
PV181 Laboratory of security

and applied cryptography

Seminar 9:

Crypto-libraries protected against hardware attacks

Łukasz Chmielewski
chmiel@fi.muni.cz

| PV1811

Outline

• Recall + goal of this seminar

– Digital signatures

– RSA vs. ECC

• Side Channel + Fault Injection speed run

• Secured X25519 library: sca25519

– Demo Exercise

• Python Exercise

– Securing RSA execution

• No Assignment this week ☺

2 | PV181

encryption decryption

message
Alice

Public key of Bob

Bob

Adapted Source: Network and

Internetwork Security (Stallings)

Private key of Bob

Encrypted
message

Decrypted
original
message

| PV1813

Recall: Asymmetric cryptosystem

Recall: Digital signature scheme

4 | PV181

Signature

algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and

Internetwork Security (Stallings)

verified
message

Private key of Alice

Is there a difference?

Recall: RSA vs. ECC

5 | PV181

• exponentiation ≈ scalar

multiplication

• multiplication ≈ points addition

• squaring ≈ point doubling

Why is hardware security important?

6 | PV181

Identity Theft

• Premium
Content Theft

Impersonation

Card / Money Theft

Phone / Money Theft

7 | PV181

Side-

Channel

Analysis

8 | PV181

Cookies Example

9 | PV181

Passive vs Active Side Channels

10 | PV181

Passive: analyze device behavior Active: change device behavior

Recent Practical Attacks

11 | PV181

Side Channels

• Time

• Power

• Electro Magnetic Emanations

• Light

• Sound

• Temperature

• …

12 | PV181

What can be attacked & why?

• Type of device?

• What kind of primitive?

• How much control do you have?

• What can you access?

• What would be the attacker’s goal?

• What is your goal?

• Where is the money?

• …

13 | PV181

Practical Setup Spectrum

14 | PV181

Some Other Practical Setups

15 | PV181

Actual (overcomplicated?) setup

16 | PV181

Example Side Channel Attack:
GPU running NN

17 | PV181

Simple Power Analysis (SPA) on RSA

18 | PV181

1996.

A = 1
for (i = n-1; i≥0; i−−)

A = A2 mod N
if (di = =1)

A = A*c mod N
end if

end for
Return A = cd mod N

ModExp(c){

}

M M M MS S S …

S

M

… S S S S S S S S S

1 0 1 0 0 0 1 0 0 1 0
Probe

“By carefully measuring the amount of time required to perform
private key operations, attackers may be able to find […] RSA

keys.”

Differential (Correlation) Power Analysis

19 | PV181

1999

1999

2004

random

inputs

…

n
 t
ra

c
e
s

Guess 𝒅 bits target state

User:

• HW of a register

• HD between current and previous register state

• ID model (value of a register)

𝑓𝑖 = Selection Function(random inputs, 𝒅, target state)

DPA = Difference of Means

𝑓𝑖 = ቊ
0 𝑖𝑓 𝐻𝑊 ≤ 16
1 𝑖𝑓 𝐻𝑊 > 16

𝑓𝑖 = 𝐻𝑊(𝑟𝑒𝑔_𝑠𝑡𝑎𝑡𝑒)

CPA = Pearson correlation

ModExp(𝒅)

Goals of Fault Injection

20 | PV181

• The goal is to change a critical value or to change the flow

of a program.

• Faults can be injected in several ways:
– Power glitches can disturb the power supply to the processor, resulting in

wrong values read from memory.

– Optical glitches with laser can force any elementary circuit to switch,

enabling the attacker to achieve a very specific change of data values or

behavior.

– Clock manipulation by introducing a few very short clock cycles which may

lead to the device misinterpreting a value read from memory.

– Cutting the power to the processor while performing important computations,

hoping to either prevent the system from taking measures against a detected

attack or get the system into a vulnerable state when the power is back.

• Differential Fault Analysis (DFA)

Fault Injection Example:
the “unlooper” device

21 | PV181

Question 0:
Software for PIN code verification

22 | PV181

• What is the problem here?

• What are the execution times of

the process for PIN inputs?

• [0,1,2,3], [5,3,0,2], [5,9,0,0]

• The execution time increases as

we get closer to

• [5,9,0,2]

Task 0 – parity check for DES key

23 | PV181

Task 0 – parity check for DES key cont’d

24 | PV181

Tell me what is the key ☺

Question 1:
faster and more secure modexp - Montgomery ladder

26 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
if dj=0

x1=x0*x1; x0=x0
2

else
x0=x0*x1; x1=x1

2

x1=x1 mod N
x0=x0 mod N
}
return x0

Both branches with the same

number and type of operations

(unlike square and multiply on

previous slide)

Is it constant-time & secure? Why?

