Length of cryptographic keys

Zdeněk Říha

Security of RSA

- We choose randomly 2 primes and compute n and $\phi(n)$:
 - p, q
 - n = p·q
 - φ(n) = (p-1)(q-1).
- **e** is chosen such that $gcd(e, \phi(n)) = 1$.
- We compute $d = e^{-1} \pmod{\phi(n)}$.
- Public key: n, e.
 Private parameters: p, q, d.
 Private key: d.
- Security of RSA cryptosystem is based on the problem of factoring large numbers
- If public n can be factored into p and q, we can calculate φ(n) and derive d from e.
- Integer factorization is taught at primary schools
- But when integers are very big it takes very long time even for fast computers to factor the number

Computational Security

- Unconditional vs. computational security
- Security based on a hard problem
- The problem is solvable, but it takes impractically long time to solve
- The attacker cannot wait thousands/millions of years to break the encryption
- Our expectations can change:
 - Progress in the speed of HW
 - Progress in the efficiency of algorithms

History of RSA Security

- RSA is considered secure
 - But the key size does matter
- 1977: published in "Scientific American"
 - RSA-129 (129 decimal digits of modulus n)
 - Challenge of 100 dollars
 - 40 quadrillion years estimated to factor ...
 - Factored in 1994
 - "The magic words are squeamish ossifrage."

History of RSA Security II

- 1999
 - 512 bit integer was factorized
- 2005
 - 663 bit integer was factorized
- January 2010
 - 768 bit integer was factorized
- February 2020
 - 829 bit integer (RSA-250) was factorized
- 1024 bit integers are (probably) factorable at the moment by large organizations

Security of RSA

Source: P. Layland, RSA Security and Integer Factorization: The Thirty Years War from 1990 to 2020, IS2 2010, Praha

Key size

- Algorithms are public & keys must be secret
- Key must be large enough that a brute force attack is infeasible
- Depending on the algorithm used it is common to have different key sizes for the same level of security
 - Representing the level of security number of combinations needed for the brute force attack
 - E.g. 1024 bit RSA key equivalent to 80 bit symmetric encryption key

Comparable strengths of cryptosystems

$\bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet$

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤ 80	2TDEA ²¹	L = 1024 $N = 160$	<i>k</i> = 1024	<i>f</i> =160-223
112	3TDEA	L = 2048 $N = 224$	<i>k</i> = 2048	f=224-255
128	AES-128	L = 3072 $N = 256$	<i>k</i> = 3072	f=256-383
192	AES-192	L = 7680 $N = 384$	<i>k</i> = 7680	<i>f</i> =384-511
256	AES-256	L = 15360 N = 512	<i>k</i> = 15360	<i>f</i> = 512+

Source: IIST SP800-57

Security strengths of hash functions

Security Strength	Digital Signatures and Other Applications Requiring Collision Resistance	HMAC, ⁷⁰ KMAC, ⁷¹ Key Derivation Functions, ⁷² Random Bit Generation ⁷³
≤ 80	SHA-1 ⁷⁴	
112	SHA-224, SHA-512/224, SHA3-224	
128	SHA-256, SHA-512/256, SHA3-256	SHA-1, KMAC128
192	SHA-384, SHA3-384	SHA-224, SHA-512/224, SHA3-224
≥256	SHA-512, SHA3-512	SHA-256, SHA-512/256, SHA-384, SHA-512, SHA3-256, SHA3-384, SHA3-512, KMAC256

Source: NIST SP800-57

Recommended key sizes

Security Strength		Through 2030	2031 and Beyond
< 112 Applying		Disallowed	
	Processing	Legacy-use	
112	Applying	Acceptable	Disallowed
112	Processing	receptuore	Legacy use

Security Strength		Through 2030	2031 and Beyond
128		Acceptable	Acceptable
192	Applying/Processing	Acceptable	Acceptable
256		Acceptable	Acceptable

Source: NIST SP800-57

Recommended key sizes

"Acceptable" indicates that the algorithm or key length is not known to be insecure.

- "Deprecated" means that the use of an algorithm or key length that provides the indicated security strength may be used if risk is accepted
- "Legacy use" means that an algorithm or key length may be used because of its use in legacy applications
- "Disallowed" means that an algorithm or key length shall not be used for applying cryptographic protection.

