
Crypto libraries
introduction

Milan Brož
xbroz@fi.muni.cz

PV181, FI MUNI, Brno

Open source
cryptographic libraries
 Linux environment – up to you:

 Debian / VirtualBox VM (see course materials)
● some optional examples need OpenSSL 3.0 or gcrypt 1.10

 Your own distro – need to install development env.:
● libgcrypt: Fedora: libgcrypt-devel; Debian/Ubuntu: libgcrypt20-dev
● OpenSSL:Fedora: openssl-devel; Debian/Ubuntu: libssl-dev

NOTE: OpenSSL3 is often not yet in stable releases
● libsodium:Fedora: libsodium-devel; Debian/Ubuntu: libsodium-dev

 aisa.fi.muni.cz (OpenSSL v1 only)
 All examples in C language
 Home assignments (10 points each)

Lab environment
VirtualBox image
 Unpack zip archive from IS
 Open VirtualBox (click blue icon – config file)
 Login and password is pv181

(same for sudo and root password)
 Debian with upgraded OpenSSL and libgcrypt
 We will use only opensource tools
 Examples on gitlab (always git pull for updates)

git clone https://gitlab.fi.muni.cz/xbroz/pv181.git
make clean; make; ./example

Cryptographic libraries
Goals for this lab
 Crypto libraries and API / abstraction
 More practical and implementation view
 Why legacy code, compatibility and standards
 Coding practices – in C language
 Defensive approach: It will fail, be prepared for it :-)

Why not use a modern language with garbage collection and functional
programming and free massages after lunch?
Here’s the answer: Pointers are real. They’re what the hardware understands.
Somebody has to deal with them.
You can’t just place a LISP book on top of an x86 chip and hope that the
hardware learns about lambda calculus by osmosis.
 - James Mickens, https://www.usenix.org/system/files/1311_05-08_mickens.pdf

Why implementation matters
 It works, but …
 How many possible bugs do you see?
/* Read a key from Linux RNG */
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

int main(int argc, char *argv[])
{
 int fd;
 char key[32];

 fd = open("/dev/random", O_RDONLY);
 read(fd, key, 32);
 close(fd);
 /* Do something with the key[] */
 memset(key, 0, 32);
 return 0;
}

Why implementation matters
 How many possible bugs do you see?

– No check for return code, open(), read()
– Posible reading from invalid fd (no random at all)
– Partial read() is not detected
– Failed read() is not detected

(mandatory access control can block reading)
– Magic numbers (one constant on several places)
– Compiler can optimize memset() out

(secret key remains in memory)
– No error exit code, cannot check for failure

Why implementation matters
 Fixes? Let’s see example 0 in git.

 It is better to use a crypto library.
 Usually, maintainers implement it correctly :-)

https://xkcd.com/221/

Secure implementation notes
 Even C compilers can do many checks

– Use -Wall option and do not ignore warnings
– non-default warnings options

 User opensource static and dynamic code analyzers
– clang scan-build
– gcc -fanalyzer options
– valgrind
– cppcheck

 Fuzzing can be very powerfull
 Code review (it requires some skills)

Practically oriented books

 Jean-Phillipe Aumasson
Serious Cryptography:
A Practical Introduction
to Modern Encryption (2017)

 Ferguson, Schneier, Kohno
Cryptography Engineering:
Design Principles and Practical
Applications (2010)

 David Wong
Real-World Cryptography (2021)

Cryptographic libraries
Introduction
 Open-source / Proprietary
 Static + embedded / dynamically linked
 Low or high level abstractions
 Multiplatform
 Stable API and ABI
 Policy (approved algorithms)
 Security or platform specific features

 Safe memory use, side-channel resistance, …
 HW acceleration support, “secure” HW support

Crypto libraries – algorithms
 Random Number Generator (RNG) access
 Hash, keyed-hash (HMAC, msg authentication)
 Symmetric ciphers and modes
 Asymmetric ciphers
 Certificate support, ASN.1, ...
 Key exchange, key derivation
 Helpers

 secure memory
 safe comparison
 network / sockets
 plugin support (like OpenSSL3 providers)
 ...

Example libs (C and Linux)
abstraction from low to high
 Nettle
 libgcrypt
 OpenSSL / OpenSSL3

 LibreSSL (clone), BoringSSL (Google)
 NSS

 Network Security Services (Mozilla)
 NaCl ("salt")

 more common as libsodium

Examples in gcrypt, OpenSSL / OpenSSL3 and libsodium

	Crypto libraries introduction
	Cryptographic libraries plan for next three PV181 labs
	Lab environment VirtualBox image
	Slide 4
	Why implementation matters
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Cryptographic libraries Introduction
	Crypto libraries
	Example libs (C and Linux) abstraction from low to high

