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Outline

• Finishing the last week’s exercises (10min)

– Optional task discussion

• Recall from the last seminars

– We concentrate on signatures

• RSA, RSA-CRT

• DSA, ECDSA

• Efficiency

• Post Quantum
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Finishing the last week’s exercises

• Anything before Task 6?

• Task 6 and 7…

• Email encryption – Assignment 7
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Tasks 6 & 7:

• Both are doable but mathematically not trivial for arbitrary e..

– For a complete solution see: Handbook of Applied Cryptography (chapter 8, section 

8.2.2, page 287). Link: https://cacr.uwaterloo.ca/hac/

• However e is normally small: e=0x010001=65537

• Therefore, the following attack is possible for d, n, and e known:

1. We have eꞏd = kꞏ𝜑 𝑛 + 1 for some integer k. Since d < 𝜑 𝑛 , we know that k < e. So 

you only have a small number of k to try to get 𝜑 𝑛 .

• Note that 𝜑 𝑛 ≈ 𝑛 or at least most significant bits. 

• For small e:  k'=round(ed/n). k' is very close to k (i.e. |k'-k| <= 1). 

2. Given k, you easily get 𝜑 𝑛 = (ed-1)/k. 

3. Now 𝜑 𝑛 = (p-1)(q-1) =  n + 1 - (p+q). Thus, you get p+q = n + 1 - 𝜑 𝑛 .

• So we have p+q and n=pꞏq. 

• Note that for all real numbers a and b, a and b are the two solutions of the 

quadratic equation X2-(a+b)ꞏX+aꞏb=0. 

4. Compute: …
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Tasks 6 & 7 cont’d

4. Compute:

• p = ((p+q) + (p+q)2 − 4ꞏpq) / 2 

• q = ((p+q) - (p+q)2 − 4ꞏpq))/2

• Easier way, there is a function to compute p and q from (n,e,d):
– cryptography.hazmat.primitives.asymmetric.rsa.rsa_recover_prime_factors(n,e,d)

• For dp=d (mod p), n, and e known, the attack is easier:

– dp ≤ d < 𝜑 𝑛

– eꞏdp = 1 (mod (p-1)) and therefore eꞏdp = kꞏ(p-1)

– k<e so we can brute force k again and we compute x= eꞏdp + k = kꞏp

– Now we compute gcd(x,n) to obtain p. 

• More to read: 

– “Reconstructing RSA Private Keys from Random Key Bits”: 

https://eprint.iacr.org/2008/510.pdf

– “Weaknesses in Current RSA Signature Schemes”: 

https://link.springer.com/chapter/10.1007/978-3-642-31912-9_11
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Recall: Asymmetric cryptosystem



Digital signature scheme
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Digital signature

• Alice generates key pair

– Public key is published (sent to Bob) for verification of 

signature

• Alice sign a document using her private key

• Bob use public key to verify the digital signature

• Classical examples: RSA, ECC

• Post-Quantum Schemes:

– Why?
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RSA: reminder

1. Secret primes 𝑝, 𝑞: 𝑛 = 𝑝 ∙ 𝑞

2. Public exponent 𝑒: 

gcd 𝑒, (𝑝 − 1) = gcd 𝑒, (𝑞 − 1) = 1

3. Private exponent 𝑑: 𝑑 ∙ 𝑒 ≡ 1 𝑚𝑜𝑑 𝜑 𝑛

Encryption (public 𝑛, 𝑒): 𝐸 𝑚 = 𝑚𝑒 𝑚𝑜𝑑 𝑛 = 𝑐

Decryption (private 𝑛, 𝑑): 𝐷 𝑐 = 𝑐𝑑 𝑚𝑜𝑑 𝑛 = 𝑚
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RSA-CRT: mathematics

• Optimization of computing a signature giving about 3 or 4-fold speed-up

• Precompute the following values:

– Find dp = d (mod p-1), computed as dp = e-1 (mod p-1)

– Find dq = d (mod q-1)

– Compute iq = q-1 (mod p)

• Computations using mp = m (mod p) and mq = m (mod q)

• Signature or encryption (forgetting about hashing):

– sp = 𝑚𝑑𝑝 (mod p)

– sq = 𝑚𝑑𝑞 (mod q)

– Garner’s method (1965) to recombine sp and sq:

• s = sq + q · (iq(sp − sq) (mod p))
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Discrete Logarithm Problem 𝒁𝒑
∗ (or 𝒁𝒏

∗ )
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DSA: reminder
• Signature generation

– Generate a random per-message value k such that 0 < k < q.

