
PV248 Python 1/68 November 2, 2022

PV248 Python
Petr Ročkai and Zuzana Baranová

Part A: Introduction
This document is a collection of exercises and commented examples
of source code (in Python). All of the source code included here is also
available as source files which you can edit and directly execute (we
will refer to these files as the source bundle). Additionally, this section
contains the rules and general guidelines that apply to the course as a
whole.
The latest version of this document along with the source bundle is
available both in the study materials in IS1 and on the student server
aisa:

• a PDF version of this text is called pv248.seminar.pdf and the source
bundle is in directories 01 through 12, s1 through s3 and sol – use
the ‘download as ZIP’ option in the sidebar to get entire directories
in one go,

• log into aisa using ssh or putty, run pv248 update, then look under
~/pv248 (this chapter is in subdirectory 00).

We will update the files as needed, to correct mistakes and to include
additional material. On aisa, running pv248 update at any time will
update yourworking copies, taking care not to overwrite your changes.
It will also tell you which files have been updated.
Each of the following chapters corresponds to a single week of the
semester. The correspondence between exercises and the content of
the lectures is, however, somewhat loose, especially at the start of the
semester.
NB. If you are going to attend the lectures (you need to enroll separately,
subject code is PV288), all you need at the start is intuitive familiarity
with common programming concepts like classes, objects, higher-order
functions and function closures (which can be stored in variables), as
covered in e.g. PB006. You will get all the details that you may need in
the lectures. On the other hand, if you are not going to attend lectures,
you either need to already know all the theory, or you need to study it
in your free time (this subject is purely practical).

Part A.1: Course Overview

Since this is a programming subject, the coursework – and grading
– will center around actual programming. There will be 2 types of
programs that you will write in this subject: very small programs for
weekly exercises (you should be able to solve these at the rate of 2-3
per hour) and small programs for homework (a few hundred lines and
anything from a few hours to a day or two of work).
As you probably know by now, writing programs is hard and as a
consequence, this course will also be rather hard. You will need to
put in effort to pass the subject. Hopefully, you will have learned
something by the end of it. Further details on the organisation of this
course are in the remaining files in this directory:

• a2_grading – what is graded and how; what you need to pass,
• a3_practice – weekly ‘practice’ (preparatory) exercises,
• a4_sets – general guidelines that govern assignment sets,
• a5_exam – final exam (colloquium),
• a6_reviews – teacher and peer reviews,
• a7_cheating – don’t.

Studymaterials for eachweek are in directories 01 through 12. Start by
reading 00_intro.txt. The assignment sets are in directories s1 through

1 https://is.muni.cz/auth/el/fi/podzim2022/PV248/um/

s3, one for each 4-week block (again, start by reading the intro).
The exercises for any givenweekwill make use of thematerial covered
in the lecture, though some weeks it will be a fairly loose fit. Especially
when the lecture material is broad (like in weeks 1 and 2), the seminar
will mainly include general programming exercises. Topics will get
more specific and focused as the semester progresses.
The subject is divided into 4 blocks, each4weeks long. Thefirst 3 blocks
are during the semester, the last block is in the exam period. The topics
covered are as follows:

block topic date

1 1. expressions, variables, functions 13.9.
2. objects, classes, types, mypy 20.9.
3. scopes, lexical closures 27.9.
4. iterators, generators, coroutines 4.10.

2 5. memory management, refcounting 11.10.
6. object and class internals 18.10.
7. generators & coroutines cont’d 25.10.
8. testing, profiling, pitfalls 1.11.

3 9. text, predictive parsing 8.11.
10. databases, relations vs objects 15.11.
11. asynchronous programming, http 22.11.
12. math and statistics, recap 29.11.

The fourth block is relevant to you only if your ending type is ‘col-
loquium’ (see following sections for details) and does not bring any
new material (since there are no lectures or seminars). It will instead
feature reviews and a final test.

Part A.2: Grading

To complete the course, you need to collect 60 points in each block.
There are no other requirements.
NB. If your ending type is ‘credit (z)’ only blocks 1–3 are relevant for
you (i.e. the fourth block in exam period, and hence the final exam, do
not exist for you). If your ending type is ‘colloquium (k)’ then you need
those 60 points in all blocks, including the 4th.
The subject entails a number of different activities, all of which are
rewarded with points. The goal is to give you some freedom in what
you want to focus on: the points are fully interchangeable. There are
threemain areas fromwhich you canmix andmatch your preferences:

1. seminars: work out short exercises, attend the seminar, participate
actively,

2. sets: work out more challenging exercises over a longer period of
time (up to a month),

3. code review: write elegant code and help others do the same.

The points are split 2:2:1 between those areas. Please keep in mind that
each block is graded separately: to pass the subject, you need to pass
all four (or three, see above) blocks. In each block, the maximum is
120–150 points, while 60 are required to pass it. The available points
are allocated as follows:

• max 60pt seminars (4 weeks, 15 points each week):
∘ 6pt practice exercise sanity (1pt/exercise),
∘ 3pt practice exercise verity (.5pt/exercise),
∘ 3pt seminar attendance,
∘ 3pt activity in the seminar,

• max 60pt task sets (4 tasks, 15 points each),

PV248 Python 2/68 November 2, 2022

• max 30pt reviews of tasks from previous block:
∘ 15pt teacher review (depending on grade and task),
∘ 15pt peer reviews.

In block 4, there are no seminars nor tasks, but the final test in this
block is worth 90pt.
Only points awarded within a block count toward passing it. That
means, for instance, that all reviews of tasks from set 1 are counted in
block 2.

Part A.3: Practice Exercises

Each chapter in this exercise collection has 4 types of exercises: ele-
mentary, practice, regular and voluntary, (3 + 6 + 6 + 3, for a total of
18)2, and a variable number of demonstrations (heavily commented
code that illustrates a particular concept or construction).
The elementary and regular exercises come with reference solutions
(in the folder sol in the source bundle, or in section K at the end of this
document). The practice and voluntary exercises, on the other hand,
focus on solving problems on your own.
The practice exercises are to be worked out and submitted before the
corresponding seminar (where you will discuss your submitted solu-
tions as a group). These exercises come with two sets of test cases:

1. ‘sanity’ which are enclosed (i.e. you can run them at your own
leisure as you work on your solution) and

2. ‘verity’ which you cannot see, and will run only twice: Thurs-
day 23:59 and then after the submission period closes on Saturday
(again 23:59).

Two thirds of the points (1 point per exercise) are awarded on sanity
tests alone (hence you can be sure that you have gained those points
right after you submit). Test results will be visible in the notepads in
the IS.
To submit the exercises, obtain a copy of the study materials using
pv248 update, fill in the solutions, then use pv248 submit in the corre-
sponding directory to submit them. Be sure to check the notepads to
confirm that the submission was successful and that the tests passed.
The submission deadline is at 23:59 of the last Saturday before the
corresponding seminar:

block unit lecture verity deadline

1 1 13.9. 15.9. 17.9.
2 20.9. 22.9. 24.9.
3 27.9. 29.9. 1.10.
4 4.10. 6.10. 8.10.

2 5 11.10. 13.10. 15.10.
6 18.10. 20.10. 22.10.
7 25.10. 27.10. 29.10.
8 1.11. 3.11. 5.11.

3 9 8.11. 10.11. 12.11.
10 15.11. 17.11. 19.11.
11 22.11. 24.11. 26.11.
12 29.11. 1.12. 3.12.

Please be sure that you work out every graded exercise alone. Trans-
gressions will be penalized (more details toward the end of this chap-
ter).

Part A.4: Task Sets

There are 3 sets of tasks and each has a 4-week window when it can
be submitted. In total, you will have 12 attempts at every task, spread

2 Some exercises and demonstrations are currently missing.

across the 4 weeks. The submission deadlines (i.e. the dates when
‘verity’ tests run) are at 23:59 on these days:

set week Mon Wed Fri

1 1 19.9. 21.9. 23.9.
2 26.9. 28.9. 30.9.
3 3.10. 5.10. 7.10.
4 10.10. 12.10. 14.10.

2 1 17.10. 19.10. 21.10.
2 24.10. 26.10. 28.10.
3 31.10. 2.11. 4.11.
4 7.11. 9.11. 11.11.

3 1 14.11. 16.11. 18.11.
2 21.11. 23.11. 25.11.
3 28.11. 30.11. 2.12.
4 5.12. 7.12. 9.12.

A.4.1 Submitting Solutions The easiest way to submit a solution is
this:

$ ssh aisa.fi.muni.cz

$ cd ~/pv248/s1

<edit files until satisfied>

$ pv248 submit s1_a_while

The number of times you submit is not limited (but not every submis-
sion will be necessarily evaluated, as explained below).
NB. Only the files listed in the assignment will be submitted and eval-
uated. Please put your entire solution into existing files.
You can check the status of your submissions by issuing the following
command:

$ pv248 status

In case you already submitted a solution, but later changed it, you can
see the differences between your most recent submitted version and
your current version by issuing:

$ pv248 diff

The lines starting with - have been removed since the submission,
those with + have been added and those with neither are common to
both versions.

A.4.2 Evaluation There are three sets of automated tests which are
executed on the solutions you submit:

• The first set is called syntax and runs immediately after you submit.
Only 2 checks are performed: the code can be loaded (no syntax
errors) and it passes mypy (strictness depending on the task at
hand).

• The next step is sanity and runs every 6 hours, starting at midnight
(i.e. 0:00, 6:00, 12:00 and 18:00). Its main role is to check that your
programmeets basic semantic requirements, e.g. that it recognizes
correct inputs and produces correctly formatted outputs. The ‘san-
ity’ test suite is for your information only and does not guarantee
that your solution will be accepted. The ‘sanity’ test suite is only
executed if you passed ‘syntax’.

• Finally the verity test suite covers most of the specified function-
ality and runs 3 times a week – Monday, Wednesday and Friday
at 23:59, right after the submission deadline. If you pass the verity
suite, the task is considered complete. The verity suite will not run
unless the code passes ‘sanity’.

Only the most recent submission is evaluated, and each submission
is evaluated at most once in the ‘sanity’ and once in the ‘verity’ mode.
Youwill find your latest evaluation results in the IS in notepads (one per
assignment). You can still submit new versions after you pass ‘verity’
on a given task (e.g. because you want to improve the code for review).
If your later submission happens to fail tests, this is of no consequence

PV248 Python 3/68 November 2, 2022

(the task is still considered complete).

A.4.3 Grading Each task that passes verity tests is worth 15 points.
For those tasks, you can also get additional points for review, in the
following block:

• set 1: 60 for correctness in block 1, 30 for reviews in block 2,
• set 2: 60 for correctness in block 2, 30 for reviews in block 3,
• set 3: 60 for correctness in block 3, 30 for reviews in block 4 (the

exam one).

A.4.4 Guidelines The general principles outlined here apply to all
assignments. The first and most important rule is, use your brain –
the specifications are not exhaustive and sometimes leave room for
different interpretations. Do your best to apply the most sensible one.
Do not try to find loopholes (all you are likely to get is failed tests).
Technically correct is not the best kind of correct.
Think about pre- and postconditions. Aim for weakest preconditions
that still allow you to guarantee the postconditions required by the
assignment. If your preconditions are too strong (i.e. you disallow
inputs that are not ruled out by the spec) you may fail the tests.
Do not print anything that you are not specifically directed to. Pro-
grams which print anything that wasn’t specified will fail tests. If you
are required to print something or create strings, follow the format
given exactly.
You can use the standard library. Third-party libraries are not allowed,
unless specified as part of the assignment. Make sure that your classes
andmethods use the correct spelling, and that you accept and/or return
the correct types. In most cases, either the ‘syntax’ or the ‘sanity’ test
suite will catch problems of this kind, but we cannot guarantee that it
always will – do not rely on it.
If you don’t get everything right the first time around, do not despair.
There are quite a few attempts to fix your mistakes (though if you
aren’t getting things right by the second or third attempt, youmight be
doing something wrong). In the real world, the first delivered version
of your product will rarely be perfect, or even acceptable, despite your
best effort to fulfill every customer requirement. Better get used to
occasional setbacks.
Truth be told, only very small programs can be realistically (i.e. without
expending considerable effort) written completely correctly in one go.
Of course, what is ‘very small’ varies with experience: for some of you,
assignments in sets will fall into this ‘very small’ category. Hopefully,
for most of you, at least by the end of the course, the practice exercises
will be ‘very small’ in this sense.

