
x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

OpenCL for x86 CPU and Intel MIC

Jǐŕı Filipovič

Fall 2022

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

x86 CPU Architecture

Common features of (nearly all) modern x86 processors

core is complex, out-of-order instruction execution, large cache

multiple cache coherent cores in single chip

vector instructions (MMX, SSE, AVX)

NUMA for multi-socket systems

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

OpenCL Device

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

CPU and OpenCL

The projection of CPU HW to OpenCL model

CPU cores are compute units

vector ALUs are processing elements

so the number of work-items running in lock-step is
determined by instruction set (e.g., SSE, AVX) and data type
(e.g., float, double)

one or more work-groups create a CPU thread

the number of work-groups should be at least equal to the
number of cores
higher number of work-groups allows to better workload
balance (e.g., what if we have eight work-groups at six-core
CPU?), but creates overhead

work-items form serial loop, which may be vectorized

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Implicit and Explicit Vectorization

Implicit vectorization

we write scalar code (similarly as for NVIDIA and AMD GCN)

the compiler generates vector instructions from work-items
(creates loop over work-items and vectorizes this loop)

better portability (we do not care about vector size and
richness of vector instruction set)

supported by Intel OpenCL, AMD OpenCL does not support
it yet

Explicit vectorization

we use vector data types in our kernels

more complex programming, more architecture-specific

potentially better performance (we do not rely on compiler
ability to vectorize)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Differences from GPU

Images

CPU does not support texture units, so they are emulated

better to not use...

Local memory

no special HW at CPU

brings overhead (additional memory copies)

but it is meaningful to use memory pattern common for using
local memory, as it improves cache locality

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Intel MIC

What is MIC?

Many Integrated Core Architecture

originated in Intel Larrabee project (x86 graphic card)

Existing hardware

Knights Corner (KNC) and Knights Landing (KNL) generation

large number of x86 cores

cores are connected by bi-directional ring bus (KNC) or mesh
(KNL)

cache-coherent system

connected to high-throughput memory

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

KNC Processor

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

KNL Processor

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Intel MIC

MIC core

relatively simple, KNC in-order, KNL based on Atom Airmont

use hyperthreading (4 threads per core)

needs to be used to exploit full performance on KNC

fully cache coherent, 32+32 KB L1 cache (I+D), 512 KB L2
cache

contain wide vector units (512-bit vectors)

predicated execution
gather/scatter instructions
transcendentals

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Current Hardware

Xeon Phi

product based on MIC architecture

bootable processor, or PCI-E card with dedicated memory

runs its own operating system

Xeon Phi 7210

64 x86 cores at 1.3 GHz

16 GB HBM RAM + DDR4 RAM up to 384 GB

2.25 TFlops DP, 4.5 TFlops SP

450 GB/sec HBM, 102 GB/s DDR4 memory bandwidth

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Programming Models

Native programming model (KNC)

we can execute the code directly at accelerator

after recompilation, we can use the same code as for CPU

programming via OpenMP, MPI

Offload programming model (KNC)

application is executed at host

code regions are offloaded to accelerator, similarly as in the
case of GPUs

by using #pragma offload with intel tools
by using OpenCL

KNL is host processor.

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

MIC and OpenCL

The projection of MIC HW to OpenCL programming model is very
similar to CPU case

work-groups creates threads

work-items creates iterations of vectorized loops

higher number of work-items due to wider vectors
less sensitive to divergence and uncoalesced memory access
due to richer vector instruction set

high need of parallelism

e.g., 64 cores executes 256 threads

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

OpenCL Optimization for CPU and MIC

We will discuss optimizations for CPU and MIC together

many common concepts

differences will be emphasized

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Parallelism

How to set a work-group size?

we do not need high parallelism to mask memory latency

but we need enough work-items to fill vector width (if implicit
vectorization is employed)

the work-group size should be divisible by vector length, it can
by substantially higher, if we don’t use local barriers

Intel recommends 64-128 work-items without synchronizations
and 32-64 work-items with synchronizations
general recommendation, needs experimenting . . .

we can let a compiler to choose the work-group size

How many work-groups?

ideally multiple of (virtual) cores

be aware of NDRange tile effect (especially at MIC)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Thread-level Parallelism

Task-scheduling overhead

overhead of scheduling large number of threads

issue mainly on MIC (CPU has too low cores)

problematic for light-weight work groups

low workload per work-item
small work-groups

can be detected by profiler easily

Barriers overhead

no HW implementation of barriers, so they are expensive

higher slowdown on MIC

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Vectorization

Branches

if possible, use uniform branching (whole work-group follows
the same branch)

consider the difference

if (get global id(0) == 0)

if (kernel arg == 0)

divergent branches

can forbid vectorization
can be masked (both then and else branches are executed)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Vectorization

Scatter/gather

supported mainly on MIC

for non-consecutive memory access, compiler tries to generate
scatter/gatter instructions

instructions use 32-bit indices
get global id() returns size t (64-bit)
we can cast indices explicitly

avoid pointer arithmetics, use array indexing

more transparent for the compiler

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Memory Locality

Cache locality

the largest cache dedicated to core is L2

cache blocking – create work-groups using memory regions
fitting into L1, or not exceeding L2 cache