Question 2:
even more secure modexp

27 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N
x0=x0 mod N
}
return x0

Memory access often is not

constant time!

Especially in the presence of

caches.

Is it constant-time & secure? Why?

Question 3:
even more secure modexp

28 | PV181

x0=x; x1=x2

for j=k-2 to 0 {
b=dj

x(1-b)=x0*x1; xb=xb
2

x1=x1 mod N
x0=x0 mod N
}
return x0

Memory access often is not

constant time!

Especially in the presence of

caches.

Is it constant-time & secure? Why?

Question 4:
even more more secure modexp

29 | PV181

x0=x; x1=x2; sw = 0
for j=k-2 to 0 {

b=dj

cswap(x0,x1,b⊕sw)
sw = sw⊕di
x1=x0*x1; x0=x0

2

x1=x1 mod N
x0=x0 mod N
}
return x0

Constant-time? Depends on the

cswap… but it can be ☺

Other-side channels? Depends

Is it constant-time & secure? Why?

Question 5:
Arithmetic Cswap – constant-time?

30 | PV181

Question 5:
Arithmetic Cswap – secure against other side-channels?

31 | PV181

sample 𝒕𝒊

⋮

Scalar multiplication trace

255
iterations

⋯

sample index

sa
m

p
le

 v
al

u
e

 (
V

)

Apply clustering (e.g. k-means), Template Attack, Deep Learning
to the set of 255 samples:

bits 0 bits 1

255 Samples255 Montgomery iterations

Message and exponent blinding

32 | PV181

𝒄 = 𝒎𝒅𝒎𝒐𝒅𝑵

1. 𝒎𝒓 = 𝒎. 𝒓−𝒆𝒎𝒐𝒅 𝑵

2. 𝒅𝒓 = 𝒅 + 𝒓 ∗ 𝝋(𝒏)
3. 𝒄𝒓 = 𝒎𝒓

𝒅𝒓 𝒎𝒐𝒅 𝒏

4. 𝒄 = 𝒄𝒓 ∗ 𝒓 𝒎𝒐𝒅 𝒏

message blinding

message “unblinding”

exponent blinding

blinded exponentiation

The sequence of operations (S, M) is related to the exponent bits.

However:

• If d is random: the sequence of exponent bits changes for every RSA execution

• If m is random: Intermediate data is random (masked) → hardly predicted!

DPA is based on the prediction of intermediate data.

Thesis: Any side-channel attack requiring multiple traces are repelled by message and exponent blinding

countermeasures.

For ECC there are corresponding countermeasures: coordinate blinding, scalar blinding, blinded scalar

multiplications, and no unblinding ☺

SCA&FI-protected Elliptic Curve library

• A protected library for ECDH

– key exchange & session key establishment

– It will be published in TCHES2023 volume 1 and

• presented at Ches 2023 in Prague

• Download the library from github

• Useful links:

– https://eprint.iacr.org/2021/1003

– https://github.com/sca-secure-library-sca25519/sca25519

• Taking care of ECDSA:

– https://eprint.iacr.org/2022/1254

– I will add it to the repository later on.
33 | PV181

https://github.com/sca-secure-library-sca25519/sca25519
https://github.com/sca-secure-library-sca25519/sca25519
https://eprint.iacr.org/2022/1254

Seminar Tasks

• Task 1 – analyze the code of the ephemeral

implementation with respect to Questions 1 to 5.

– How is protected?

– Work in pairs and discuss your thoughts.

• Task 2 - compare implementations – what is the

difference?

– Hint: you can have a look at the paper and the repo too.

• Task 3 – how different implementations are

measuring efficiency?

• Task 4 – do you see any fault injection

countermeasures?
34 | PV181

Seminar Tasks Cont’d

• Let’s do the efficiency DEMO.

• (Optional) Tasks 5 – try to perform various

measurements of the efficiency of one (chosen by

you) implementation.

– We have only two boards so people can do it in small

groups and change.

• Task 6: protect the RSA implementation with

exponent blinding! – see the RSA.py

• Super-optional Task 7: protect the implementation

with message blinding! – see the RSA.py

35 | PV181

No Assignment

• ☺

36 | PV181