Crypto period

Crypto period example

Recommended crypto periods

	Crytoperiod			
Кеу Туре	Originator-Usage Period (OUP)	Recipient-Usage Period		
1. Private Signature Key	1 to 3 years	-		
2. Public Signature-Verification Key	Several years (de	pends on key size)		
3. Symmetric Authentication Key	≤2 years	\leq OUP + 3 years		
4. Private Authentication Key	1 to 2	2 years		
5. Public Authentication Key	1 to 2 years			
6. Symmetric Data Encryption Keys	≤2 years	\leq OUP + 3 years		
7. Symmetric Key Wrapping Key	2 years	\leq OUP + 3 years		
8. Symmetric RBG Keys	See [SP800-90]	-		
9. Symmetric Master Key	About 1 year -			
10. Private Key Transport Key	<u>≤</u> 2 y	rears ¹⁶		
11. Public Key Transport Key	1 to 2	2 years		
12. Symmetric Key Agreement Key	1 to 2	years ¹⁷		
13. Private Static Key Agreement Key	1 to 2	years ¹⁸		
14. Public Static Key Agreement Key	1 to 2 years			
15. Private Ephemeral Key Agreement Key	One key-agreement transaction			
16. Public Ephemeral Key Agreement Key	One key-agreement transaction			

Source:NIST SP800-57

Recommended crypto periods

	Crytoperiod		
Кеу Туре	Originator-Usage Period (OUP)	Recipient-Usage Period	
17. Symmetric Authorization Key	≤ 2 years		
18. Private Authorization Key	≤ 2 years		
19. Public Authorization Key	≤ 2 years		

ETSI recommendation (RSA)

Table 6: Recommended parameters for RSA for a resistance during X years

Parameter	1 year	3 years	6 years
Key size (log ₂ (<i>n</i>)	≥ 1 <mark>9</mark> 00	≥ <mark>1</mark> 900	≥ <mark>3</mark> 000

- Source: ETSI TS 119 312 V1.4.2 (2022-02)
- Recommended key sizes for RSA for a resistance during X years
- Starting date: 2022

ETSI recommendation (DSA)

Parameter	1 year	3 years	6 years
pLen	2 048	2 048	3 072

- Source: ETSI TS 119 312 V1.4.2 (2022-02)
- Recommended key sizes for DSA
- Starting date: 2022

ETSI recommendation (ECDSA)

Table 8: Recommended parameters for EC-DSA and EC-SDSA-opt for a resistance during X years

Parameter	1 year	3 years	6 years
pLen = qLen	256, 384 or 512	256, 384 or 512	256, 384 or 512

- Source: ETSI TS 119 312 V1.4.2 (2022-02)
- Recommended key sizes for ECDSA
- Starting date: 2022

ETSI recommendation (hash functions)

Entry name of the hash function	1 year	3 years	6 years
SHA-224	usable	usable	unusable
SHA-256	usable	usable	usable
SHA-384	usable	usable	usable
SHA-512	usable	usable	usable
SHA3-256	usable	usable	usable
SHA3-384	usable	usable	usable
SHA3-512	usable	usable	usable

- Source: ETSI TS 119 312 V1.4.2 (2022-02)
- Recommended hash functions
- Starting date: 2022

ETSI recommendation

Entry name of the signature suite	1 year	3 years	6 years
sha256-with-rsa	≥ 1 <mark>90</mark> 0	≥ 1 900	not recommended
sha384-with-rsa	≥ 1 <mark>90</mark> 0	≥ 1 900	not recommended
sha512-with-rsa	≥ 1 900	≥ 1 900	not recommended
rsa-pss with mgf1SHA-256Identifier	≥ 1 <mark>90</mark> 0	≥ 1 900	≥ <mark>3 0</mark> 00
rsa-pss with mgf1SHA-384Identifier	≥ 1 <mark>90</mark> 0	≥ 1 900	≥ <mark>3 0</mark> 00
rsa-pss with mgf1SHA-512Identifier	≥ 1 900	≥ 1 900	≥ <mark>3 0</mark> 00
rsa-pss with mgf1SHA3-Identifier	≥ 1 900	≥ 1 900	≥ 3 000
sha256-with-dsa	2 048	2 048	3 072
sha512-with-dsa	2 048	2 048	3 072
sha224-with-ecdsa	lega	ю	not recommended
sha2-with-ecdsa		recommend	ed
sha2-with-ecsdsa	recommended		
sha3-with-ecdsa	recommended		
sha3-with-ecsdsa		recommend	ed

- Source: ETSI TS 119 312 V1.4.2 (2022-02)
- Recommended signature suites
- Starting date: 2022

ICAO recommendation

- International Civil Aviation Organization
 - Electronic passports
 - Data signed by the issuing country to protect integrity
 - One CA per country, certificates issued for entities producing passports (so called Document Signers).
 - Standard validity of passports: 10 years

ICAO recommendations

- Padding: PKCS#1 v1.5, PSS (recommended)
- For CA: min 3072 bits
- For DS: min 2048 bits
- DSA
 - For CA: min 3072/256 bits
 - For DS: min 2048/224 bits

"Issuing States or organizations SHALL choose appropriate key lengths offering protection against attacks." 8th edition of ICAO9303

• ECDSA (Germany, Switzerland, ...)

- For CA: min 256 bits
- For DS: min 224 bits
- Hash functions