AoS

array of structures

more efficient for random access

SoA

structure of arrays

more efficient for consecutive access

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Memory Access

Memory access pattern

consecutive memory access is the most efficient in both
architectures

however, there are differences

KNC is in-order, so the memory access efficiency heavily
depends on prefetching, which is more successful for
consecutive access
CPU does not support vector gather/scatter

Alignment

some vector instructions require alignment

IMCI (MIC): 64-byte
AVX: no requirements
SSE: 16-byte

pad innermost dimension of arrays

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Memory Access

Prefetching on KNC

prefetching is done by HW and by SW

generated by the compiler
also can be explicitly programmed (function void

prefetch(const global gentype *p, size t

num elements))

explicit prefetching helps, e.g., in irregular memory access
pattern

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Memory Access

False sharing

accessing different addresses in the same cache line from
several threads

cache line has 64 bytes on modern Intel processors

brings significant penalty

padding is the solution...

Concurrent R/W access to the same address

it is better to create local copies and merge them when
necessary (if possible)

reduces also synchronization

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Vector reduction

Rewritten CUDA version

uses very similar concept as was demonstrated in former
lecture, but run in constant number of threads

reaches nearly peak theoretical bandwidth on both NVIDIA
and AMD GPUs

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Reduction for GPUs (1/2)

__kernel void reduce (__global const int∗ in , __global int∗ out ,
unsigned int n , __local volatile int ∗buf) {

unsigned int tid = get_local_id (0) ;
unsigned int i = get_group_id (0)∗ (get_local_size (0)∗2)

+ get_local_id (0) ;
unsigned int gridSize = 256∗2∗ get_num_groups (0) ;
buf [tid] = 0 ;

while (i < n) {
buf [tid] += in [i] ;
if (i + 256 < n)

buf [tid] += in [i+256] ;
i += gridSize ;

}
barrier (CLK_LOCAL_MEM_FENCE) ;

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Reduction for GPUs (2/2)

//XXX hard o p t im i z a t i o n f o r 256− t h r ead work groups
if (tid < 128)

buf [tid] += buf [tid + 128] ;
barrier (CLK_LOCAL_MEM_FENCE) ;
if (tid < 64)

buf [tid] += buf [tid + 64] ;
barrier (CLK_LOCAL_MEM_FENCE) ;

//XXX hard o p t im i z a t i o n f o r 32− b i t warp s i z e
//XXX p rob l ema t i c on new NVIDIA HW
if (tid < 32) {

buf [tid] += buf [tid + 32] ;
buf [tid] += buf [tid + 16] ;
buf [tid] += buf [tid + 8] ;
buf [tid] += buf [tid + 4] ;
buf [tid] += buf [tid + 2] ;
buf [tid] += buf [tid + 1] ;

}

if (tid == 0) atomic_add (out , buf [0]) ;
}

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Vector reduction

Execution of GPU code on CPU and Phi

difficult to vectorize

overhead of local reduction, which is not necessary

Optimizations for CPU and MIC

the simplest solution is to use only necessary amount of
parallelism

work-groups of one vectorized work-item

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Reduction for CPU and MIC

__kernel void reduce (__global const int16∗ in , __global int∗ out ,
const unsigned int n , const unsigned int chunk) {

unsigned int start = get_global_id (0)∗ chunk ;
unsigned int end = start + chunk ;
if (end > n) end = n ;

int16 tmp = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
for (int i = start /16 ; i < end /16 ; i++)

tmp += in [i] ;

int sum = tmp . s0 + tmp . s1 + tmp . s2 + tmp . s3 + tmp . s4
+ tmp . s5 + tmp . s6 + tmp . s7 + tmp . s8 + tmp . s9 + tmp . sa
+ tmp . sb + tmp . sc + tmp . sd + tmp . se + tmp . sf ;

atomic_add (out , sum) ;
}

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Electrostatic Potential Map

Important problem from computational chemistry

we have a molecule defined by position and charges of its
atoms

the goal is to compute charges at a 3D spatial grid around the
molecule

In a given point of the grid, we have

Vi =
∑
j

wj

4πε0rij

Where wj is charge of the j-th atom, rij is Euclidean distance
between atom j and the grid point i and ε0 is vacuum permittivity.