Part A.5: Final Exam

If your ending type is ‘colloquium (k)’, you need to complete the 4th
block, which takes place in the exam period. In this block, you can get
points for reviews (for assignment set 3) and for the final exam, which
consists of 6 exercises, each worth 15 points. Since you need 60 points
to pass, that means either:

• 4 out of 6 exam exercises,
• 15+ points from reviews + 3 out of the 6 exam exercises.3

The exercises will come from this collection (types p, r and v) and so
shouldn’t be too hard to solve if you passed the first three blocks.4 The
main differences are:

1. you won’t be able to consult anyone at the exam, for real (though
this should have been the case during the semester too!),

3 Yes, in theory you can get 30 points on reviews, but don’t count on it. There are too many
variables. 15 is very possible though.

4 If you areworried, you can change the ending type to ‘z’, at the expense of 1 credit. On the other
hand, don’t be worried, the exam isn’t any harder thanwhat you did during the semester, and
there’s plenty of time.

2. no internet (and hence no googling and no stackoverflow), only
this document (without the solution key) and the standard Python
documentation.

In addition to the documentation, the exam computers will have the
following software installed:

• Python interpreter (obviously) along with mypy,
• a selection of text editors, VS Code and Thonny.

You will have a total of 4.5 hours to solve the exercises and you will get
interim ‘verity’ results (without counterexamples) every 90 minutes.
Use of mypy at the exam will follow our use throughout the semester:
passing mypywill be required (and checked by syntax tests, so you get
early feedback), but strict mode will be only enabled for exercises with
sufficiently simple types.

Part A.6: Reviews

All reviews (teacher and peer) happen in the block that follows the
block in which the code was written, i.e. reviews will happen in blocks
2-4. All code that passed verity tests is eligible for review (again both
teacher and peer). If you submit (and pass) multiple tasks, reviewers
can choose which they want to review.
While you cannot get reviews on code that failed verity tests, such
solutions can be discussed in the seminar (with your tutor and with
your classmates), even anonymously if you prefer. This should give
you an idea where you made mistakes and how to improve in the
future. Of course, this is only possible after the last deadline on the
assignment passes.

A.6.1 Peer Reviews You may also participate as a reviewer through
the peer review system (your solutions are up for peer review automat-
ically). In addition to collecting points for the effort, we hope that the
reviews you write will help you better understand how to read other
people’s code, and the ones you receive help you improve your own
code and its understandability for others.

A.6.2 Reading Reviews The pv248 update command will indicate
whether someone reviewed your code, by printing a line of the form:

A reviews/hw1.from.xlogin

To read the review, look at the files in ~/pv248/reviews/hw1.from.xlogin

– you will find a copy of your submitted sources along with comments
provided by the reviewer.5

If you like, after you read your review, you can write a few sentences
for the reviewer into note.txt in the review directory (please wrap
lines to 80 columns) and then run:

$ pv248 review --accept

Your comments in note.txtwill be sent to the reviewer through IS. Of
course you can also discuss the review by other means.

A.6.3 Writing Reviews To write a review, start with the following
command:

$ pv248 review --assignment s1_a_while

Substitute the name of the assignment you want to review (note that
only tasks that you have successfully solved are eligible). A solution
for you to review will be picked at random.

$ cd ~/pv248/reviews/

$ ls

There will be a directory for each of the reviews that you requested.

5 There is also a copy in the study materials in IS, in the directory named reviews. Only you can
see the reviews intended for you.

PV248 Python 4/68 November 2, 2022

Each directory contains the source code submitted for review, along
with further instructions (the file readme.txt).
When inserting your comments, please use double ## to make the
comment stand out, like this:

A longer comment should be wrapped to 80 columns or less,

and each line should start with the ## marker.

In each block, you can write up to 3 reviews. The limit is applied at
checkout time: once you agree to do a particular review, you cannot
change your mind and ‘uncheckout’ it to reclaim one of the 3 slots.

A.6.4 Grading All reviews carry a grade (this includes peer reviews),
one of:

• A – very good code, easy to read, no major problems,
• B – not great, not terrible,
• C – you made the reviewer sad.

The points you get for the review depend on the grade:

• for teacher review, you get 15, 7.5 or 0 points,
• for peer review, the reviewer gets 2 points for writing the review

in the first place, and a variable part that affects both the reviewer
and the author of the code:
∘ A: the reviewer was so impressed that they give the entire

variable part of the reward to the coder (0 to reviewer, 2 to
coder),

∘ B: mixed bag, the reward is split (0.5 to reviewer, 1 to coder),
∘ C: the reviewer keeps everything as a compensation for the

suffering they had to endure (1 to reviewer, 0 to coder).

Or in a tabular form:

A B C

reviewer 2 + 0 2 + 0.5 2 + 1
coder 2 1 0

NB. If you are writing a peer review: please include the grade as @A, @B
or @C at the top (first line) of the file you are reviewing.

For teacher reviews, if you get a grade other than A, you can improve
your solution and submit it again. The reviewers will have about 10
days to finish the reviews, then you have 9 days to resubmit an im-
proved solution (but please note that the solution must still pass verity
tests, which run on the usual Mon-Wed-Fri cadence, to be eligible for
a second round of review). The relevant dates are:

set deadline review resubmit

1 14.10. 26.10. 4.11.
2 11.11. 23.11. 2.12.
3 9.12. 21.12. 6.1.

Part A.7: Cheating

Seriously, don’t. Cheating wastes everyone’s time and it reflects really
poorly on you. We consider any cooperation on practice exercises (type
p) and sets (type s) – i.e. anything you get points for – to be cheating.
There is plenty of other material for studying together.
If you cheat and get caught, you will (in every instance separately,
where an instance is one week of practice exercises or a single assign-
ment from a set):

• lose 1/2 of the points awarded for the affected work,
• lose 10 points in the block (i.e. you will need to have earned 70 on

top of the points lost above),
• lose additional 10 points from the overall score (this means that,

as a special exception, you can still fail even if you pass each block
– you also need 180 or 240 points total depending on ending type
to get a passing grade; with both 10-point penalties applied, you
need 200 or 260 points to pass despite the cheating incident… on a
second incident, this increases to 220 and 280 respectively, and so
on).

Especially egregious cases of cheating will earn you a failing grade (X)
immediately.

Part 1: Python 101
As we have mentioned, each chapter is split into 4 sections: demon-
strations, practice (preparatory) exercises, regular exercises and vol-
untary exercises. The demos are complete programs with comments
that should give you a quick introduction to using the constructs that
you will need in the actual exercises. The demos for the first week are
these:

1. list – using lists
2. tuple – lists, sort of, but immutable
3. dict – using dictionaries
4. str – using strings
5. fun – writing functions

Sometimes, there will be ‘elementary’ exercises: these are too simple
to be a real challenge, but they are perhaps good warm-up exercises
to get into the spirit of things. You might want to do them before you
move on to the practice exercises.

1. fibfib – iterated Fibonacci sequence

The second set of exercises are those that aremeant to be solved before
the corresponding seminar. The first batch should be submitted by 17th
of September. The corresponding seminars are in the week starting
on 19th of September. Now for the exercises:

1. rpn – Reverse Polish Notation with lists
2. image – compute the image of a given function
3. ts3esc – escaping magic character sequences
4. alchemy – transmute and mix inputs to reach a goal

5. chain – solving a word puzzle
6. cycles – a simple graph algorithm with dictionaries

The third section are so-called ‘regular’ exercises. Feel free to solve
them ahead of time if you like. Some of them will be done in the
seminar. When you are done (or get stuck), you can compare your
code to the example solutions in Section K near the end of the PDF, or
in the directory sol in the source bundle. The exercises are:

1. permute – compute digit permutations of numbers
2. rfence – the rail fence transposition cipher
3. life – the game of life
4. breadth – statistics about a tree
5. radix – radix sorting of strings
6. bipartite – check whether an input graph is bipartite

The final set are voluntary exercises, which have sanity tests bundled,
but reference solutions are not provided. They aremeant for additional
practice, especially when you revisit previous chapters later in the
semester.

1. (this section is empty for now)

Part 1.1: Semantics

There are two fundamental sides to the ‘programming language’ coin:
syntax and semantics. Syntax is the easy part (and you probably al-

PV248 Python 5/68 November 2, 2022

ready know most, if not all, Python syntax). Syntax simply tells you
how a (valid) program looks; on the other hand, semantics tells you
what the programmeans, or in the simplest interpretation of meaning,
what it does. While this is a question that can be attacked formally
(i.e. using math), there is no need to worry – we will only talk about
semantics intuitively in this course.
There are, in turn, two fundamental aspects of semantics:

• control – given the current situation, where does the program go
next? which is the next statement or expression that will be exe-
cuted?

• data – what are the values of variables, what are the results of
expressions? what is the program going to output when it prints
the ‘thing’ named x?

Clearly, there is interplay between the two: when the program en-
counters an if statement, which statement comes next depends on the
result of the expression in the conditional. Intuitively, this is obvious.
Sometimes, it is useful to be explicit even about things that are obvious.
Just like with syntax and semantics, one of those aspects is clearly
simpler: we all understand control quite well. You know what an if

statement does, what a function call does (though we will revisit that),
what a for or a while does. So let’s focus on the other one, data. That
turns out to be quite a bit trickier.6

Part 1.2: Values and Objects

When talking about data, it might be tempting to start with variables,
but this is usually a mistake: first, we need to talk about values and
cells7. Because right at the start, there are some problems to resolve
and they generally revolve about identity.
What is a value? Well, 1 is a value. Or 0, or 2, or (0, 1), or None, or [1,
2, 3], or "hello", or any number of other things. What have all those
things in common? First of all, they can all be stored in memory – at
least for now, we will not worry about bits and bytes, just that a value
is a piece of data that can be remembered (it doesn’t even need to be
in computer memory, you can remember them in your head).
What else can we do with values, other than remember them? We
can perform operations on them: 1 + 1 is 2, "hello" + " " + "world" is
"hello world" and so on. Clearly, taking some values and performing
operations on them produces new values. Imagine that we had 1 and
then some other 1 – if we were to compute 1 + 2, does it make a differ-
ence which one do we use? Obviously, it does not. Equal values are
interchangeable: replacing 1with another 1will not change a program
in any way. Values do not have an identity.
What is identity? Now that is a complicated philosophical question (no,
really, it’s been debated for well over 2 millennia).8 Fortunately for us,
it is much easier for us: an cell is created, then it is alive for a while and
at some point it is destroyed. The identity of a cell is fixed (once created,
it is always the same cell) and no two cells have the same identity.9 It
does not matter how much we change the cells (the technical term is
mutate), it is still the same cell. And it is still different from all other
cells.

6 As easily shown by trying to explain an if to a non-programmer, vs explaining variables. Vari-
ables are hard.

7 Terminology is hard. We could use object for what we call cell here, perhaps more intuitively,
but that conflicts with the other meaning of the word ‘object’ in the object-oriented program-
ming context. Which we are also going to need.

8 You can look up the ship of Theseus for a well-known example. But the question was on
people’s minds long before that, at the very least all the way to Plato, 5 centuries earlier.

9 It might be tempting to associate the identity with the address of the cell – where it is stored
in memory. Tempting, but wrong: even though Python does not move cells in memory, it
will re-use addresses, so an address of an cell that was destroyed can be used by a different
cell later. But it is still a different cell even though it has the same address. However, there
is a useful implication: if two cell have distinct addresses, they must be distinct cells (they
have a different identity). Beware though, this does not hold universally in all programming
languages!

So what is the relationship between cells and values? In a nutshell, a
cell combines a value with an identity. There are two cases where the
identity becomes important:

1. the behaviour of the program can directly or indirectly depend
on the identity of a cell (e.g. by using an ‘are these cells the same’
operator, which is available in Python as foo is bar),

2. a value associated with a cell can change, i.e. the cell is mutable (in
Python, this depends on the type of the cell: some are mutable, but
some are immutable).

Out of these two, the latter is quite clearly much more important:
in fact, the former rarely makes sense in the absence of the latter.
Cell identity is only important in the presence of cell mutability. For
immutable cells, we prefer to talk and think about values and disregard
that they are perhaps associated with some cells (since the only other
property of the cells, their identity, we do not care about).

