# pragma mypy relaxed from __future__ import annotations from typing import TypeVar, Generic, Optional, Callable, Any T = TypeVar( 'T' ) S = TypeVar( 'S' ) # Given the following representation of trees: class Node( Generic[ T ] ): def __init__( self, val: T ) -> None: self.left : Optional[ Node[ T ] ] = None self.right : Optional[ Node[ T ] ] = None self.val : T = val class Tree( Generic[ T ] ): def __init__( self ) -> None: self.root : Optional[ Node[ T ] ] = None # Implement a bottom-up fold on binary trees, with the following # arguments: # # • a ternary callback ‹f›: the first argument will be the value of # the current node and the other two the folded values of the left # and right child, respectively, # • the binary tree ‹tree›, # • an ‘initial’ value which is used whenever a child is missing # (leaf nodes are folded using ‹f( leaf_val, initial, initial)›). def fold( f, tree, initial ): pass def test_sum() -> None: tree = ex_tree() assert fold( lambda x, a, b: x + a + b, tree, 0 ) == 23 def test_list() -> None: tree = ex_tree() init : Any = [] expect : Any = [ 5, [ 2, [ 9, [], [] ], [] ], [ -4, [], [ 1, [ 7, [], [] ], [ 3, [], [] ] ] ] ] assert fold( lambda x, a, b: [ x, a, b ], tree, init ) == expect def ex_tree() -> Tree[ int ]: tree : Tree[ int ] = Tree() n5 = Node(5) n2 = Node(2) n_4 = Node(-4) n1 = Node(1) n9 = Node(9) n7 = Node(7) n3 = Node(3) tree.root = n5 n5.left = n2 n5.right = n_4 n2.left = n9 n_4.right = n1 n1.left = n7 n1.right = n3 return tree if __name__ == "__main__": test_sum() test_list()