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Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Recapitulation

Global memory

warp should access data coalesced

thread blocks should prevent partition camping

Shared memory

threads in warp should access different banks (or the same
data)

All memories

sufficient occupancy needed to hide memory latencies

Jǐŕı Filipovič GPU Hardware Performance II



Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Matrix Transposition

From theoretical perspective:

a trivial problem

a trivial parallelization

trivially limited by the memory throughput (no arithmetic ops
done)

__global__ void mtran ( float ∗odata , float∗ idata , int n ){
int x = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int y = blockIdx . y ∗ blockDim . y + threadIdx . y ;
odata [ x∗n + y ] = idata [ y∗n + x ] ;

}
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Performance

When running the code on GeForce GTX 280 with large enough
matrix 4000× 4000, the throughput will be 5.3 GB/s
Where’s the problem?

Access to odata is interleaved. After modification (copy instead of
transpose matrices):

odata [ y∗n + x ] = idata [ y∗n + x ] ;

the throughput is 112.4 GB/s. If idata is accessed in an
interleaved way too, the resulting throughput would be 2.7 GB/s.
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Jǐŕı Filipovič GPU Hardware Performance II



Matrix Transposition Instructions Speed Revision of Matrix Multiplication

On Removing Interleaving

The matrix can be processed per tiles

we read the tile into the shared memory row-wise

we will store its transposition into the global memory row-wise

thus having both reading and writing without interleaving

What size of tiles should be used?

lets consider square tiles for simplicity

for aligned reading, the row size has to be multiple of 16

we can consider tile sizes of 16× 16, 32× 32, and 48× 48
because of shared memory size limitations

best size can be determined experimentally
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Tiled Transposition

__global__ void mtran_coalesced ( float ∗odata , float ∗idata , int n )
{

__shared__ float tile [ TILE_DIM ] [ TILE_DIM ] ;

int x = blockIdx . x ∗ TILE_DIM + threadIdx . x ;
int y = blockIdx . y ∗ TILE_DIM + threadIdx . y ;
int index_in = x + y∗n ;
x = blockIdx . y ∗ TILE_DIM + threadIdx . x ;
y = blockIdx . x ∗ TILE_DIM + threadIdx . y ;
int index_out = x + y∗n ;

for ( int i = 0 ; i < TILE_DIM ; i += BLOCK_ROWS )
tile [ threadIdx . y+i ] [ threadIdx . x ] = idata [ index_in+i∗n ] ;

__syncthreads ( ) ;

for ( int i = 0 ; i < TILE_DIM ; i += BLOCK_ROWS )
odata [ index_out+i∗n ] = tile [ threadIdx . x ] [ threadIdx . y+i ] ;

}
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Performance

The highest performance was measured for 32× 32 tile size and
32× 8 thread block size – 75.1 GB/s

that’s significantly better but still less than simple copying

the kernel is more complex, contains synchronization

we need to figure out whether we got the maximum or there’s
still a problem somewhere

if we only copy within the blocks, we get 94.9GB/s

something is still sub-optimal
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Shared Memory

When reading from the global memory, we write into the shared
memory row-wise

tile [ threadIdx . y+i ] [ threadIdx . x ] = idata [ index_in+i∗n ] ;

When writing to the global memory, we read from the shared
memory column-wise

odata [ index_out+i∗n ] = tile [ threadIdx . x ] [ threadIdx . y+i ] ;

That’s reading with interleaving which is multiple of 16, the whole
column is in a single memory bank – thus creaing 16-way bank
conflict.
A solution is padding:

__shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1 ] ;
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Performance

Now our implementations shows 93.4 GB/s.

as good as simple copying

it seems we can’t do much better for given matrix

beware of different input data sizes (partition camping)
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Performance Drops

The performance drops for some size and the behavior is regular

for matrices sized multiple of 512, we only get 19 GB/s

for other matrices sized multiple of 256, we only get 35 GB/s

for other matrices sized multiple of 128, we only get 62 GB/s
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Performance Drops

One memory region has width of 2 tiles (256 B / 4 B per float, 32
floats in a tile). If we analyze tiles placement w.r.t. matrix size, we
learn that

with multiple of 512 size, the tiles in the same column are in
the same region

with multiple of 256 size, each column is at most in two
regions

with multiple of 128, each column is at most in four regions

We have discovered partition camping.
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How to Remove Partition Camping?