Part 1.3: Names and Binding

Now that we understand values and cells, we need to look at the other
‘side’ of variables: their names. There are no fewer than 3 important
concepts that come into play:

• name itself is an identifier, usually an alphanumeric string (give or
take a few chars), that the programmer uses to refer to a particular
value or cell (depending on which of the two is the more important
concept in the given context),

• binding associates a name with a cell (or, again, a value): you can
visualise this as an ‘arrow’ connecting a name to its cell,

• environment is the collection of names and their bindings active
at any given point in the execution of the program.

A picture is said to be worth a thousand words (note that the dashed
boundaries do not necessarily represent anything ‘physical’ in the
sense ‘actually stored in memory at runtime’ – they are there to delin-
eate the concepts):

← identifierx yidentifier →

← value5 7value →

variable ↓ ↓ another variable

↓ name name ↓

← binding bindingg →

↑ cell cell ↑

↑ environment

There is one more concept that perhaps clarifies the role of a name (as
opposed to an identifier, which is a purely syntactic construction):

• scope is a property of a given name and gives bounds on the va-
lidity of that name: which parts of the program can refer to this
name (notably, the same string can be associatedwith two different
names, but only one of them might be in scope at any given time).

Part 1.d: Demos

1.d.1 [list] In Python, list literals are written in square brackets, with
items separated by commas, like this:

a_list = [1, 2, 3]

Lists are mutable: the value of a list may change, without the list itself
changing identity. Methods like append and operators like += update

PV248 Python 6/68 November 2, 2022

the list in place.
Lists are internally implemented as arrays. Appending elements is
cheap, and so is indexing. Adding and removing items at the front is
expensive. Lists are indexed using (again) square brackets and indices
start from zero:

one = a_list[0]

Lists can be sliced: if you put 2 indices in the indexing brackets, sepa-
rated by a colon, the result is a list with the range of elements on those
indices (the element on the first index is included, but the one on the
second index is not). The slice is copied (this can become expensive).

b_list = a_list[1 : 3]

You can put pretty much anything in a list, including another list:

c_list = [a_list, [3, 2, 1]]

You can also construct lists using comprehensions, which are written
like for loops:

d_list = [x * 2 for x in a_list if x % 2 == 1]

There are many useful methods and functions which work with lists.
We will discover some of them as we go along. To see the values of the
variables above, you can do:

python -i d1_list.py

>>> d_list

[2, 6]

1.d.2 [tuple] Internally, tuples are immutable lists. The main differ-
ence in the implementation is that being immutable, tuples have a
fixed number of elements. However, there are important use case dif-
ferences: lists are usually homogeneous, with an arbitrary (unknown
ahead of time) number of elements. Even when heterogeneous, they
usually hold related types. Syntactically, tuples are written into paren-
theses and separated by commas. In many cases, the parentheses are
optional, though. A one-tuple is denoted by a trailing comma,10 while
an empty tuple is denoted by empty parentheses (in this case, they
cannot be omitted).

a_tuple = (1, 2, 3)

b_tuple = 1, 2, 3 # same thing

c_tuple = () # empty tuple / zero-tuple

d_tuple = (1,) # one-tuple

e_tuple = 1, # also one-tuple

Tuples are usually the exact opposite of lists: fixed number of elements,
but each element of possibly different type. This is reflected by the
way they are constructed, but even more so in the way the are used.
Lists are indexed and iterated (using for loops), or possibly filtered and
mapped when writing functional-style code.
Tuples are rarely iterated and even though they are sometimes indexed,
it’s a very bad practice and should be avoided (especially when index-
ing by constants). Instead, tuples should be destructured using tuple
binding:

a_int, b_int, c_int = a_tuple

As you might expect, a_int, b_int and c_int are newly bound variables
with values 1, 2 and 3.

1.d.3 [dict] Dictionaries (associative arrays) are another basic (and
very useful) data structure. Literals are written using curly braces,
with colons separating keys from values and commas separating mul-

10 This is a bit of a nuisance, actually, since leaving an accidental trailing comma on a line will
quietly wrap the value in a one-tuple.

tiple key-value pairs from each other:

a_dict = { 1: 1, 2: 7, 3: 1 }

In Python, dictionaries are implemented as hash tables. This gives
constant expected complexity for most single-item operations (inser-
tion, lookup, erase, etc.). One would expect that this also means that
dictionaries are unordered, but this is not quite so (details some other
day, though).
Like lists, dictionaries are mutable: you can add or remove items, or,
if the values stored in the dictionary are themselves mutable, update
those. However, keys cannot be changed, since this would break the
internal representation. Hence, only immutable values can be used as
keys (or, to be more precise, only hashable values – another thing to
deal with later).
Most operations on items in the dictionary arewritten using subscripts,
like with lists. Unlike lists, the keys don’t need to be integers, and if
they are integers, they don’t need to be contiguous. To update a value
associated with a key, use the assignment syntax:

a_dict[1] = 2

a_dict[337] = 1

To iterate over key-value pairs, use the items()method:

a_list = []

for key, value in a_dict.items():

a_list.append(key)

You can ask (efficiently) whether a key is present in a dictionary using
the in operator:

assert 2 in a_dict

assert 4 not in a_dict

Side note: assert does what you would expect it to do; just make sure
you do not write it like a function call, with parentheses – that will
give you unexpected results if combined with a comma.
Again, like with lists, we will encounter dictionaries pretty often, so
you will get acquainted with their methods soon enough.

1.d.4 [str] The last data type we will look at for now is str, which
represents Unicode strings. Unlike lists and dictionaries, but quite
like integers, strings in Python are immutable. You can construct new
strings from old strings, but once a string exists, it cannot be updated.
There are many kinds of string literals in Python, some of them quite
complicated. The basic variation consists single or double quotes (and
there is no difference between them, though some programmers give
them different semantics) enclosing a sequence of letters:

a_str = 'some string'

To access a single character in string, you can index it, like you would
a list:

b_str = a_str[1]

Rather confusingly, the result of indexing a str is another str, with just
one character (code point) in it. In this sense, indexing strings behaves
more like slicing than real indexing. There is no data type to represent
a single character (other than int, of course).
Since strings are immutable, you cannot update them in place; the
following will not work:

a_str[1] = 'x'

Also somewhat confusingly, you can use += to seemingly mutate a
string:

a_str += ' duh'

PV248 Python 7/68 November 2, 2022

What happened? Well, += can do two different things, depending on
its left-hand side. If the LHS is a mutable type, it will internally call a
method on the value to update it. If this is not possible, it is treated as
the equivalent of:

c_str = 'string'

c_str = c_str + ' …and another'

which of course builds a new string (using +, which concatenates two
strings to make a new one) and then binds that new string to the name
c_str. We will deal with this in more detail in the lecture.
Important corollaries: strings, being immutable, can be used as dic-
tionary keys. Building long strings with += is pretty inefficient.11 In
essence, even though you can subscript them, strings behave more
like integers than like lists. Try to keep this in mind.
As with previous two data types, we will encounter quite a few meth-
ods and functions which work with strings in the course. Also, the
reference documentation is pretty okay. Use it. The most basic way to
get to it is using the help function of the interpreter:

>>> help('')

>>> help({})

>>> help([])

Of course, you can also break out the web browser and point it to
https://docs.python.org/3 (unfortunately, help and the online docs
don’t always match, and the online docs are often more comprehen-
sive; help is good for a quick overview, but if you don’t see what you
are looking for, refer to the web before despairing).

1.d.5 [function] While not normally thought of as a data type, func-
tions are an important category of entities that appear in programs.
As will eventually become apparent, in Python, we would be justify to
also call them objects (in other languages with first-class objects, this
could be a bit confusing).
Functions are defined using the def keyword, or using the lambda key-
word. The main difference is that the former is a statement while the
latter is an expression (the other difference is that the former has a
name, unlike the latter). The main thing that you can do with func-
tions (other than defining them) is calling them. The mechanics of
this are essentially the same in Python as in any other programming
language that you may know. Frames (invocation records) are kept on
a call stack, calling a function creates a new such record and returning
from a function destroys its frame12 and continues executing the caller
where it left off.
As the existence of lambda foreshadows, we will be able to create func-
tions within other functions and get closures. That will be our main
topic the week after the next. For now, we will limit ourselves to
toplevel functions (we will see methods next week).
The one possible remaining question is, what about arguments and
return values? Let’s define a function and see how that goes:

def foo(x):

x[0] = 1

return x[1]

One conspicuous aspect of that definition is the absence of type annota-
tions. We will address that next week – for now, we will treat Python
like the dynamic language it is. Anything goes, as far as it works out

11 CPython being what it is, of course there is a special case in the interpreter for += on strings,
when the reference count on the left-hand side is 1 (or rather 2, for complicated technical
reasons). This even holds for + if it appears in a statement that looks like foo = foo + bar. Of
course, relying on this optimisation is brittle, because youmight have anunintended reference
to the original, or you may introduce one long after you wrote the code with +=.

12 This is a simplification, as we will see two weeks from now. Like many dynamic languages,
Python allocates frames in the garbage-collected ‘heap’ and they are reclaimed by the collector
(which would normally mean by reference count – so after all, they usually do get destroyed
immediately… we will talk about this too, eventually).

at runtime. So how can we call foo? It clearly expects a list (or rather
something that we can index, but a list will do) with at least 2 items in
it.

a_list = [3, 2, 1]

two = foo(a_list)

Now depending on the argument passing mechanism, we can either
expect a_list to remain unchanged (with items 3, 2, 1) or to be changed
by the function to [1, 2, 1]. You are probably aware that in Python
it is the second case. In fact, argument passing is the same as binding:
the cells (objects) of the actual arguments are bound to the names of
the formal arguments.13 That’s all there is to it.

assert a_list == [1, 2, 1]

However, you might be wondering about the following:

def bar(x):

x = 1

a_int = 3

bar(a_int)

If you think in terms of bindings, this should be no surprise. If you
instead think in terms of ‘pass by reference’, you might have expected
to find that a_int is 1 after the call. This is a mistake: if 3was passed
‘by reference’ into bar, the = operator behaves unexpectedly. Again, if
you remember that = is binding (as long as left-hand side is a name,
anyway), it is clear that within bar, the name xwas simply bound to a
new value. To wit:

assert a_int == 3

To drive the point home, let’s try the same thing with a list:

def baz(x):

x[0] = 2

x = [3, 2, 1]

x[0] = 1

b_list = [3, 3, 3]

baz(b_list)

Now we have 3 possible outcomes to consider:

• [3, 3, 3] – we can immediately rule this out based on the above,
• [2, 3, 3] – this would be consistent with all of the above,
• [1, 2, 1] – if int was actually handled differently from lists

(spoiler: it isn’t).14

assert b_list == [2, 3, 3]

We can demonstrate that all types of objects are treated the same quite
easily using id, which returns the address of an object, and an int

object:

x = 2 ** 100

y = 2 ** 101

assert id(x) == id(x)

assert id(x) != id(y)

z = x

assert id(z) == id(x)

13 You will probably encounter this being labelled as ‘call by reference’. This is not a great name
for what is happening, but it’s less bad than some of the other commonmisconceptions about
function calls in Python. If you want to think of argument passing as being ‘by reference’, try
to remember that everything is passed ‘by reference’ in this sense (mutable and immutable
values alike).

14 Youmight have read on the internet, or heard, that Python passes ‘immutable values by value
andmutable by reference’. This is not the case (in fact, it could reasonably be called nonsense).

PV248 Python 8/68 November 2, 2022

z = y

assert id(z) == id(y)

So how do we check what is passed to a function? If the object is the
same on the inside and the outside, id will return the same value n
both cases. Observe:

def check_id(x, id_x):

assert id(x) == id_x

check_id(x, id(x))

Part 1.e: Elementary Exercises

1.e.1 [fibfib] Consider the following sequences:

s[0] = 1 1 2 3 5 8 13 21 …

s[1] = 1 1 1 2 5 21 233 10946 …

s[2] = 1 1 1 1 5 10946 2.2112⋅10⁴⁸ 1.6952⋅10²²⁸⁷ …

s[3] = 1 1 1 1 5 1.6952⋅10²²⁸⁷ …

More generally:

• s[0][k] = fib(k) is the k-th Fibonacci number,
• s[1][k] = fib(fib(k)) is the s[0][k]-th Fibonacci number,
• s[2][k] = fib³(k) is the s[0][s[1][k]]-th Fibonacci number,
• and so on.

