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Outline

• Recall + goal of this seminar

– Digital signatures

– RSA vs. ECC

• Side Channel + Fault Injection speed run

• Secured X25519 library: sca25519

– Demo Exercise

• Python Exercise

– Securing RSA execution

• No Assignment this week ☺
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Recall: Asymmetric cryptosystem



Recall: Digital signature scheme
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Signature

algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and 
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Is there a difference?



Recall: RSA vs. ECC
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• exponentiation ≈ scalar 

multiplication

• multiplication  ≈ points addition

• squaring  ≈ point doubling



Why is hardware security important?
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Identity Theft

• Premium 
Content Theft

Impersonation

Card / Money Theft

Phone / Money Theft
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Side-

Channel 

Analysis



8 |  PV181



Cookies Example
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Passive vs Active Side Channels
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Passive: analyze device behavior Active: change device behavior



Recent Practical Attacks
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Side Channels

• Time

• Power

• Electro Magnetic Emanations

• Light

• Sound

• Temperature

• …
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What can be attacked & why?

• Type of device?

• What kind of primitive?

• How much control do you have?

• What can you access? 

• What would be the attacker’s goal?

• What is your goal?

• Where is the money?

• …
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Practical Setup Spectrum
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Some Other Practical Setups
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Actual (overcomplicated?) setup
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Example Side Channel Attack: 
GPU running NN
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Simple Power Analysis (SPA) on RSA
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1996.

A = 1
for ( i = n-1; i≥0; i−−)

A = A2 mod N
if (di = =1)

A = A*c mod N
end if

end for
Return A = cd mod N

ModExp(c){

}

M M M MS S S …

S

M

… S S S S S S S S S

1 0 1 0 0 0 1 0 0 1 0
Probe

“By carefully measuring the amount of time required to perform 
private key operations, attackers may be able to find […] RSA 

keys.”



Differential (Correlation) Power Analysis 
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1999

1999

2004

random

inputs

…

n
 t
ra

c
e
s

Guess 𝒅 bits target state

User:

• HW of a register

• HD between current and previous register state

• ID model (value of a register)

𝑓𝑖 = Selection Function(random inputs, 𝒅, target state)

DPA = Difference of Means

𝑓𝑖 = ቊ
0 𝑖𝑓 𝐻𝑊 ≤ 16
1 𝑖𝑓 𝐻𝑊 > 16

𝑓𝑖 = 𝐻𝑊(𝑟𝑒𝑔_𝑠𝑡𝑎𝑡𝑒)

CPA = Pearson correlation

ModExp(𝒅)



Goals of Fault Injection
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• The goal is to change a critical value or to change the flow 

of a program.

• Faults can be injected in several ways:
– Power glitches can disturb the power supply to the processor, resulting in 

wrong values read from memory.

– Optical glitches with laser can force any elementary circuit to switch, 

enabling the attacker to achieve a very specific change of data values or 

behavior.

– Clock manipulation by introducing a few very short clock cycles which may 

lead to the device misinterpreting a value read from memory.

– Cutting the power to the processor while performing important computations, 

hoping to either prevent the system from taking measures against a detected 

attack or get the system into a vulnerable state when the power is back.

• Differential Fault Analysis (DFA)



Fault Injection Example: 
the “unlooper” device 
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Question 0: 
Software for PIN code verification
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• What is the problem here? 

• What are the execution times of 

the process for PIN inputs?

• [0,1,2,3], [5,3,0,2], [5,9,0,0]

• The execution time increases as 

we get closer to

• [5,9,0,2]



Task 0 – parity check for DES key
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Task 0 – parity check for DES key cont’d
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Tell me what is the key ☺



Question 1: 
faster and more secure modexp - Montgomery ladder
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x0=x; x1=x2

for j=k-2 to 0 {
if dj=0

x1=x0*x1; x0=x0
2

else
x0=x0*x1; x1=x1

2

x1=x1 mod N 
x0=x0 mod N
}
return x0

Both branches with the same 

number and type of operations 

(unlike square and multiply on 

previous slide)

Is it constant-time & secure? Why?