We can pad matrices and avoid bad matrix sizes.

more complicated work with such implementation (all kernels
accessing matrix have to implement padding, or we need to
convert matrix)

it occupies more memory

We can change the mapping of thread blocks id’s on matrix tiles

diagonal mapping ensures access to different regions

int blockIdx_y = blockIdx . x ;
int blockIdx_x = ( blockIdx . x+blockIdx . y ) % gridDim . x ;
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Jǐŕı Filipovič GPU Hardware Performance II



Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Performance

New implementation gives 80 GB/s

performance doesn’t drop where we saw it previously

slower for matrices of size not divisible by 128

the algorithm is more complex

we can use it only for the problematic data sizes

For given problem, there may not be (and often there is not) an
ideal algorithm for the whole input data size range. It is necessary
to benchmark as not all the problems are easily revealed just by
looking at the code.

Jǐŕı Filipovič GPU Hardware Performance II



Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Performance
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Performance Summary

All optimizations were only toward better use of HW properties

however, we got 17.6× speedup

when creating an algorithm, it is necessary to understand HW
limitations

otherwise we wouldn’t have to develop specifically for GPUs –
developing a good sequential algorithm would have been just
fine. . .
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Optimizations Effects

Beware of optimization effects

if we took 4096× 4096 matrices instead of 4000× 4000, the
shared memory bank conflict removal would have been just
marginal

after removing partition camping, the effect of memory bank
conflicts becomes visible

thus it makes sense to go from more general/substantial
optimizations to the less general ones

if some (provably correct) optimization does not result in
performance increase, we need to analyze, what limits the
algorithm performance
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Processing of Instructions

Processing of instructions on a multiprocessor (c. c. 1.x)

there are 8 SP cores and 2 SFU cores

if the SP and SPU instruction finalization is not overlapped,
the multiprocessor can process up to 8 instructions per cycle

one warp is thus done in 4 or more cycles

some instructions are significantly slower

knowledge of instruction processing time helps us to design
efficient code
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Floating Point Operations

GPU is designed as a graphical HW

graphical operations mostly use floating point numbers

efficiently implemented in GPUs

newer GPUs (c. c. ≥ 1.3) can work in double precision while
older ones in single precision only, new GPUs (c.c. ≥ 5.3)
supports half-precision

some arithmetic operations are used very frequently in
graphics

GPU implements them in SFUs
HW implementation provides lower precision (not an issue for
lots of applications)
differentiated using “ ” prefix

Jǐŕı Filipovič GPU Hardware Performance II



Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Arithmetic Operations

Floating point operations

addition and multiplication are very fast

multiplication and addition may be combined into a single
MAD instruction for c. c. 1.x

lower precision
1 cycle speed on SP
fadd rn() and fmul rn() may be used to enforce avoiding

MAD instruction during compilation

MAD is replaced by FMAD for c. c. ≥ 2.0 (the same speed,
higher precision)

64b versions at lower speed: 1/8 (1.3), 1/2 (2.0), 1/12 (2.1),
1/24 (3.0), 1/3 (3.5), 1/32 (5.x), 1/2 (6.0), 1/32 (6.1, 6.2),
1/2 (7.0), 1/32 (7.5), 1/2 (8.0), 1/32 (8.6)

division is relatively slow, reciprocal is faster
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Arithmetic Operations

Transcendental functions

sinf(x), cosf(x), expf(x)

sinf(x), cosf(x), expf(x) more precise but an order of
magnitude slower

other operations with different speed and precision trade-offs
are implemented, see CUDA manual

Integer operations

addition and multiplication as for the floating point ops (fast
with 24-bit only on c.c. 1.x)

division and modulo are very slow, but if n is power of 2, we
can utilize

i/n is equivalent to i >> log2(n)
i%n is equivalent to i&(n − 1)
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Loops

Small loops have significant overhead

jumps

conditions

control variable updates

significant part of instructions may be pointer arithmetics

low ILP

Loop unrolling is an option

partially may be done by the compiler

we can do manual unrolling or use #pragma unroll
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Other Instructions

Other common instructions are performed at the basic speed (i.e.,
correspond to number of SPs)

comparison

bit operations

memory access instructions (given the limitations discussed
earlier and memory latency/bandwidth)

the offset may be register value + constant for 32-bit
addressing (higher overhead for 64-bit addressing)

synchronization (unless we get blocked)
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Beware of Shared Memory