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Algorithm Analysis

Parallelization

each grid point can be processed in parallel

not practical to parallelize loop going over atoms (reduction)

Performance bound of the naive algorithm

11 arithmetic operations per one atom per grid point

atom’s data require 16 bytes (4 floats – Cartesian position
and charge)

computation for one grid point is memory-bound

caches maintain locality for multiple grid points (atom reads
are synchronous)

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Improving the Algorithm

We can compute a grid per 2D slices

enough parallelism

distance in z-dimension can be precomputed (stored instead of
z-dimension of atom’s data)

reduce number of arithmetic operations per atom per grid
point to 9

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Implementation

int xIndex = get_global_id (0) ;
int yIndex = get_global_id (1) ;
int outIndex = get_global_size (0) ∗ yIndex + xIndex ;

float coordX = gridSpacing ∗ xIndex ;
float coordY = gridSpacing ∗ yIndex ;

float energyValue = 0.0 f ;
for (int i = 0 ; i < numberOfAtoms ; i++) {

float dX = coordX − atomInfo [i] . x ;
float dY = coordY − atomInfo [i] . y ;
energyValue += atomInfo [i] . w
∗ native_rsqrt (dX∗dX + dY∗dY + atomInfo [i] . z) ;

}

energyGrid [outIndex] += energyValue ;

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance

Let’s set slice size to 512 × 512, number of atoms to 4096, WG
size to 16 × 16, and measure the performance in number of atoms
evaluated per second.

Code 2×CPU MIC GPU

slices 25.8 Geval/s 48.1 Geval/s 45.0 Geval/s

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance

Let’s optimize WG size

8 × 2 for CPU, 8 × 1 for MIC, 16 × 4 for GPU

Code 2×CPU MIC GPU

slices 25.8 Geval/s 48.1 Geval/s 45.0 Geval/s

optimized WG 26.1 Geval/s 54.4 Geval/s 45.8 Geval/s

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Removing Redundancy

Are there any redundant work among WIs?

WIs in the same warp/vector read the same atom data

WIs in the same row compute the same y -distance

redundancy removing critical for GPU, but may also improve
performance on CPU and MIC (if compiler fails to remove
invariant code)

We can assign more work per WI

”unrolling of the outer (parallelized) loop”, so a WI computes
several grid points at a row

increases private memory locality (atom data are used for
more grid points)

removes some redundant computation of y -distance

reduces strong scaling, uses more registers

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance

We have tested from 1 to 8 grid points and re-optimize WG size.

unroll 8× for CPU, 2× for MIC and 8× for GPU

Code 2×CPU MIC GPU

slices 25.8 Geval/s 48.1 Geval/s 45.0 Geval/s

optimized WG 26.1 Geval/s 54.4 Geval/s 45.8 Geval/s

unrolling 54.5 Geval/s 60.9 Geval/s 162.0 Geval/s

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Memory Access Optimization

CPU and MIC often prefers SoA

we can split x , y , z-dimensions and charge w into separate
arrays

GPU caches global memory in L2 cache only

we can use constant memory for atom data

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance

We have tested from 1 to 8 grid points and re-optimize WG size.

CPU and MIC prefers SoA, GPU prefers constant memory
(more visible effect if unrolling is disabled)

Code 2×CPU MIC GPU

slices 25.8 Geval/s 48.1 Geval/s 45.0 Geval/s

optimized WG 26.1 Geval/s 54.4 Geval/s 45.8 Geval/s

unrolling 54.5 Geval/s 60.9 Geval/s 162.0 Geval/s

optimized mem. 60.2 Geval/s 61.1 Geval/s 164.9 Geval/s

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Manual Vectorization

Vectorization of memory access

we pack atoms data into vectors (both in SoA and AoS)

usable to enforce vectorized data access

Vectorized computation

we read vectorized data and perform vectorized computation
in each WI

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance

We have tested using vector from size 2 to size 8.

CPU prefers to not vectorize, MIC prefers SoA with vector
size 4 and scalar computation, GPU prefers scalar
computation with AoS using vector size 8 (i.e. two atoms are
packed into single vector)

Code 2×CPU MIC GPU

slices 25.8 Geval/s 48.1 Geval/s 45.0 Geval/s

optimized WG 26.1 Geval/s 54.4 Geval/s 45.8 Geval/s

unrolling 54.5 Geval/s 60.9 Geval/s 162.0 Geval/s

optimized mem. 60.2 Geval/s 61.1 Geval/s 164.9 Geval/s

vectorized 62.4 Geval/s 168.3 Geval/s

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance without squere root

The performance of MIC is quite low and optimizations does not
improve it

slower implementation of native rsqrt

depsite it leads to uncorrect algorithm, we have tested
performance with removed reciprocal square root

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

x86 CPU Intel MIC Optimization Reduction Electrostatic Potential Map

Performance without squere root

Code 2×CPU MIC GPU

slices 30.0 Geval/s 103.8 Geval/s 43.6 Geval/s

optimized WG 30.6 Geval/s 114.3 Geval/s 43.8 Geval/s

unrolling 68.3 Geval/s 148.9 Geval/s 221.8 Geval/s

optimized mem. 70.9 Geval/s 159.3 Geval/s 260.0 Geval/s

vectorized 175.4 Geval/s 266.4 Geval/s

Jǐŕı Filipovič OpenCL for x86 CPU and Intel MIC

	x86 CPU
	x86 CPU

	Intel MIC
	Intel MIC

	Optimization
	Optimization

	Reduction
	Reduction

	Electrostatic Potential Map
	Electrostatic Potential Map