Write fibfib, a function which computes s[n][k].

def fibfib(n, k):

pass

Part 1.p: Practice Exercises

1.p.1 [rpn] In the first exercise, we will implement a simple RPN (Re-
verse Polish Notation) evaluator.
The only argument the evaluator takes is a list with two kinds of ob-
jects in it: numbers (of type int, float, or similar) and operators (for
simplicity, these will be of type str). To evaluate an RPN expression,
we will need a stack (which can be represented using a list, which has
useful append and popmethods).
Implement the following unary operators: neg (for negation, i.e. unary
minus) and recip (for reciprocal, i.e. the multiplicative inverse). The
entry point will be a single function, with the following prototype:

def rpn_unary(rpn):

pass

The second part of the exercise is now quite simple: extend the
rpn_unary evaluator with the following binary operators: +, -, *, /, **
and two ‘greedy’ operators, sum and prod, which reduce the entire con-
tent of the stack to a single number. Think about how to share code
between the two evaluators.
Note that we write the stack with ‘top’ to the right, and operators
take arguments from left to right in this ordering (i.e. the top of the
stack is the right argument of binary operators). This is important for
non-commutative operators.

def rpn_binary(rpn):

pass

Some test cases are included below. Write a few more to convince
yourself that your code works correctly.

1.p.2 [image] You are given a function fwhich takes a single integer
argument, and a list of closed intervals domain. For instance:

f = lambda x: x // 2

domain = [(1, 7), (3, 12), (-2, 0)]

Find the image of the set represented by domain under f, as a list of dis-
joint, closed intervals, sorted in ascending order. Produce the shortest
list possible.
Values which are not in the image must not appear in the result. For
instance, if the image is {1, 2, 4}, the intervals would be (1, 2), (4, 4) –
not (1, 4) nor (1, 1), (2, 2), (4, 4).

def image(f, domain):

pass

1.p.3 [ts3esc] Big Corp has an in-house knowledge base / information
filing system. It does many things, as legacy systems are prone to, and
many of them are somewhat idiosyncratic. Either because the relevant
standards did not exist at the time, or the responsible programmer
didn’t like the standard, so they rolled their own.
The system has become impossible to maintain, but the databases con-
tain a vast amount of information and are in active use. The system
will be rewritten from scratch, but will stay backward-compatible with
all the existing formats. You are on the team doing the rewrite (we are
really sorry to hear this, honest).
The system stores structured documents, and one of its features is that
it can format those documents using templates. However, the template
system got a little out of hand (they always do, don’t they) and among
other things, it is recursive. Each piece of information inserted into
the template is itself treated as a template and can have other pieces
of the document substituted.
A template looks like this:

template_1 = '''The product ‘${product}’ is made by ${manufacturer}

in ${country}. The production uses these rare-earth metals:

#{ingredients.rare_earth_metals} and these toxic substances:

#{ingredients.toxic}.'''

The system does not treat $ and # specially, unless they are followed by
a left brace. This is a rare combination, but it turns out it sometimes
appears in documents. To mitigate this, the sequences $${ and ##{

are interpreted as literal ${ and #{. At some point, the authors of the
system realized that they need to write literal $${ into a document. So
they came up with the scheme that when a string of 2 or more $ is
followed by a left brace, one of the $ is removed and the rest is passed
through. Same with #.
Your first task is to write functions which escape and un-escape strings
using the scheme explained above. The template component of the
system is known simply as ‘template system 3’, so the functions will
be called ts3_escape and ts3_unescape. Return the altered string. If the
string passed to ts3_unescape contains the sequence #{ or ${, return
None, since such string could not have been returned from ts3_escape.

def ts3_escape(string):

pass

def ts3_unescape(string):

pass

1.p.4 [alchemy] You are given:

• a list of available substances and their quantities,
• a list of desired substances and their quantities,
• a list of transmutation rules, where each is a 2-tuple:

∘ first element is the list of required inputs,
∘ the second element is the list of outputs,
∘ both input and output is a tuple of an element and quantity.

The sum of the quantities on the right hand side of the list is strictly
less than that on the left side. Decide whether it is possible to get from
the available substances to the desired, using the given rules: return a
boolean. It does not matter whether there are leftovers. Rules can be
used repeatedly.

PV248 Python 9/68 November 2, 2022

def alchemy(available, desired, rules):

pass

The rules from tests in a more readable format, for your convenience:

• 3 chamomile, 4 water, 1 verbena, 2 valerian→ relaxing concoction
• 7 ethanol→ elixir of life
• 4 water, 2 mandrake, 2 valerian, nightshade→ elixir of life
• 5 tea leaves→ tea tree oil
• 2 primrose oil, 2 water, 1 tea tree oil→ skin cleaning oil
• 1 iron, 1 carbon→ steel
• 1 footprint→ 1 carbon
• 6 ice→ 5 water
• 3 steel→ 1 cable
• 10 lead, philosopher stone, 2 unicorn hair→ 10 gold

1.p.5 [chain] In this exercise, your task is to find the longest possible
word chain constructible from the input words. The input is a set of
words. Return the largest number of words that can be chained one
after the other, such that the first letter of the second word is the same
as the last letter of the first word. Repetition of words is not allowed.
Examples:

• { goose, dog, ethanol }→ 3 (dog – goose – ethanol)
• { why, new, neural, moon }→ 3 (moon – new – why)

def word_chain(words):

pass

1.p.6 [cycles] You are given a graph, in the form of a dictionary, where
keys are numbers and values are lists of numbers (i.e. it is an oriented
graph and its vertices are numbered; however, note that the number-
ing does not need to be consecutive, or only use small numbers).
Write a function, has_cyclewhich decideswhether a cyclewith at least
one even-numbered vertex is reachable from vertex 1.
Hint: look up Nested DFS. Essentially, run DFS from vertex 1 and
when you backtrack through an even-numbered vertex (i.e. in DFS
postorder), run another DFS from that vertex to detect any cycles that
reach the (even-numbered) initial vertex of the innerDFS.All the inner
searches should share the ‘visited’ marks. Be careful to implement the
DFS correctly.

def has_cycle(graph):

pass

Part 1.r: Regular Exercises

1.r.1 [permute] Given a number n and a base b, find all numbers whose
digits (in base b) are a permutation of the digits of n.
Examples:

(125)₁₀ → { 125, 152, 215, 251, 512, 521 }

(1f1)₁₆ → { (1f1)₁₆, (f11)₁₆, (11f)₁₆ }

(20)₁₀ → { 20, 2 }

def permute_digits(n, b):

pass

1.r.2 [rfence] In this exercise, youwill implement the Rail Fence cipher
algorithm, also called the Zig-Zag cipher.
The way this cipher works is as follows: there is a given number of
rows (‘rails’). You write your message on those rails, starting in the top-
left corner and moving in a zig-zag pattern: ↘↗↘↗↘↗ from top
to bottom rail and back to top rail, until the text message is exhausted.
Example: HELLO_WORLDwith 3 rails

H...O...R..
.E.L._.O.L.
..L...W...D

The encrypted message is read off row by row: HOREL_OLLWD.
Your task is to write a function which, given the plain text and the
number of rails/rows, returns the encrypted text:

def encrypt(text, rails):

pass

And another, which deciphers the text back to the plain text:

def decrypt(text, rails):

pass

1.r.3 [life] The game of life is a 2D cellular automaton: cells form a
2D grid, where each cell is either alive or dead. In each generation
(step of the simulation), the new value of a given cell is computed from
its value and the values of its 8 neighbours in the previous generation.
The rules are as follows:

state alive neigh. result

alive 0–1 dead
alive 2–3 alive
alive 4–8 dead

dead 0–2 dead
dead 3 alive
dead 4-8 dead

An example of a short periodic game:

○○○

○

○

○

○○○→ →

Write a functionwhich, given a set of live cells, computes the set of live
cells after n generations. Live cells are given using their coordinates in
the grid, i.e. as (x, y) pairs.

def life(cells, n):

pass

1.r.4 [breadth] Assume a non-empty tree with nodes labelled by
unique integers:

1

2 3

4 5 6 7

We can store such a tree in a dictionary like this:

def example_tree():

return {1: [2, 3],

2: [4, 5, 6],

3: [7],

4: [], 5: [], 6: [], 7: []}

Keys are node numbers while the values are lists of their (direct) de-
scendants. Write a function which computes a few simple statistics

PV248 Python 10/68 November 2, 2022

about the widths of individual levels of the tree (a level is the set of
nodes with the same distance from the root; its width is the number
of nodes in it). Return a tuple of average, median and maximum level
width.

def breadth(tree):

pass

1.r.5 [radix] Implement the radix sort algorithm for strings. Use a
dictionary to keep the buckets, since the ‘radix’ (the number of all
possible ‘digits’) is huge for Unicode. To iterate the dictionary in the
correct order, you can use:

sorted(d.items(), key = lambda x: x[0])

NB. Make sure that you don’t accidentally sort the whole sequence

using the built-in sort in your implementation.

def radix_sort(strings):

pass

1.r.6 [bipartite] Given an undirected graph in the form of a set of
2-tuples (see below), decide whether the graph is bipartite. That is,
whether each vertex can be assigned one of 2 colours, such that no
edge goes between vertices of the same colour. Hint: BFS.
The graph is given as a set of edges E. For any (u, v) ∈ E, it is also
true that (v, u) ∈ E (you can assume this in your algorithm). The set
of vertices is implicit (i.e. it contains exactly the vertices which appear
in E).

def is_bipartite(graph):

pass

Part 2: Objects, Classes and Types
Starting this week, some of the exercises require static type annota-
tions that can be checked with mypy --strict (this is the default: ex-
ercises, where static typing is tricky or burdensome will start with
pragma mypy relaxed – in those, you can use Any or even omit types
entirely). The same principle will be true for tasks in task sets. In
exercises and tasks where mypy is required, neither explicit Any, nor the
type: ignore pragma can be used. These restrictions are enforced by
the tests upon submission.
Demonstrations:

1. mypy – annotation basics
2. class – creating objects, with class
3. generic – polymorphic types and mypy
4. type – classes at runtime
5. anno – working with type annotations

Elementary exercises:

1. geometry – define basic types for planar geometry

Practice exercises:

1. dsw – Day, Stout &Warren balance binary trees
2. ts3norm – template system 3, normalization
3. ts3render – template system 3, rendering into strings
4. bool – boolean expression trees
5. intersect – computing intersections in a plane
6. list – linked list with generic type annotations

Regular exercises:

1. json – recursive data types without gross hacks
2. rotate – traversing a tree using rotations
3. ts3bugs – more fun with template system 3
4. treap – randomized search trees
5. distance – shortest distance between two 2D objects
6. istree – finding cycles in object graphs

Voluntary exercises:

1. (this section is empty for now)

Part 2.1: Types and Type Systems

Before we get to classes and objects, we should talk about types. You
have surely heard classifications like ‘weakly/strongly typed’ and ‘stati-
cally/dynamically typed’ (about programming languages, mainly). This
is a bit of a distraction, because for a change, there is a simple definition
of a type that works in many different contexts:

A type is a (possibly infinite) set of values. A type system in turn
is a set of types.

And that’s basically it (with the caveat that we need to know what our
values are). There is, however, one major downside of this otherwise
very nice and very simple definition: we cannot do a whole lot with a
type defined this way.
There is one thing thatwe cando though: we can testmembership. The
question ‘is value val of type T?’ turns out to be a very important one. It
also readily generalizes to ‘is any value that might appear here of type
T?’ – this is important, because we often do not know the exact value
we are interested in (this information is only available at runtime). If
you point at a variable, or more generally any expression, the set of
values it can take is hard to pin down15.
Before we proceed: why do we need to know whether some value, or
expression, belongs to some type? Becausewe can use this information
to argue about correctness of a program; in particular, we can talk about
operations which only work for certain types of values. For instance,
we could say that ‘modulo’ (remainder after division) is only defined
for integers (this is a statement about types: ‘integers’ is a set of values,
let’s call this set int).
In languages where functions are values, we can also say things like
‘set of all functions that accept an int and return an int’ (we could call
this type int → int). Clearly, this is a set of values, or in other words, a
type. If we know that f is a function that belongs to int → int and we
know that not_a_number is a value that is not of type int, we also know
that f(not_a_number) is wrong.
Of course, treating types and type systems as just sets is not very prac-
tical. We will use these terms with the understanding that we need
computational machinery to decide questions about types and how
values relate to types, that we perhaps need syntax for annotations,
and so on. But do keep the above ‘core definition’ in mind, even when
we use the terms somewhat freely.
With that in mind, our definitions are sufficient to tentatively define
the basic type system categories:

• a static type system can decide whether the value of a given ex-
pression (any value that it can take in the context of a fixed valid
program) belongs to a given type,16

• a dynamic type system cannot do this (in general), but can still
answer this question for a particular value at runtime.