If memory bank conflict is avoided, the shared memory is as fast as
registers at c.c. 1.x
But beware

instructions can work with only one operand in the shared
memory

if more than one operands in shared memory are used for one
instruction, explicit load/store is necessary

MAD instructions run slower (c.c. 1.x)

a + s[i ] 4 cycles per warp
a + a ∗ s[i ] 5 cycles per warp
a + b ∗ s[i ] 6 cycles per warp

these details are not published by NVIDIA (revealed through
measurements)

interesting only for really performance-critical code
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Beware of Shared Memory

Newer GPUs have relatively slower shared memory (comparing to
register speed)

Fermi and newer have lower bandwidth even if only one
operand in shared memory is accessed

Kepler uses only 1/2 of available bandwidth for 32-bit access
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C for CUDA Compilation

Device code can be compiled into PTX assembler and binary files

PTX is intermediate code, does not correspond directly to
GPU instructions

easier to read
harder to figure out what really happens on GPU

Binary files may be disassembled using cuobjdump tool

for GT200 and newer

decuda for older GPUs (may not work completely reliably)

Jǐŕı Filipovič GPU Hardware Performance II



Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Naive Implementation

__global__ void mmul ( float ∗A , float ∗B , float ∗C , int n ){
int x = blockIdx . x∗blockDim . x + threadIdx . x ;
int y = blockIdx . y∗blockDim . y + threadIdx . y ;

float tmp = 0 ;
for ( int k = 0 ; k < n ; k++)

tmp += A [ y∗n+k ] ∗ B [ k∗n+x ] ;

C [ y∗n + x ] = tmp ;
}
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Recapitulation

Naive implementation

each thread computes one element of the resulting matrix

memory-bound

theoretical peak 66.8 GFlops

performance depends on threads arrangement – blocks
128× 1: 36.6 GFlops, blocks 1× 128: 3.9 GFlops

Now, we understand the results

theoretical maximum cannot be reached – we access GPU
memory in at least 32-byte chunks, so reading from A is not
efficient

blocks 128× 1 result in coalesced access into B, blocks
1× 128 result in strided access
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Recapitulation

We have implemented a tiled algorithm

each thread block read tiles from A,B into shared memory,
exploit data locality (data are moved into shared memory once
and read many times)

theoretical peak 568 GFlops, we have reached 198 GFlops

We can try to improve the implementation.
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Tiled Algorithm

__global__ void mmul ( float ∗A , float ∗B , float ∗C , int n ){
int bx = blockIdx . x ;
int by = blockIdx . y ;
int tx = threadIdx . x ;
int ty = threadIdx . y ;
__shared__ float As [ BLOCK ] [ BLOCK ] ;
__shared__ float Bs [ BLOCK ] [ BLOCK ] ;

float Csub = 0.0 f ;
for ( int b = 0 ; b < n/BLOCK ; b++){

As [ ty ] [ tx ] = A [ ( ty + by∗BLOCK )∗ n + b∗BLOCK+tx ] ;
Bs [ ty ] [ tx ] = B [ ( ty + b∗BLOCK )∗ n + bx∗BLOCK+tx ] ;
__syncthreads ( ) ;

for ( int k = 0 ; k < BLOCK ; k++)
Csub += As [ ty ] [ k ]∗ Bs [ k ] [ tx ] ;

__syncthreads ( ) ;
}

C [ ( ty + by∗BLOCK )∗ n + bx∗BLOCK+tx ] = Csub ;
}
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Implementation Pitfalls

As [ ty ] [ tx ] = A [ ( ty + by∗BLOCK )∗ n + b∗BLOCK+tx ] ;
Bs [ ty ] [ tx ] = B [ ( ty + b∗BLOCK )∗ n + bx∗BLOCK+tx ] ;
. . .
C [ ( ty + by∗BLOCK )∗ n + bx∗BLOCK+tx ] = Csub ;

Global memory access is OK.