Question 2: 
even more secure modexp
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x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N 
x0=x0 mod N
}
return x0

Memory access often is not 

constant time! 

Especially in the presence of 

caches.

Is it constant-time & secure? Why?



Question 3: 
even more secure modexp
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x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N 
x0=x0 mod N
}
return x0

Memory access often is not 

constant time! 

Especially in the presence of 

caches.

Is it constant-time & secure? Why?



Question 4: 
even more more secure modexp
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x0=x; x1=x2; sw = 0
for j=k-2 to 0 {

b=dj

cswap(x0,x1,b⊕sw)
sw = sw⊕di
x1=x0*x1; x0=x0

2

x1=x1 mod N 
x0=x0 mod N
}
return x0

Constant-time? Depends on the 

cswap… but it can be ☺

Other-side channels? Depends 

Is it constant-time & secure? Why?



Question 5: 
Arithmetic Cswap – constant-time?
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Question 5: 
Arithmetic Cswap – secure against other side-channels?
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sample 𝒕𝒊

⋮

Scalar multiplication trace

255 
iterations

⋯

sample index 
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Apply clustering (e.g. k-means), Template Attack, Deep Learning
to the set of  255 samples:

bits 0 bits 1

255 Samples255 Montgomery iterations



Message and exponent blinding
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𝒄 = 𝒎𝒅𝒎𝒐𝒅𝑵

1. 𝒎𝒓 = 𝒎. 𝒓−𝒆𝒎𝒐𝒅 𝑵

2. 𝒅𝒓 = 𝒅 + 𝒓 ∗ 𝝋(𝒏)
3. 𝒄𝒓 = 𝒎𝒓

𝒅𝒓 𝒎𝒐𝒅 𝒏

4. 𝒄 = 𝒄𝒓 ∗ 𝒓 𝒎𝒐𝒅 𝒏

message blinding

message “unblinding”

exponent blinding

blinded exponentiation

The sequence of operations (S, M) is related to the exponent bits. 

However:

• If d is random: the sequence of exponent bits changes for every RSA execution

• If m is random: Intermediate data is random (masked) → hardly predicted!

DPA is based on the prediction of intermediate data.

Thesis: Any side-channel attack requiring multiple traces are repelled by message and exponent blinding 

countermeasures.

For ECC there are corresponding countermeasures: coordinate blinding, scalar blinding, blinded scalar 

multiplications, and no unblinding ☺



SCA&FI-protected Elliptic Curve library

• A protected library for ECDH

– key exchange & session key establishment

– It will be published in TCHES2023 volume 1 and 

• presented at Ches 2023 in Prague

• Download the library from github

• Useful links:

– https://eprint.iacr.org/2021/1003

– https://github.com/sca-secure-library-sca25519/sca25519

• Taking care of ECDSA:

– https://eprint.iacr.org/2022/1254

– I will add it to the repository later on. 
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https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://eprint.iacr.org/2022/1254


Seminar Tasks

• Task 1 – analyze the code of the ephemeral 

implementation with respect to Questions 1 to 5. 

– How is protected?

– Work in pairs and discuss your thoughts. 

• Task 2 - compare implementations – what is the 

difference?

– Hint: you can have a look at the paper and the repo too. 

• Task 3 – how different implementations are 

measuring efficiency?

• Task 4 – do you see any fault injection 

countermeasures?
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Seminar Tasks Cont’d 

• Let’s do the efficiency DEMO. 

• (Optional) Tasks 5 – try to perform various 

measurements of the efficiency of one (chosen by 

you) implementation.

– We have only two boards so people can do it in small 

groups and change.

• Task 6: protect the RSA implementation with 

exponent blinding! – see the RSA.py

• Super-optional Task 7: protect the implementation 

with message blinding! – see the RSA.py
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No Assignment

• ☺
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