And the other axis:

15 The question whether a given variable can take a given value is, in general, undecidable (this
should be quite obvious). We can also formulate the same observation this way: the exact set
of values that a variable may take is not recursive (again, in general).

16 There is obvious tension between the claim that this is, in general, anundecidable question, yet
we claim that a static type system can provide an answer. This is because static type systems
quite severely restrict what is considered a valid program.

PV248 Python 11/68 November 2, 2022

• a strong type system will always give a correct answer to the mem-
bership question,

• a weak type system may fail to give a correct answer.

This latter classification seems a little puzzling. In practice, it is not
binary: essentially all actual type systems are ‘weak’ in this sense, be-
cause they will allow the programmer to lie about types. However, the
context in which an answer can be wrong is important – conventional
‘weak’ type systems can get the answer wrong even if the programmer
didn’t lie (but it is a little hard to give precise meaning to ‘didn’t lie’, so
we will leave it be).
Type systems that are both dynamic and weak are actually pretty rare,
because they usually cannot erase17 type information, and hence can
use runtime type information to provide exact answers.
There are a few more interesting properties of type systems worth
discussing:

1. Are types disjoint? If yes (each value belongs to exactly one type),
the system ismonomorphic. This is uncommon. Almost all systems
allow some forms of polymorphism (values can belong tomore than
one type):
∘ Is it true that, given two types S and T, that either S ⊆ T or

T ⊆ S? In these cases, we say that a type system has subtyping
and T ⊆ S means that T is a subtype of S (conversely, S is a
supertype of T).

∘ Parametric polymorphism is technically more difficult, but in-
tuitively, a function is parametrically polymorphic if a single
definition (function body) admits infinitely many types that
conform to some ‘type schema’.

∘ Ad-hoc polymorphism (including ‘duck typing’): neither of the
above is true. Rules vary from language to language.

2. Can users define their own types? (The universal answer here
seems to be ‘yes’.) Given this is possible, how are new types con-
structed? There are two main categories:
∘ algebraic data types: new types are created as products and dis-

joint sums of existing types (recursion is often allowed, where
a type appears in its own definition),

∘ inheritance: new types are created as subtypes of existing
types.

3. Annotations: in which cases does the user need to explicitly men-
tion types? Answers vary wildly depending on many factors:
∘ every expression and variable (function parameter) needs an-

notations: an extreme that is basically never used in practice,
but has some theoretical use (typed lambda calculus),

∘ all variables/bindings (this extends to function parameters)
need type annotations, and so do function return values, but
types of expressions are inferred (languages like C or older ver-
sions of C++),

∘ type information for local variables is not (usually) required,
but function parameters and function return values require
annotations (TypesSript and many other modern languages,
newer revisions of C++, mypy in strict mode) – this is known as
local inference,

∘ only when values are explicitly constructed (literals usually
carry an implicit type): see point 4 below.

4. There are 3 main categories of languages without (or with entirely
optional) type annotations:
∘ dynamic languages (traditional Python and many other high-

level languages),
∘ statically-typed languages with global inference (ML, tradi-

tional Haskell),

17 Types are said to be erased if, at runtime, no information about types is attached to values. This
is common in statically-typed languages, since they can resolve any questions about types at
compile/analysis time. Maintaining type information at runtime can be quite costly, but in
this case would provide little benefit.

∘ gradually-typed languages, where annotations are optional and
they are checked statically when provided (to the degree that is
possible: missing annotations are taken to mean that the type
is dynamic, and all operations are considered valid on dynamic
values) – the poster child of this category is mypy in non-strict
mode.

There is a lot more to say about type theory, but most of it is irrelevant
for Python, so we are going to skip all of it.

Part 2.2: Classes and Objects

Like we have seen earlier with values and variables, it can be hard to
pin down what objects and classes really are. Different languages give
different semantics to what initially appears to be the same concept.
Let’s try to unravel the mess, of course with the semantics of Python
firmly in our crosshairs.
In Python, objects and cells (from last week) are essentially the same
thing. Outside of Python, the main difference is that objects bundle
up operations (methods) in addition to data, but:

1. functions are really just values, so the semantic difference isn’t
huge (they can naturally appear as sub-values of a value stored in
a cell),

2. there are no cells without methods in Python anyway – even tra-
ditional ‘simple data’ like integers come with methods.

While this may seem uncharacteristically simple, worry not: there is
enough magic associated with Python objects (and we will get to it),
but the magic is universal in the sense, that all (Python) cells are really
objects.
So what about the other ingredient, classes? There are multiple ways
to look at classes that are somewhat orthogonal (their applicability to
different programming languages varies):

1. first and foremost, classes are types (mind you, not all types need to
be classes, though in Python classes and types are almost the same
thing) – that is, we can take a value (object) and decide whether it
is an instance18 of a particular class (i.e. it is a member of the type
to which the class corresponds),

2. what more, classes are structured types – they really are products,
in the sense that an object has multiple fields or sub-values that
all exist at the same time (as opposed to sum types); in this sense,
classes are like tuples,

3. classes describe a protocol: the names of methods, their signatures,
and so on, that all instances of the class conform to (this is not quite
the case in Python, but we can ignore that for now),

4. classes provide an implementation of this protocol:19method bodies
appear in the definition of the class, and these bodies are shared
by all instances:
∘ this saves space, because there is no need to store each method

in each instance,
∘ it goes a long way toward consistency of behaviour: if a class

only prescribes a protocol (which is only syntax), its instances
are free to disagree on the behaviour – the semantics of a par-
ticular method,

5. classes are factories: they provide means to create new instances
(i.e. to create new objects),

6. classes may be objects in their own right, with data and methods,

18 We will use the term instance to refer to objects in relation to ‘their’ class. Not all objects are
necessarily instances in all programming languages, but in many languages, each object is an
instance of some class.

19 In some languages, there are special types of classes (abstract classes, interfaces) and/or meth-
ods (abstract methods, pure virtual methods) that do not provide an implementation. This is
normally not needed in Python, because of duck typing. If required, such methods can be
implemented as raise NotImplemented() – we will deal with exceptions some other day.

PV248 Python 12/68 November 2, 2022

like any other objects; they may even be instances of some class
(in Python, they are instances of the class type… by default) – that
class is then known as a metaclass and, you guessed it, we will get
to that some other day.

Especially interesting is reviewing points 1-5 in the light of point 6.
What are the implications?

1. since classes are types, and classes are also objects, that means that
types are objects and that means that they exist at runtime – there
is no type erasure in Python (well, we already knew this),

2. perhaps more interestingly, this means that we can do type-level
reflection at runtime ‘for free’, simply by calling methods on the
class,

3. since classes exist as objects, instances can keep a (runtime) refer-
ence (this is what happens in Python), and delegate to this object
in case they do not have a method ‘of their own’ (this is how im-
plementation sharing happens); this is also part of the reason why
methods have an explicit self argument,

4. because function calls are an operator and operators are defined
by objects, calling a class is a perfectly legitimate thing to do: this
simply runs a specific method of the class – this is how objects are
created (but it gets complicated and involves metaclasses; we are
shelving this for now),

5. inheritance is also implemented as delegation (unfortunately, be-
cause Python supports unrestricted multiple inheritance, the algo-
rithm for lookup is ungodly).

Part 2.3: Type Annotations

Though we established that types and classes are basically the same
thing in Python, annotations are normally called type annotations
and not class annotations, even though they can in fact be anything-
annotations, as far as Python is concerned. This is valid Python:

def f() -> 3: pass

The code simply annotates the function’s ‘return type’ to be 3 (not
the return value mind you; it’s an annotation, not the result). The
interpreter only really cares that this is a valid expression that it can
(and will) evaluate at runtime (at the time the function is defined)… try
this:

def f() -> print('hello'): pass

In any case, it is the job of an external type checker tomake sense of the
annotations (and of course, both of the above will be rejected by any
sensible type checker). A typical example is mypy (and to some extent,
it is the standard type checker, but there are others, e.g. pyright).
Now in the context of type systems, mypy is really 2 distinct systems
with somewhat distinct properties. First, let’s consider strict mypy,
which is a more or less standard static type system with both sub-
typing and parametric polymorphism; it is also somewhat weak in the
sense that:

1. it has cast so that the programmer can (accidentally) lie about types,
2. it can get things wrong on its own, because it relies on data flow

analysis20 to restrict union types. If you call g in the following
program, it dies with a TypeError, but mypy --strictwill accept it as
correct:

x: None | int = 1

20 For the more theoretically inclined: data flow analysis is clearly undecidable in general. Of
course it’s always possible to try some heuristics and if the result is ‘don’t know’ simply reject
the program as ill-typed. Unfortunately, that makes the system awfully restrictive, inconve-
nient and basically useless to a working programmer.

def f() -> None:

global x

x = None

def g() -> None:

if x is not None:

f()

print(x + 1)

Certainly, this is not the outcome we have hoped for. Without

the backing of Python's strong dynamic type system, we could

have ended up in real hot water.

Now the other mypymode, without the --strict switch, ismuchweaker
than the above. This is because any unannotated function or variable
is quietly accepted as correct, including any expressions that make use
of it. In non-strict mode, mypywill accept the following:

def h(x):

return x + 3

h('foo')

Which is not to say that mypy, even in the non-strict mode, is useless:
but it is important to understand the limitations. A compromise solu-
tion is using --strict but allowing oneself to use Any as an annotation,
which is a way of saying ‘I do not want to annotate this function, but I
am aware the type is not going to be checked’. The latter two modes
(non-strict and strict with Any) are examples of gradual typing.

Part 2.d: Demos

2.d.1 [mypy] In this unit (and most future units), we will add static type
annotations to our programs, to be checked by mypy. Annotations can
be attached to variables, function arguments and return types. In
--strictmode (which we will be using), mypy requires that each func-
tion header (arguments and return type) is annotated. e.g. the function
divisor_count takes a single int parameter and returns another int:

def divisor_count(n: int) -> int:

Notice that variables, in most cases, do not need annotations: types
are inferred from the right-hand side of the initial assignment.

count = 0

for i in range(1, n + 1):

if n % i == 0:

count += 1

return count

def test_divcount() -> None: # demo

assert divisor_count(5) == 2 # 1 and 5

assert divisor_count(6) == 4 # 1, 2, 3 and 6

assert divisor_count(12) == 6 # 1, 2, 3, 4, 6 and 12

For built-in types, including compound types, we will use the actual
builtins for annotations (for simple types, like int and str, this has
worked for a long time; for compound, types, like list or dict, it works
from Python 3.9 onwards).
Compound types are generic, i.e. they have one or more type parame-
ters. You know these from Haskell (they are everywhere) or perhaps
C++/Java/C# (templates and generics, respectively). Like in Haskell but
unlike in C++, generic types have no effect on the code itself – they are
just annotations. Type parameters are given in square brackets after
the generic type.

def divisors(n: int) -> list[int]:

PV248 Python 13/68 November 2, 2022

As mentioned above, for variables, mypy can usually deduce types auto-
matically, even when they are of a generic type. However, sometimes
this fails, a prominent example being the empty list – it’s impossible to
find the type parameter, since there are no values to look at. Annota-
tions of local variables can be combined with initialization.

res: list[int] = []

for i in range(1, n + 1):

if n % i == 0:

res.append(i)

return res

def test_divisors() -> None: # demo

assert divisors(5) == [1, 5]

assert divisors(6) == [1, 2, 3, 6]

assert divisors(12) == [1, 2, 3, 4, 6, 12]