– Calculate r = (gk mod p) mod q

– Calculate s = (k−1(H(m) + x*r)) mod q

– The signature is (r, s).

• Signature verification

– w = (s)−1 mod q

– u1 = (H(m)*w) mod q

– u2 = (r*w) mod q

– v = ((gu1*yu2) mod p) mod q

– The signature is valid if v = r

• For DSA (1024,160) the signature size will be 2x160 bits.
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DSA: Padding

• Decide on lengths L and N, e.g. (1024,160).

– N must be less than or equal to the hash output length

• E.g. for (1024,160) sha-1 used to be used, 

sha-256 would be ok as well and only the first 160 bits would 

be used; nowadays (2048, 256) or (3072, 256) should be 

used; 

– s = (k−1(H(m) + x*r)) mod q
• “It is recommended that the security strength of the (L, N) pair and the security strength of the hash 

function used for the generation of digital signatures be the same unless an agreement has been 

made between participating entities to use a stronger hash function. When the length of the output of 

the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of the hash 

function output block shall be used in any calculation using the hash function output during the 

generation or verification of a digital signature. A hash function that provides a lower security 

strength than the (L, N) pair ordinarily should not be used, since this would reduce the security 

strength of the digital signature process to a level no greater than that provided by the hash 

function.” [FIPS 186-3]
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RSA, RSA-CRT, DSA problems

• Plus: no polynomial algorithm to solve factorization or 

discrete logarithm in 𝒁𝒑
∗ and 𝒁𝒏

∗

• Minus: there exist algorithms for factoring and 

discrete log that are faster than a generic algorithm:

• A generic discrete log solver works in proportional 

time to the square root of the group size, and thus 

exponential in half the number of digits in the group. 

• Result: bigger keys

• Solution: Elliptic Curves DSA
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Elliptic curve DSA (ECDSA)

• Elliptic curves invented by Koblitz & Miller in 1985.

• ECDSA proposed in 1992 by Vanstone

• Became ISO standard (ISO 14888-3) in 1998

• Became ANSI standard (ANSI X9.62) in 1999

• ECDSA is a version of DSA based on elliptic 

curves.
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Elliptic curve example

• Example

• y2 = x3 - 3 x2 + 5 over ℚ, and ∞

• How would it look over a finite field, 

• for example: Fp? for p = 7919
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Elliptic curve implementations

• Group operation over the curve: addition and doubling
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Elliptic curve implementations’ details

• Above operations on the finite field:

• …
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ECDSA: Elliptic curve domain parameters

• (field,a,b,G,n,h)

– Finite field

• p for Fp

• m, bases (trinomial, pentanomial) for F2
m

– Coefficients a, b: y2 = x3 + ax +b

– Group generator: G

– Order of the G: n

– Optional cofactor: h

• (h = number of elements in field / order n)

– The base point G generates a cyclic subgroup of order n in 

the field.
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ECDSA: Keys

• Generating key pair
– Select a random integer d from [1,n − 1]

– Compute P = d*G;

• Private key: d

• Public key: P

• For 256-bit curve
– the private key d will be approx. 256-bit long

– the public key P is a point on the curve – will be approx
512-bit long, unless compressed 
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ECDSA: Signatures
• Generate signature

– Select a random integer k from [1,n − 1]

– (x1,y1) = k*G

– Calculate r = x1 (mod n)

– Calculate s = k−1(M + r*d) (mod n)

– Signature is (r,s).

• Signature verification
– Calculate w = s−1 (mod n)

– Calculate u1 = z*w (mod n) & u2 = r*w (mod n)

– Calculate (x1,y1) = u1*G + u2*P

– The signature is valid if r = x1 (mod n).

