
PV181 Laboratory of security

and applied cryptography

Random values and Random

Number Generators

Marek Sýs

sysox@mail.muni.cz, A405

mailto:sysox@mail.muni.cz

You will learn

• What types of RNG you can find in libraries.

• What is entropy and why it is important.

• What RNGs are (in)apropriate for crypto.

• How to generate secure random values:
– in python, C

• Why standard rand() and others (e.g. Mersenne

Twister) are insecure.

RNG types

True random (TRNG)
● Source: physical device (noise)

radio decay, thermal noise, …

● non-deterministic, aperiodic, slow

Pseudo random (PRNG)
● Source: software function

● deterministic, periodic, very fast

3

PRNG

defined by 3 functions: Init, Transform, Output

State = Init(Seed)

State = Trans(State)

rnd = Out(State)

Cryptographically secure PRNG (CSPRNG)

- generated data leaks no information about next or

previous values ⇒ no info about Seed, State

4

Example

ANSI C portable functions

5

Standard library functions

ANSI C(rand), Java(java.util.random),...

- very fast but very insecure LCG generator

Linear Congruential Generator(LCG)

● sn+1=a*sn+b mod m (fixed constants a,b,c)

rnd value = State

⇒ next rnd values easily computed

Trans is linear: f(x) = ax+b mod m

⇒ previous states (hence rnd values) computed

6

https://en.wikipedia.org/wiki/Linear_congruential_generator

Weak generators

Python random() - Mersenne Twister

• seed can be reconstructed from generated values

– see tool for gclib, mt, java, etc.

C rand(): LCG generators (+ some tweaks)

• glibc (used by GCC) rand() - LCG and “linear

additive feedback” (r[i] = r[i-31] + r[i-3])

C++: LCG or MT or Lagged fibonacci

• minstd_rand(0 or 1), mt19937(_64)

7

https://docs.python.org/3.6/library/random.html
https://github.com/bishopfox/untwister
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Glibc
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://www.mscs.dal.ca/~selinger/random/
https://en.cppreference.com/w/cpp/numeric/random

Entropy

• measure of uncertainty

– related to probability, attack complexity, unpredictability

• Examples:

– 2 random bytes A,B

• 16 bits of entropy = 2^16 possibilities for A,B

– 2 random bytes A, B with additional information

A XOR B = 0 (gained 8 bits of e.)

• system A,B has 8 bits of e. = 2^8 possibilities

– with additional information A > 128 (gained 1 bit)

• system has only 7 bits of e = 2^7

8

Practice

CSPRNG:

• seeded from entropy pool

Entropy pool:

• stores entropy

• usage decreases entropy in pool

TRNG (entropy source):

• repeatedly adds entropy to pool

9

TRNG and pools

Linux: two entropy pools (files) dev/(u)random

• keyboard timings, mouse movements, IDE timings

Windows: similar to Linux

• binary register HKEY_LOCAL_MACHINE\SYSTEM\RNG\Seed

Additional entropy sources (if available):

• TPM, RNRAND instruction, hardware system clock

(RTC), Interrupt timings, havege daemon, jitter

RNG

10

https://en.wikipedia.org/wiki/Keyboard_(computing)
https://en.wikipedia.org/wiki/Mouse_(computing)
https://en.wikipedia.org/wiki/Interrupt
https://linux.die.net/man/8/haveged

Unix infrastructure

• pool of entropy - 2 files connected with the pool

– pool saved at shut down!

• /dev/random
– always produces some entropy but,

– blocking - can block the caller until entropy available

(entropy estimation)

• /dev/urandom
– amount of entropy not guaranteed

– always returns quickly (non blocking)

11

Operations

• open and read from the file to get entropy

– use read(2) but always check if returned value ==

requested number of bytes (reading can be

interrupted!!!)

• It is also possible to write to /dev/random

– privileged (harmless) user can mix random data into the

pool - entropy is increased (but not entropy counter)

• information about the pool in files

• see content of proc/sys/kernel/random/*

12

Facts and recommendations

• Not all info on internet are true/reflects reality!

• It is not necessary that dev/random blocks.

• dev/random is more secure than dev/urandom (see Myths about

dev/urandom)

• dev/(u)random accessing same pool

• when pool initialized (entropy collected in the past) files provide

same quality => use /dev/urandom

• things are dynamically changing – “All of these functions
provide the same bytes. No difference in behavior after

initialization.” (Inside the kernel Linux, 13.09.22 ☺)

13

https://www.2uo.de/myths-about-urandom/

Unix: methods and quality

Good sources(C):

• initialized random/urandom

• getrandom() + flags:
– source: random or urandom

– blocking or non-blocking (also blocks until initialized)

• get_random_bytes() - kernel space

• similar in Python: os.urandom(), os.getrandom(),

secrets.token_bytes()

Weak sources:

• rand, time(rdtsc instruction, clock func,...),

uninitialized urandom
14

https://man7.org/linux/man-pages/man2/getrandom.2.html
https://docs.python.org/3/library/os.html
http://os.getrandom
https://docs.python.org/3/library/secrets.html

How to generate key

Good sources of entropy:

• initialized dev/urandom,

• CSPRNG seeded by dev/urandom,

• stream cipher with key generated by dev/urandom,

Implementation matters!

• seed should be protected (e.g. erased after usage)

• dev/urandom could be interrupted – always check

number of obtained bytes

• use library functions to generate key – do not

implement mechanism – many checks needed

15

Practice (python)

Working online:

1. Go to https://mybinder.org

2. Copy link https://github.com/sysox/PV181_RNG/ to

Github field, press launch

3. Use PV181_RNG_python.ipynb with tasks
– look into PV181_RNG_python_solution if necessary

Working locally:

• Copy code from cells of

PV181_RNG_python.ipynb to your IDE

16

https://mybinder.org
https://github.com/sysox/PV181_RNG/

Practice C

Use Jupyter noteboos is just description of tasks –

not as executable notebook you used in python!

Use putty and go to aisa.fi.muni.cz:

• xlogin + secondary password

For uploading files to aisa use winscp or wget

17

https://github.com/sysox/PV181_RNG/blob/main/PV181_RNG_C.ipynb

Linux RNG design

• 3 entropy pools (store random data)

• can be viewed as PRNG - “Init” func mixes (using

ChaCha20) input rnd data to the state ⇒ state

depends input data and all previous states!!

• input_pool (state of 4096 bits)

• accumulate (collects, compress) the entropy from

hardware events to the state

• feeds exclusively (no access to this pool)
– blocking_pool (state of 1024 bytes)

– non-blocking_pool (ChaCha20 stream cipher)

• only key (256) is fed by true rnd values

– state (“seed” for other pools) is saved at shutdown

18

S
e

e

G
a
u
vr
it

’s
b

lo
g

w
it
h

 n
ic

e
 s

c
h

e
m

e

https://blog.amossys.fr/author/guillaume-gauvrit.html
https://blog.amossys.fr/linux-csprng-architecture.html