Finally, it is quite common in Python that a particular name (variable,
function parameter) can accept values of different types. For these
cases, mypy supports union types (in a direct reference to the ‘types are
sets’ idea, those are literally unions of their constituent types, when
understood as sets).
Before Python 3.10, the preferred way to write unions was to use
helper classes from module typing: the more general Union[S, T]

denotes the union of arbitrary two types (e.g. Union[int, str]). How-
ever, there is one very common union type, namely Union[T, None-

Type] which can either take values from T or it can be None. Since it
is so common, it can be written as Optional[T]. However, the new
(Python 3.10) syntax is considerably nicer, and doesn’t need extra im-
ports:21 S | T for a generic union and None | T for optional.
For example:

def maybe_push(stack: list[int], value: None | int) -> None:

if value is not None:

Notice how mypy accepts this code even though it is ostensibly ill-typed:
on the face of it, value is not an int (the annotation above says it could
be None), but stack only accepts elements of type int.
The code is accepted because the following line is guarded: the condi-
tion of the above if statement means that the branch is only taken if
value is an actual int. In addition to conditionals, mypywill also under-
stand assert statements of this sort.

stack.append(value)

def push_either(int_stack: list[int], str_stack: list[str],

value: int | str) -> None:

Of course is None is a pretty special case: normally, we will not want
(or be able) to enumerate all possible values of a given type. However,
mypy also understand isinstance:

if isinstance(value, int):

In this branch, mypy takes value to be of type int, since it is guarded by
an isinstance.

int_stack.append(value)

else:

Of course, else branches are understood as well. In this case, value can
be anything in int | str that isn’t int, which just leaves str:

21 To make the same syntax work with Python 3.9, you can use from __future__ import annota-

tions. This has the additional benefit of making forward references possible. The mechanism
here is that with this __future__ import, annotations are stored as strings and they must be
eval’d upon inspection to get the actual annotations. Since Python 3.10, the inspect module
provides a helper to do that, get_annotations.

str_stack.append(value)

def push_if_int(stack: list[int],

value: int | float | str) -> None:

To make things more intuitive, isinstance actually lies about types.
The original meaning of isinstance(x, c) is ‘is object x an instance
of class c?’. But check this out:

if isinstance(value, str | float):

pass

Clearly, value is not an instance of whatever type that union is, be-
cause str | list[int] does not evaluate to an actual superclass of
str: there is only one, and that’s object. And object is also a superclass
of int, so things would go haywire there.
What on Earth is going on? Well, metaclasses, that’s what. When
you write isinstance(x, c), the metaclass of c is consulted about the
matter, and can ‘claim’ x as an instance of c even if they are completely
unrelated (in the sense of inheritance). We will get back to this in a
later chapter.

else:

There is one last thing to illustrate: the else branch excludes both str

and list[int], leaving only int:

stack.append(value)

def test_pushes() -> None: # demo

int_stack: list[int] = []

str_stack: list[str] = []

push_if_int(int_stack, 3)

push_if_int(int_stack, 'xoxo')

assert int_stack == [3]

push_either(int_stack, str_stack, 'xo')

assert int_stack == [3]

assert str_stack == ['xo']

Before we conclude this demo, there is one other case where variables
need annotations, and it is when they are actually of union types:

def find_min(values: list[int]) -> None | int:

min_val: None | int = None

for v in values:

Notice that the second operand of or is also treated as a proper branch
by mypy: if it is ever evaluated, we already know that min_val is not None
and hence is an int, which means it can be compared with v (which is
also an int).

if min_val is None or v < min_val:

min_val = v

return min_val

2.d.2 [class] Up to a point, classes in Python follow the standardmodel
derived from Simula and established by the likes of C++ and Java. As
outlined in the introduction, classes are types (in the sense they are
sets of values), while they also provide an interface and functionality
to their instances.
The first major deviation from C++-like languages is that instance at-
tributes are not listed in the class definition itself. They are instead
created when an instance is initialized in the __init__ method. Like
this:

class Base:

def __init__(self, value):

self.value = value

PV248 Python 14/68 November 2, 2022

def add(self, amount):

self.value += amount

You will immediately notice another difference: the self argument is
explicit in all methods. What more, we also have to explicitly access all
attributes (and methods) through self. This might take some getting
used to. Let’s define a derived class to observe a few more issues:

class Derived(Base):

Another observation: self already exists at the time __init__ is called,
so it is not a ‘true’ constructor. We will get into the woods of how
objects are created and initialized some other day. And while there is
a certain degree of magic in __init__ (it does get called automatically
on new instances, after all), the amount of magic is quite limited. More
specifically, __init__ methods of superclasses are not automatically
called before the __init__ of the one in the current class.

def __init__(self, value):

self.other = 2 * value

def test_classes(): # demo

To make an instance, simply ‘call’ the class itself, as if it was a function.
Parameters passed to this call are forwarded to the __init__method
above (the self parameter is added by the internal machinery of object
construction; clearly, at the point of the call, the object does not exist,
so we can’t pass it in explicitly even if we wanted to).

base = Base(3)

Python being dynamic and duck-typed, we can use a builtin function,
hasattr, to check whether an object has a particular attribute (notice
that the second argument is a string, not an identifier; hasattr isn’t
that magic). Let’s see:

assert hasattr(base, 'value')

assert not hasattr(base, 'other')

assert base.value == 3

Now for the derived class. We expect an other attribute to be present,
but value to be missing, since we did not call __init__ from Base:

deriv = Derived(2)

assert not hasattr(deriv, 'value')

assert hasattr(deriv, 'other')

assert deriv.other == 4

Let us make another derived class, to show how to call super-class
constructors:

class MoreDerived(Derived):

def __init__(self, value, other):

To call a method in the direct superclass, we can use super, which
essentially creates a version of self that skips the current class during
(method, attribute) lookup.

super().__init__(other)

To reach indirect bases, we need to name them explicitly. Like this
(note though that normally, the above call would itself call __init__ of
Base, so we wouldn’t have to do that here):

Base.__init__(self, value)

However, super() does not bind the current instance in a ‘normal’ way:
the object that ‘falls out’ of super does keep a reference to (our) self,
but only uses it to bind the self parameter of methods when we call
them through super. Instance attributes are nowhere to be found:

assert not hasattr(super(), 'other')

assert hasattr(super(), 'add')

Last note about super: while it is ostensibly a ‘normal’ function call, it
somehow gains access to self (not by name: it grabs the first argument,
whatever it is named) and to its class: it does so by peeking into the call
frame of its caller (we will talk in more detail about these next week).
Hence, it only works in methods.

def test_super(): # demo

deriv = MoreDerived(1, 2)

assert hasattr(deriv, 'value')

assert hasattr(deriv, 'other')

assert deriv.value == 1

assert deriv.other == 4

One last remark before we conclude this demo: there is one other cru-
cial difference between C++ and Python. Since Python is dynamically
typed through and through, the object bound to self is of the actual,
dynamic type of that object and not, like in C++, the sub-object that
corresponds to an instance of base itself. Worth keeping in mind.

2.d.3 [generic] In regular Python, generics (parametric types) don’t
make any sense: we can put any type anywhere, and collections are au-
tomatically heterogeneous (they can contain values of different types
at the same time). While this is very flexible, it is also somewhat dan-
gerous: you don’t necessarily want a Car to find its way into a list of
Cat instances.
To stand any chance of typing consistency, mypy needs to know the
element types in collections, and for this reason, there are generics in
mypy. They behave pretty much the way you would expect them to.
Let’s first look at generic functions. To express generic types, we need
type variables – in Python, these are regular values (like any other
type), with special meaning for the type checker. They are created as
instances of typing.TypeVar:

from typing import TypeVar

Unfortunately, when creating a type variable, we need to pass its own
name to it as a parameter. This is more than a little ugly.

T = TypeVar('T')

Now that we have a type variable, we can declare a generic function.
Notice that parametric types (list in this case) take their type parame-
ters in square brackets. Remember that annotations are just regular
Python expressions? This syntax simply re-uses the standard indexing
operator. Hold on to that piece of info – we will look at it more closely
when we get to metaclasses.
Within a single prototype, all mentions of T refer to the same type (but
it can be any type, of course):

def head(records: list[T]) -> T:

return records[0]

Of course, in a new declaration, T is a fresh type, unrelated to the above
T, even though it is technically the same value:

def tail(records: list[T]) -> list[T]:

return records[1 :]

Unlike dynamic Python, and unlike generics (templates) in C++, there
is no ‘duck typing’ for generic elements (i.e. for values of type T).Which
means that there isn’t a whole lot that you can do with them.
The things that are available by default are those that every Python
object is assumed to provide:

• equality (but not ordering),
• conversion to a string (i.e. values of type T can be printed), and

somewhat surprisingly,
• hashing (you can make a set of T, even if set[T]wasn’t the type

you started with, or use T as a key in a dict).

PV248 Python 15/68 November 2, 2022

Due to the last point, the following will type-check just fine, but crash
with a TypeError at runtime (another of those weak spots):

def make_set(value: T) -> set[T]:

return { value }

Let’s check – you can run this file through mypy (even mypy --strict)
and it will not complain. However, observe:22

def test_hashable() -> None: # demo

try:

make_set([])

assert False

except TypeError:

pass

To add constraints to a type variable, we can use protocols, that offer
additional capabilities for types of that variable23 – there are a few
builtin protocols, or you canmake your own. Let’s trywith SupportsInt:

from typing import Sized, Protocol

S = TypeVar('S', bound = Sized)

def double(value: S) -> int:

return 2 * len(value)

def test_double() -> None: # demo

assert double('foo') == 6

To make a protocol of your own, simply inherit from Protocol and add
whatever methods you want to use, then use the protocol just like the
one above.

class SupportsThings(Protocol):

an_attribute: int

def a_method(self, value: int) -> bool: ...

class AThing:

def __init__(self) -> None:

self.an_attribute = 42

def a_method(self, value: int) -> bool:

return True

If you only need to accept one value of the given type, you can use the
protocol as an annotation directly (but if you mention it twice, unlike
type variables, each value can be of a different type):

def use_a_thing(a_thing: SupportsThings) -> None:

assert a_thing.a_method(3)

assert a_thing.an_attribute == 42

Or we can of course bind the protocol to a type variable, like with the
one from typing:

R = TypeVar('R', bound = SupportsThings)

def use_two_things(a_thing: R, b_thing: R) -> R:

if a_thing.an_attribute > b_thing.an_attribute:

return a_thing

else:

return b_thing

The last thing that we need to know about generics is how to make

22 The assert Falsemust trip if make_set works normally. Which it doesn’t. But if it threw any-
thing other than a TypeError, we would not catch that and the program would crash, too. So,
TypeError it is (if you arewondering if mypy somehowdetects thatwe catch the TypeError and al-
lows the program because of that – no, it doesn’t… you can remove the try/except and observe
the program crash, though mypy still claims everything is fine.

23 If that reminds you of Haskell type classes, or C++ concepts, or Java constrained generics, you
are spot on. It is the same idea. It is one of these things that keep coming up, just like generics
themselves.

our classes generic (and hence accept a type parameter). Like with a
protocol, simply inherit from Generic. You need to ‘index’ the Generic

with some type variables, which then become bound to a single type
in the entire scope of that class:

from typing import Generic

class ABox(Generic[R]):

def __init__(self, a_thing: R) -> None:

self.a_thing = a_thing

def open(self) -> R:

return self.a_thing

def test_a_thing() -> None: # demo

a_thing = AThing()

b_thing = AThing()

b_thing.an_attribute = 32

a_box = ABox(a_thing)

b_box : ABox[AThing] = ABox(b_thing)

use_a_thing(a_thing)

assert use_two_things(a_thing, b_thing) is a_thing

assert b_box.open() is b_thing

2.d.4 [type] TBD type, isinstance.

2.d.5 [anno] TBD (__annotations__).