• For 256-bit curve the signature length will be approx. 
512 bits
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ECDSA: Padding

• Rules are same as for DSA
• “It is recommended that the security strength associated with the bit length of 

n and the security strength of the hash function be the same unless an 

agreement has been made between participating entities to use a stronger 

hash function. When the length of the output of the hash function is greater 

than the bit length of n, then the leftmost n bits of the hash function output 

block shall be used in any calculation using the hash function output during 

the generation or verification of a digital signature. A hash function that 

provides a lower security strength than the security strength associated with 

the bit length of n ordinarily should not be used, since this would reduce the 

security strength of the digital signature process to a level no greater than that 

provided by the hash function.” [FIPS 186-3]
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Post-Quantum (PQ) Schemes

• Quantum computer breaks (polynomial time) classic 

public key cryptography: RSA, DSA, ECDSA

– What about symmetric cryptography?

• NIST runs a standardization for PQ schemes:
– https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

• PQ schemes aim at higher security but are less 

efficient. 

• Many schemes (but not all!) are based on LWE.

• Library:
– https://libpqcrypto.org/index.html
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The LWE problem: search and decision

• The Learning With Errors (LWE) problem asks to recover a 

secret vector s=(s1,…sn), where each si is in Zq, given a 

sequence of random, “approximate” linear equations on s. 
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Seminar Tasks

• First task – python console

• Files:
– demo.py

– RSA.py (from github)

• Good luck! ☺
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Task Zero

• Let’s warm up…

• I know that people called OpenSSL command line tool 

from python instead of using the hazmat library. 

• What is happening if you use just python and hazmat?

• Open your python and run: 
from cryptography.hazmat import backends
backends.default_backend()

• How do you interpret the result?

• How many different backends there are?

• Which library is really called?
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First Task – documentation:
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Signature Schemes / Efficiency

• Do the tasks in demo.py

– Test signature schemes

– Measure the efficiency of some signature schemes

– Load OpenSSL key

• Run RSA.py and analyze the results

– What can you say about classical RSA vs RSA-CRT?

– What can you say about RSA.py vs the python library?
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Assignment 8 – Efficiency of Signature 

Generation Algorithms
• This is a programming assignment. Please upload your 

scripts/code and the required analysis via the course 

webpage.

• The deadline for submission is Nov. 16, 2022, 8:00.

• Your answer should be contained in one .py file. Please 

name the submission file as <uco_number>_hw8.zip. Put 

there both the python code and the analysis document. 

• It must contain comments so that it is reasonably easy to 

understand how to run the script for evaluating each 

answer.
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Assignment 8 - Tasks
1. Using hazmat implement the following signature schemes: RSA, DSA, ECDSA. In particular, 

implement key generation, signature generation, and signature verification. [2 points]

2. Implement HMAC with SHA2 and SHA3. All implementations should be in one file. [1 point]

3. Implement all the above schemes for taking input from a file (e.g., attached alice.txt). Make sure all 

your code works for large files (larger than your RAM). [2 points]

4. Perform an efficiency comparison analysis for RSA, DSA, ECDSA, HMAC-SHA2, and HMAC-SHA3. 

For the signature schemes’ parameters see the following slide. Analyze key generation, signature 

generation, and signature verification separately. Write a summary of your results, which primitive 

seems to be the best, and for which use case. Attach such a summary to your exercise submission. 

[4 points]

Remarks: (1) For the sake of computational time, use a small message to be signed. The same 

message should be used for all comparisons. For the comparison also use the same hash function 

(once SHA2 and once SHA3). (2) For HMAC use the key size suggested by the symmetric crypto 

column in the next slide. (3) For DSA just specify the larger prime number (p). The smaller prime 

number (q) will be chosen automatically. (4) By “use case”, I mean the a scheme, for example, some 

algorithms are slow but have fast verification which might make them suitable for some applications.

5. Additionally, analyze whether varying the private key affects the algorithms’ execution time (or the 

corresponding standard deviations of algorithms’ execution time). Please comment on the results 

(what could be the reason for the observed results). [1 points]

Good luck!!!
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Assignment 8 – extra info
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