PV181 Laboratory of security and applied cryptography

Public key crypto Common math operations

Marek Sýs syso@mail.muni.cz, A405

You will learn

- How to generate public/private key pair.
- Formats of cryptographic data
 - Base64,
 - ASN1 (PEM, DER)
- Mathematical operations used in public-key cryptography
 - Modular operations
 - Operations with points on Elliptic curve

Public key operations

- Modular operations:
 - Addition
 - Multiplication
 - Exponentiation
 - Inversion (uses Extended Euclid alg.)
- Elliptic curve operations:
 - Point addition
 - Point multiplication (e.g. point doubling 2*P = P+P)

Modular operations

- The result always in [0, m-1] for modulus m
- Addition, multiplication: $a + b \mod m$, $a * b \mod m$
 - In python a+b % m, a*b % m
- Exponentiation: a^e mod m
 - In python pow(a, e, m)
 - Computed iteratively with modulo applied to decrease size of intermediate products
 - $-a^{11} \mod m \Rightarrow 11 = 1 + 2 + 8 \Rightarrow a^{11} = a^1 * a^2 * a^8$
 - $a^1, a^2 = a * a \mod m, a^4 = a^2 * a^2 \mod m, a^8, a^{16}$
 - $a^{11} \mod m = ((a^1 * a^2) \mod m * a^8) \mod m$

Modular inversion

- Inverse b^{-1} of b modulo m
 - $-b^{-1}$ such that $b^{-1} * b = b * b^{-1} = 1 \mod m$
 - b and m must be coprime!
- Modular "division" using inverse:

$$\frac{a}{b} \mod m = a * b^{-1} \mod m$$

- In python (a * pow(a, -1, m)) %
- Examples:
 - $-3^{-1} \mod 7 = 5 \text{ since } 3 * 5 \mod 7 = 1$
 - $-4^{-1} \mod 10$ does not exist $(\gcd(4,10) = 2)$

RSA

- Public N, e
 - Encryption modular exponentiation
 - $E(m) = m^e \mod N$
- Private e, d, p, q, N
 - Decryption modular exponentiation
 - $D(c) = c^d \mod N$
- Private
 - Decryption modular exponentiation using CRT

Elliptic curve cryptography (ECC)

- Defined by parameters
 - a, b, p, G, q
- Groups of points (x, y)
 - $y^2 = x^3 + ax + b \bmod p$
- Operations with points:
 - Addition complex wiki $(x_1, y_1) + (x_2, y_2) \neq (x_3, y_3)$
 - Multiplication vs addition classical relationship
 - E.g. $3 * (x_1, y_1) = (x_1, y_1) + (x_1, y_1) + (x_1, y_1)$
 - Maximal multiplier q i.e
 - $k * (x_1, y_1) = (k \bmod q) * (x_1, y_1)$