Part 2.e: Elementary Exercises

2.e.1 [geometry] In this exercise, you will implement basic types for
planar analytic geometry. First define classes Point and Vector (tests
expect the coordinate attributes to be named x and y):

class Point:

def __init__(self, x: float, y: float) -> None:

self.x = x

self.y = y

def __sub__(self, other: Point) -> Vector: # self - other

pass # compute a vector

def translated(self, vec: Vector) -> Point:

pass # compute a new point

class Vector:

def __init__(self, x: float, y: float) -> None:

pass

def length(self) -> float:

pass

def dot(self, other: Vector) -> float: # dot product

pass

def angle(self, other: Vector) -> float: # in radians

pass

Let us define a line next. The vector returned by get_direction should
have a unit length and point from p1 to p2. The point returned by
get_point should be p1.

class Line:

def __init__(self, p1: Point, p2: Point) -> None:

pass

def translated(self, vec: Vector) -> Line:

pass

def get_point(self) -> Point:

pass

def get_direction(self) -> Vector:

pass

The Segment class is a finite version of the same. Also add a get_direc-

tionmethod, like above (or perhaps inherit it, your choice).

class Segment:

PV248 Python 16/68 November 2, 2022

def __init__(self, p1: Point, p2: Point) -> None:

pass

def length(self) -> float:

pass

def translated(self, vec: Vector) -> Segment:

pass

def get_endpoints(self) -> Tuple[Point, Point]:

pass

And finally a circle, using a center (a Point) and a radius (a float).

class Circle:

def __init__(self, c: Point, r: float) -> None:

pass

def center(self) -> Point:

pass

def radius(self) -> float:

pass

def translated(self, vec: Vector) -> Circle:

pass

Equality comparison.

def point_eq(p1: Point, p2: Point) -> bool:

return isclose(p1.x, p2.x) and \

isclose(p1.y, p2.y)

def dir_eq(u: Vector, v: Vector) -> bool:

return isclose(u.angle(v), 0) or \

isclose(u.angle(v), pi)

def line_eq(l1: Line, l2: Line) -> bool:

return dir_eq(l1.get_direction(), l2.get_direction()) and \

(point_eq(l1.get_point(), l2.get_point()) or

dir_eq(l1.get_point() - l2.get_point(),

l1.get_direction()))

Please make sure that your implementation is finished before consult-
ing tests; specifically, try to avoid reverse-engineering the tests to find
out how to write your program.

Part 2.p: Practice Exercises

2.p.1 [dsw] Since a search tree must be ordered, we need to be able to
compare (order) the values stored in the tree. For that, we need a type
variable that is constrained to support order comparison operators:

class SupportsLessThan(Protocol):

def __lt__(self: T, other: T) -> bool: ...

T = TypeVar('T', bound = SupportsLessThan)

Now that T is defined, you can use it to type your code below; values of
T can be compared using < and equality (but not other operators, since
we did not explicitly mention them above).
The actual task: implement the DSW (Day, Stout and Warren) algo-
rithm for rebalancing binary search trees. The algorithm is ‘in place’ –
implement it as a procedure that modifies the input tree. You will find
suitable pseudocode onWikipedia, for instance.
The constructor of Node should accept a single parameter (the value).
Do not forget to type the classes.

class Node: pass # add ‹left›, ‹right› and ‹value› attributes

class Tree: pass # add a ‹root› attribute

def dsw(tree): # add a type signature here

pass

2.p.2 [ts3norm] (continued from 01/p3_ts3esc) Eventually, wewill want
to replicate the actual substitution into the templates. This will be done
by the ts3_render function (next exercise). However, somewhat sur-

prisingly, that functionwill only take one argument, which is the struc-
tured document to be converted into a string. Recall that the template
system is recursive: before ts3_render, another function, ts3_combine
combines the document and the templates into a single tree-like struc-
ture. One of your less fortunate colleagues is doing that one.
This structure has 5 types of nodes: lists, maps, templates (strings),
documents (also strings) and integers. In the original system there
are more types (like decimal numbers, booleans and so on) but it has
been decided to add those later. Many documents only make use of
the above 5.
A somewhat unfortunate quirk of the system is that there are multiple
types of nodes represented using strings. The way the original system
dealt with this is by prefixing each string by its type; $document$ (with
a trailing space!) and $template$. Those prefixes are stored in the
database. To make matters worse, there are strings with no prefix:
earlier versions looked for ${ and #{ sequences in the string, and if
it found some, treated the string as a template, and as a document
otherwise.
The team has rightly decided that this is stupid. You drew the short
straw and now you are responsible for function ts3_normalize, which
takes the above slightly baroque structure and sorts the strings into
two distinct types, which are represented using Python classes. Some-
one else will deal with converting the database ‘later’.

class Document:

def __init__(self, text: str) -> None:

self.text = text

class Template:

def __init__(self, text: str) -> None:

self.text = text

Each of the above classes keeps the actual text in a string attribute
called text, without the funny prefixes. The lists, maps and integers
fortunately arrive as Python list, dict and int into this function. Re-
turn the altered tree (without disturbing the original), the strings sub-
stituted for their respective types.
The mypy type for the function is simple on the surface, but the ma-
chinery that makes it type is ugly. On the logic that it is prepared
for you, this exercise still requires passing strict mypy, because given
InputDoc and OutputDoc, the function types are straightforward. You
can use either isinstance or type and equality to guard code that uses
specific union members – either is understood by mypy.

def ts3_normalize(tree: InputDoc) -> OutputDoc:

pass

2.p.3 [ts3render] At this point, we have a structure made of dict, list,
Template, Document and int instances. The lists and maps can be arbi-
trarily nested. Within templates, the substitutions give dot-separated
paths into this tree-like structure. If the top-level object is a map, the
first component of a path is a string which matches a key of that map.
The first component is then chopped off, the value corresponding to
the matched key is picked as a new root and the process is repeated
recursively. If the current root is a list and the path component is a
number, the number is used as an index into the list.
If a dict meets a number in the path (we will only deal with string
keys), or a listmeets a string, treat this as a precondition violation –
fail an assert – and let someone else deal with the problem later.
At this point, we prefer to avoid the complexity of rendering all the var-
ious data types. Assume that the tree is only made of documents and
templates, and that only scalar substitution (using ${path}) happens.
Bail with an assert otherwise. We will revisit this next week.
The ${path} substitution performs scalar rendering, while #{path} sub-
stitution performs composite rendering. Scalar rendering resolves the
path to an object, and depending on its type, performs the following:

• Document → replace the ${…} with the text of the document; the

PV248 Python 17/68 November 2, 2022

pasted text is excluded from further processing,
• Template→ the ${…} is replaced with the text of the template; occur-

rences of ${…} and #{…}within the pasted text are further processed.

The top-level entity passed to ts3_rendermust always be a dict. The
starting template is expected to be in the key $template of that dict.
Remember that ##{…}, $${…} and so on must be unescaped but not sub-
stituted.
If you encounter nested templates while parsing the path, e.g.
${abc${d}}, give up (again via a failed assertion); however, see also
exercise r3.

def ts3_render(tree: OutputDoc) -> str:

pass

2.p.4 [bool] In this exercise, we will evaluate boolean trees, where
operators are represented as internal nodes of the tree. All of the
Node types should have an evaluatemethod. Implement the following
Node types (logical operators): and, or, implication, equality, nand. The
operators should short-circuit (skip evaluating the right subtree) where
applicable. Leaves of the tree contain boolean constants.
Example of a boolean tree:

∧

∨ ⇒

1 0 1 1

In this case the or (∨) node evaluates to True, the implication (⇒) evalu-
ates to True as well, and hence the whole tree (and, ∧) also evaluates to
True.
Add methods and attributes to Node and Leaf as/if needed.

class Node:

def __init__(self) -> None:

self.left : Optional[Node] = None

self.right : Optional[Node] = None

class Leaf(Node):

def __init__(self, value: bool) -> None:

self.truth_value = value

Complete the following classes as appropriate.

class AndNode: pass

class OrNode: pass

class ImplicationNode: pass

class EqualityNode: pass

class NandNode: pass

2.p.5 [intersect] Wefirst import all the classes from e1_geometry, since
we will want to use them.
What we will do now is compute intersection points of a few object
type combinations. We will start with lines, which are the simplest.
You can find closed-form general solutions for all the problems in this
exercise on the internet. Use them.
Line-line intersect either returns a points, or a Line, if the two lines
are coincident, or None if they are parallel.

def intersect_line_line(p: Line, q: Line) \

-> Union[Point, Line, None]:

pass

A variation. Re-use the line-line case.

def intersect_line_segment(p: Line, s: Segment) \

-> Union[Point, Segment, None]:

pass

Intersecting lineswith circles is a littlemore tricky. Checking e.g. Math-
World sounds like a good idea. It might be helpful to translate both
objects so that the circle is centered at the origin. The function returns
a either None (the line and circle do not intersect), a single Point (the
line is tangent to the circle) or a pair of points.

def intersect_line_circle(p: Line, c: Circle) \

-> Union[None, Point, Tuple[Point, Point]]:

pass

It’s probably quite obvious that users won’t like the above API. Let’s
make a single intersect() that will work on anything (that we know
how to intersect, anyway). You can use type(a) or isinstance(a,

some_type) to find the type of object a. You can compare types for
equality, too: type(a) == Circlewill do what you think it should.

def intersect(a: Union[Line, Segment, Circle],

b: Union[Line, Segment, Circle]) \

-> Union[None, Point, Line, Segment,

Tuple[Point, Point]]:

pass

2.p.6 [list] Implement a linked list with the following operations:

• append – add an item at the end
• join – concatenate 2 lists
• shift – remove an item from the front and return it
• empty – is the list empty?

The class should be called Linked and should have a single type parame-
ter (the type of item stored in the list). The joinmethod should re-use
nodes of the second list. The second list thus becomes empty.

class Linked: pass

Part 2.r: Regular Exercises

2.r.1 [json] As you might have noticed in prep exercises 2 and 3, the
support for recursive data types in mypy is somewhat spotty. When
designing new types, though, there is a compromise that types okay
in mypy – at the price of creating a monomorphic wrapper for every
recursive type in evidence. In other words, you can pick any two of
[recursive types, generic types, sanity]. The JSON type will look as
follows:

JSON = Union['JsonArray', 'JsonObject', 'JsonInt', 'JsonStr']

JsonKey = Union[str, int] # for ‹get› and ‹set›

Now implement the classes JsonArray and JsonObject, with get and
setmethods (which take a key/index) and in the case of JsonArray, an
append and a popmethod. The setmethods should also accept ‘raw’ str
and int objects.

class JsonArray: pass

class JsonObject: pass

The classes JsonStr and JsonInt are going to be a little special, since
they should behave like str and int, but also provide get/set (which
fail with an assertion) to make life easier for the user.

class JsonInt: pass

class JsonStr: pass

2.r.2 [rotate] You might be familiar with the zipper data structure,
which is essentially a ‘linked list with a finger’. Let us consider traversal
of binary trees instead of lists. Implement two methods, rotate_left
and rotate_right, on a binary tree object.
Thesemethods shuffle the tree so that the left/right child of the current
root becomes the new root. If rotating right, the old root becomes the
left child of the new root, and the previous left child of the new root is

PV248 Python 18/68 November 2, 2022

attached as the right child of the old root. If rotating left, the opposite.
Notably, these rearrangements preserve the in-order of the tree.
Question: can we reach all nodes using just these two rotations? Can
you think of an operation that, combinedwith the two rotations, would
make the entire tree reachable? Can you think of a set of operations
thatmake the entire tree reachable and preserve in-order? Learnmore
in S.1.

class Tree:

def __init__(self, value) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

self.value = value

def rotate_left(self): pass

def rotate_right(self): pass

2.r.3 [ts3bugs] Let’s pick up where p3_ts3render left off. It turns out
that the original system had a bug, where a template could look like
this: ${foo.bar}.baz} – if ${foo.bar} referenced a template and that
template ended with ${quux (notice all the oddly unbalanced brackets!),
the systemwould then paste the strings to get ${quux.baz} and proceed
to perform that substitution.
The real clincher is that template authors started to use this as a feature,
and now we are stuck with it. Replicate this functionality. However,
make sure that this does not happen when the first part of the pasted
substitution comes from a document!
The original bug would still do the substitution if the second part was a
document and not a template. Feel free to replicate that part of the bug
too. As far as anyone knows, the variant with template + document is
not abused in the wild, so it is also okay to fix it.
Now the other part. If you encounter nested templates while parsing
the path, first process the innermost substitutions, resolve the inside
path and append the path to the outer one, then continue resolving
the outer path.
Example: ${path${inner.tpl}}, first resolve inner.tpl, append the re-
sult after path, then continue parsing. If the inner.tpl path leads to a
document with text .outside.2, the outer path is path.outside.2.

