 5e 89 76 08 c6

46 07 00 c7 46 0c 00 00 00 00 b8 0b 00 00
00 89 f3 8d 4e 08 8d 56 0c cd 80 cd 80”

 If there are 00s replace it with other
instructions

STEP 2: FIND BUFFER OVERFLOW

O
O
O
O
o

Defined on stack

21

STEP 3 : PUT MACHINE CODE IN LARGE STRING

shellcode

large_string

STEP 3 (contd) : FILL UP LARGE STRING WITH BA

shellcode BA BA BA BA BA BA BA BA

large_string

Address of buffer is BA

23

FINAL STATE OF STACK

• Copy large string into buffer.

• When strcpy returns the exploit code
would be executed.

shellcode BA BA BA BA BA BA BA BA

large_string

shellcode

BA

BA
buffer Address

BA

BA

BA

BA

BA

BA

BA

buffer

BA

PUTTING IT ALL TOGETHER

bash$ gcc overflow1.c
bash$./a.out
$sh

25

AN ALTERNATE

Fill the stack as follows.
(where BA is buffer address)

stack pointer

Parameters
for function

Return Address

buffer

prev frame pointer
frame pointer

BA

BA
buffer Address

BA

BA

BA

BA

BA

BA

BA

26

Exploit code

BA

BA

ACCURACY

 Increase accuracy by NOP Sledge.

DEFENSES

 Eliminate program flaws that could lead to subverting of execution.
• Safer programming languages, Safer libraries, hardware
enhancements, static analysis .

 If can’t eliminate, make it more difficult for malware to subvert
execution.

• W^X , ASLR, canaries.
 If payload still manages to execute, try to detect its execution at

runtime.
• payload run-time detection techniques using learning techniques,
ANN and payload signatures.

 If can’t detect at runtime, try to restrict what the malware can do.
• Sandbox system

 so that payload affects only part of the system, access
control, virtualization, trustzone, SGX.

• Track information flow
 DIFT, ensure payload does not steal sensitive information.

PREVENTING BUFFER OVERFLOWS
WITH CANARIES AND W^X

CANARIES

Stack (top to bottom):

stored data

3

2

1

ret addr

sfp (%ebp)

Insert canary here

buffer1

buffer2

 Known (pseudo random) values
placed on stack to monitor buffer
overflows.
 A change in the value of the canary
indicates a buffer overflow.
 Will cause a ‘stack smashing’ to be

detected.

Insert a canary here

check if the canary value
has got modified

CANARIES AND GCC

 As on gcc 4.4.5, canaries are not added to functions by default.
 Could cause overheads as they are executed for every

function that gets executed.
 Canaries can be added into the code by –fstack-protector

option.
 If -fstack-protector is specified, canaries will get added

based on a gcc heuristic.
• For example, buffer of size at-least 8 bytes is allocated.
• Use of string operations such as strcpy, scanf, etc.

 Canaries can be evaded quite easily by not altering the contents

of the canary.

CANARaIES EXAMPLE

Without canaries, the return address on stack gets overwritten resulting in
a segmentation fault. With canaries, the program gets aborted due to stack
smashing.

CANARIES EXAMPLE

 Without canaries, the return address on stack gets overwritten resulting in
a segmentation fault. With canaries, the program gets aborted due to stack
smashing.

CANARY INTERNALS

Store canary onto
stack

Verify if the canary
has changed

Without canaries

With canaries

gs is a segment that shows thread local data; in this case it is
used for picking out canaries

NON EXECUTABLE STACKS (W^X)

 In Intel/AMD processors, ND/NX bit present to mark non code
regions as non-executable.
• Exception raised when code in a page marked W^X executes.

 Works for most programs.
• Supported by Linux kernel from 2004.
• Supported by Windows XP service pack 1 and Windows

Server 2003.
• Called DEP – Data Execution Prevention

 Does not work for some programs that NEED to execute from the
stack.
•Eg. JIT Compiler, constructs assembly code from external data

and then executes it.
(Need to disable the W^X bit, to get this to work)

Will non executable stack prevent buffer overflow attacks ?

Return – to – LibC Attacks

RETURN TO LIBC

Exploit code

BA

BA

BA

BA

BA

BA

BA

BA

buffer

This will not work if ND bit is set
Return Address

RETURN TO LIBC
(Replace return address to point to a function within libc)

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

buffer

Return Address

F1 Addr

Stack

Heap

Stack

Heap

DataData

TextText

Bypasses W^X since F1 is in the code segment,
And can be legally executed.

F1 = System()

 One option is function system present in libc
 system(“/bin/bash”)
 would create a bash shell

(there could be other options as well)

 So we need to :-

• Find the address of system in the program.
(does not have to be a user specified function, could be a
function present in one of the linked libraries)

• Supply an address that points to the string /bin/sh.

THE RETURN-TO-LIBC ATTACK

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

Shell ptr

F1 ptr

F1ptr

buffer
F1ptr

Return Address

system()
In libc

/bin/bash

UNDERSTAND THE STACK

[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

UNDERSTAND THE STACK

[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

UNDERSTAND THE STACK

[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

SYSTEM CELL

[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

FIND ADDRESS OF SYSTEM IN THE EXECUTABLE

FIND ADDRESS OF /bin/sh

 Every process stores the enviroment variables
at the bottom of the stack.

 We need to find this and extract the string
/bin/sh from it.

FIND ADDRESS OF /bin/sh

THE FINAL EXPLOIT STACK

xxx

xxx

xxx

0x28085260

dead

0xbfbffe25

xxx

xxx

buffer
xxx

Return Address

system()
In libc

/bin/sh

A CLEAN EXIT

xxx

xxx

xxx

0x28085260

0x281130d0

0xbfbffe25

xxx

xxx

buffer
xxx

Return Address

system()
In libc

/bin/bash

exit()
In libc

LIMITATION OF RET2LIBC

 Limitation on what the attacker can do.

 (only restricted to certain functions in the library)

 These functions could be removed from the library.

THE ATTACKER’S PLAN

 Find the bug in the source code (for eg. Kernel) that can be
exploited.
• Eyeballing.
• Noticing something in the patches.
• Following CVE.

 Use that bug to insert malicious code to perform something
nefarious.
• Such as getting root privileges in the kernel.

 Attacker depends upon knowning where these functions reside
in memory. Assumes that many systems use the same address
mapping. Therefore one exploit may spread easily.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