Csub += As [ ty ] [ k ]∗ Bs [ k ] [ tx ] ;

Also shared memory access is OK.

if a thread block x-size is multiple of warp size, variable As is
broadcasted

array Bs is read in contiguous lines, which is conflict-free
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Theoretical Peak

Can we be more precise in theoretical peak computation?

we have used a theoretical peak of GPU in MAD instructions
(622 GFlops)

now, we know that MAD instructions with operand in shared
memory are 50% slower

the more precise theoretical bound is 415 GFlops

our implementation is still far from that
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Performance Pitfalls

What causes performance degradation?

overhead of kernel execution, thread creation

mainly for fast kernels, or kernels with a few instructions per
thread
threads can do more work in serial

instruction overhead

pointer arithmetics, loops
can be reduced

synchronization

may or may not be an issue

load/store in computation

two operands in SMEM per one MAD instruction

If we count the performance bound for one load per MAD with
operand in SMEM, we get 244 GFlops.
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Searching for Better Implementation

Can be a number of load instructions decreased?

exploiting data locality in shared memory decreases global
memory pressure

exploiting data locality in registers decreases shared memory
pressure

how to do it? we reduce number of threads and assign more
work to them

Thread block of size m × n will process tile of size m ×m, where
m = n · k ; k ∈ N.

large m potentially increases synchronization overhead

small m reduces shared memory locality

small n reduces available parallelism

we will find value for m and n experimentally
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Searching for Better Implementation

Best results found for m = 32, n = 16 (32× 16 blocks working
with 32× 32 tiles).

one load for two MAD instructions results in theoretical
bound 311 GFlops

we have 235.4 GFlops

something is wrong
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Code disassembly

We focus on the inner loop

Csub1 += As [ ty ] [ k ]∗ Bs [ k ] [ tx ] ;
Csub2 += As [ ty+16][ k ]∗ Bs [ k ] [ tx ] ;

. . .
mov . b32 $r0 , s [ $ofs4+0x0000 ]
add . b32 $ofs4 , $ofs2 , 0x00000180
mad . rn . f32 $r7 , s [ $ofs1+0x0008 ] , $r0 , $r7

mad . rn . f32 $r8 , s [ $ofs3+0x0008 ] , $r0 , $r8

. . .

Compiler was able to use constant offsets only for As

strided access into Bs generates one load and one integer add
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Removing the ADD instruction

We store transposed data into Bs and modify the inner loop

Csub1 += As [ ty ] [ k ]∗ Bs [ tx ] [ k ] ;
Csub2 += As [ ty+16][ k ]∗ Bs [ tx ] [ k ] ;

After disassembling, we se there is no ADD instruction

. . .
mov . b32 $r0 , s [ $ofs4+0x0008 ]
mad . rn . f32 $r6 , s [ $ofs3+0x0034 ] , $r0 , $r6

mad . rn . f32 $r8 , s [ $ofs1+0x0008 ] , $r0 , $r8

. . .

New issue – memory bank conflicts

solved by padding

Resulting speed: 276.2 GFlops.
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Resulting speed: 276.2 GFlops.
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Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Can we Reach Better Performance?

Our results are petty close to theoretical bound for one load per
two MADs.

to get better performance, tiled algorithm has to be revised

The main issue is that we multiply two tiles in shared memory

need of usage load instructions together with MAD
instructions

Can we have only one block in shared memory?
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Matrix Transposition Instructions Speed Revision of Matrix Multiplication

New Tiled Algorithm

We will iteratively perform rank-1 update of tiles in C using
column in A and row in B

columns in A are read from shared memory

rows in B can be read one after another, so we can use
register to do so

tile in C can be stored in registers

we work in only one operand in shared memory, so explicit
loads are not needed

theoretical bound is now done by speed of MAD instruction
with operand in shared memory: 415 GFlops
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Matrix Transposition Instructions Speed Revision of Matrix Multiplication

New Tiled Algorithm

The best-performing configuration:

matrix A read by 16× 16 tiles, stored in shared memory

matrix B read by 64× 1 tiles, stored in registers

tiles of matrix C have 64× 16 size, they are stored in registers

The measured performance is 375 GFlops.
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Matrix Transposition Instructions Speed Revision of Matrix Multiplication

Summary

Implementation performance rel. ∆ abs. ∆

Naive, blocks 1× 128 3.9 GFlops
Naive 36.6 GFlops 9.4× 9.4×
Tiled algorithm 198 GFlops 5.4× 51×
Thread blocks 32× 16, tiles 32× 32 235 GFlops 1.19× 60×
Removing ADD instruction 276 GFlops 1.17× 71×
One block in shared memory 375 GFlops 1.36× 96×

The most relevant is exploiting memory locality and basic
memory access optimization.

Finer optimizations are relatively challenging, important for
really performance critical codes.
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