2.r.4 [treap]

class SupportsLessThan(Protocol):

def __lt__(self: T, other: T) -> bool: ...

def __le__(self: T, other: T) -> bool: ...

T = TypeVar('T', bound = SupportsLessThan)

A treap is a combination of a binary search tree and a binary heap. Of
course, a single structure cannot be a heap and a search tree on the
same value:

• a search tree demands the value in the right child to be greater
than the value in the root,

• a max heap demands that the value in both children be smaller
than the root (and hence specifically in the right child).

Treap has therefore a pair of values in each node: a key and a priority.
The tree is arranged so that it is a binary search tree with respect to
keys, and a binary heap with respect to priorities.
The role of the heap part of the structure is to keep the tree approx-
imately balanced. Your task is to implement the insertion algorithm
which works as follows:

1. insert a new node into the tree, based on the key alone, as with a

standard binary search tree,
2. if this violates the heap property, rotate the newly inserted node

toward the root, until the heap property is restored.

The deeper the node is inserted, the more likely it is to violate the heap
property and the more likely it is to bubble up, causing the affected
portion of the tree to be rebalanced by the rotations. Remember that
rotations do not change the in-order of the tree and hence cannot
disturb the search tree property.

class Treap(Generic[T]):

def __init__(self, key: T, priority: int):

self.left : Optional[Node] = None

self.right : Optional[Node] = None

self.priority = priority

self.key = key

def insert(self, val, prio): pass

2.r.5 [distance] In case there are no intersections, it makes sense to
ask about distances of two objects. In this case, it also makes sense to
include points, and we will start with those:

def distance_point_point(a: Point, b: Point) -> float:

pass

def distance_point_line(a: Point, l: Line) -> float:

pass

If we already have the point-line distance, it’s easy to also find the
distance of two parallel lines:

def distance_line_line(p: Line, q: Line) -> float:

pass

Circles vs points are rather easy, too:

def distance_point_circle(a: Point, c: Circle) -> float:

pass

A similar idea works for circles and lines. Note that if they intersect,
we set the distance to 0.

def distance_line_circle(l: Line, c: Circle) -> float:

pass

And finally, let’s do the friendly dispatch function:

def distance(a: Union[Point, Line, Circle],

b: Union[Point, Line, Circle]) -> float:

pass

2.r.6 [istree] We define a standard binary tree:

class Tree:

def __init__(self) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

However, not all structures built from the above data type are nec-
essarily trees, since it’s possible to create cycles. Write a predicate,
is_tree, which decides if a given instance is actually a tree (i.e. it does
not contain an undirected cycle).

def is_tree(tree):

pass

Part 3: Lexical Closures
Demonstrations:

1. func – a few more features of function definitions

2. closure – the basic intuition and syntax
3. capture – mechanics of capturing variables

PV248 Python 19/68 November 2, 2022

Preparatory exercises:

1. merge – combine items in a dictionary
2. dice – dicing and slicing lists
3. newton – finding roots with closures
4. sort – sorting and grouping with callbacks
5. file – make pure functions work with files
6. counter – keeping state

Regular exercises:

1. fold – folding lists
2. trees – folding trees
3. bisect – finding roots of general functions
4. each – traversing data structures
5. objects – a closure-based object system
6. inherit – the same, extended with simple inheritance

Voluntary exercises:

1. (nothing here yet)

Part 3.1: Functions and Function Calls

The mechanics of function calls in Python are quite standard and
very similar to what you would encounter in any mainstream impera-
tive language. That is, the interpreter maintains a stack of activation
records (also known as stack frames). Each record keeps essentially
two things:

1. an equivalent of a return address – where in the program to con-
tinue when the current function returns,

2. an environment (in the technical sense from chapter 1) – i.e. bind-
ings of names to their values; this environment is realized as local
bindings and a reference to the lexically enclosing scope, where
the interpreter looks for names that aren’t bound locally.

The ‘return address’ is somewhat tricky to visualize in the standard
Python syntax with expressions, because wemight need to return into
the middle of an expression. Consider:

x = f(a) + b

This is a statement with a function call in it – so far so good. But
of course, when f(a) returns, we still need to do some work in that
statement: namely, we need to take the return value of f and add b to
it, and then assign the result into x. So the return address certainly
can’t be just a line number or some other reference to a statement. If
you are tempted to say that we can remember the statement and just
go looking for the call to f, this is not going to work either:

x = f(a) + f(b)

What CPython (the standard Python interpreter) does internally is
use a bytecode representation of the program, in which the call is a
separate ‘instruction’. The above program fragment then becomes:

x₁ = f(a)

x₂ = f(b)

x = x₁ + x₂

Now it is clear what a ‘return address’ is, because each line has at most
a single function call, and if it has a function call, the only thing that
additionally happens on that line is binding its result to a name.
There is one other important deviation between ‘traditional’ languages
like C or C++ and Python (shared by many other dynamic languages)
– the stack in Python is not continuous, but is rather a linked list of
heap-allocated records. Why this is so should become apparent when
we deal with lexical closures in the next section, and with coroutines
in the next chapter.
There is one last important thing to note beforewemove on: a function

declaration (using def) is a statement and hence can appear anywhere
in the program where statements are permitted.24 With that, we can
move on to actually talking about closures.

Part 3.2: Lexical Closures

Since def is a statement, this is a legal Python program:

def foo():

def bar():

pass

Of course, in isolation, this is not very interesting: the only difference
at the first sight is that bar is only defined locally (i.e. it is a local binding,
not visible outside of foo). That can be useful, but is not a real game
changer. The following is:

def foo():

x = 7

def bar():

return x

x = 8

assert x == bar()

In some sense this is nothing new: it is entirely normal that a function
can use variables (and functions) defined in the same scope as itself.
Say like this:

def quux():

pass

def baz():

quux()

This program is not surprising in any way, yet what is happening is
the same thing as above: when a name is not found in the local scope,
the lookup continues in the lexically enclosing scope. And when we
say lexically, we mean syntactically (but the former term somehow got
entrenched, even if it is not technically correct). Which means that,
since x is not bound locally in bar above, when it is mentioned, the
lookup initially fails. But the next enclosing lexical scope is that of foo,
and sure enough, foo has a binding for x. So that binding is used.
Why is this interesting? We need to go back to chapter 1 to appreciate
what is going on here. The identifier x is still the same, but if we enter
foo twice, like this:

foo()

foo()

we get two different names x. And each of those names has a possibly
different binding. Which means that there are now two cells (objects)
that correspond to the syntactic definition of bar. It is in this sense that
the localness of that definition becomes important. Consider a simple
case of an isolated function:

def quux():

pass

When we take this apart, executing the two lines results in the follow-
ing situation:

quux pass

↑ name ↑ function

24 Conversely, if you can put a def somewhere, you can put any other statement in that spot too…
think about it.

PV248 Python 20/68 November 2, 2022

In this sense, the function ‘body’ is an (immutable) object like any
other.25 Except the situation above is not how things actually look.
It is a little more complicated:

pass

quux closure

(nothing)

code
↓ name

environment

For the foo defined earlier (with a nested bar function), we get some-
thing like this at the time of the assert (notice that we are now looking
at the program in the middle of executing a function – the central
object is an activation record, or a frame for short):

frame x = 7… return x

x

bar closure

8

code code

locals

environment

Well, that’s the logical or semantic picture. The implementation is
unfortunately somewhat different – unlike everything else in Python,
the captured environment is not represented as a reference to the
enclosing environment (a dict) at runtime. Instead, it is flattened into
a tuple of reified cells.26 The local environment then pretends that they
are regular bindings, except they are actually accessed through these
fake cells (you could call them pointers, or references, because that’s
basically what they are – a single nameless binding, or ‘arrow’). Why?
Two reasons:

1. We do not want the captured environment to keep all local vari-
ables from the enclosing function alive. If the inner function (the
closure) is returned or stored somewhere, that would tie the en-
tire scope’s lifetime to that return value. This would be expensive.
However, it’s not super important right now – we will get back to
object lifetime in the week after the next.

2. Remember how = is a (re)binding operator? Now that is a problem.

What’s wrong with rebinding? Consider the following:

def foo():

x = 7

def bar():

x = 8

return x

x = 9

If the inner function rebinds a captured binding, the connection breaks
– the outer function has a different binding for x than the inner func-
tion. Actually, as written, x in bar is completely independent from x in
foo, and this is just regular shadowing. But how about this:

def foo():

x = 7

def bar():

x = x + 1

return x

x = 9

25 It does remember the name with which it was defined, but this is purely a technicality and
can be ignored.

26 The tuple is accessible as foo.__closure__ and the values stored in that tuple are, for better or
worse, of a type actually called cell. Whether that is a happy or an unhappy coincidence is
left to figure out as an exercise for the reader.

bar()

Now this is an UnboundLocalError. Oh dear. That’s because Python
notices that you are binding x in bar which can only happen if x is a
local variable in bar (i.e. not captured). So, an error. How to get around
this? Tell Python explicitly that this is intended to be a capture:

def foo():

x = 7

def bar():

nonlocal x

x = x + 1

return x

x = 9

bar()

assert x == 10

But now we have a new problem. Initially, x is a capture, but if = on a
nonlocal behaves like a regular binding, the connection still breaks: x
in bar is bound to a new value (cell) and the assert fails. But it doesn’t
fail. Why doesn’t it fail?
Because nonlocal captures are magic, as per the above. When a name
is marked nonlocal, its behaviour changes in both the inner and the
outer function. In the outer function, the binding is known as a cell
variable27 and all access to it is indirected through the same reified cell
mechanism that is used for captures.28When you bind a nonlocalname,
it is not the name that is being bound: it is the (normally invisible) cell
that the name itself is bound to. Yes, it is a terrible hack (I am sorry).
But this is the mechanism that makes the ‘binding’ apparently shared
between the inner and the outer function.
You might find some consolation in the fact that the overall effect is
equivalent to the inner function updating the outer environment, and
the way things are actually implemented is simply an optimisation.

Part 3.d: Demos

3.d.1 [func] Beforewe proceed to look at closures, there are a few items
that we should catch up on with regard to ‘regular’ functions. First,
it’s been mentioned earlier that def is really just a statement. There is
more to that: it is a hidden binding (assignment) – saying def foo(): …

is equivalent to foo = …, except there is no anonymous ‘function literal’
(lambda comes close, but is syntactically too different to be a realistic
equivalent).
However, mypy really does not like rebinding names of functions (it
treats functions specially, much more so than Python itself), so we
won’t get away with a demo of that. But you can try the following
without mypy and it will work fine:

def foo(): return 1

def foo(): return 2

assert foo() == 2

Anyway, on to actually useful things. First, let’s look at implicit para-
meters:

def power_sum(values: list[float], power: float = 1) -> float:

total = 0

for v in values:

total += v ** power

return total

def test_power_sum() -> None: # demo

27 You can find the names of such variables in a tuple called foo.__code__.co_cellvars.
28 Access to cell variables and to captures (actually called free variables in the CPython inter-

preter) is through a separate set of opcodes that deal with the extra indirection through the
cell object. When reading, the cell is automatically dereferenced. When binding, it is the cell
that is rebound, not the name.

PV248 Python 21/68 November 2, 2022

assert power_sum([1, 2]) == 3

assert power_sum([1, 2], 2) == 5

This is basically self-explanatory. When we call the function, we may
either supply the parameter (in which case power is bound to the actual
value we provided) or not, in which case it is bound to the implicit
value (1 in this case).
There is a well-known trap associated with implicit parameters. The
problem is that the implicit binding takes place at the time def is evalu-
ated (def is just a statement, remember?). Consider this function with
an optional output parameter:

def power_list(values: list[float], power: float,

out: list[float] = []) -> float:

total = 0

for v in values:

out.append(v ** power)

return sum(out)

def test_power_list() -> None: # demo

assert power_list([1, 2], 2) == 5

assert power_list([1], 1) == 6

Yes, that second assert is correct. When invoked a second time, the
implicit binding of out is still the same as it was at the start, to some cell
that was created when the def executed. And the second call simply
appends more values to that same cell. It all makes sense, if you think
about it. But it is not something you would intuitively expect, and it is
easy to fall into the trap even if you know about it.
Just to drive the point home, let’s consider the following (we need to
pull in Callable for typing the outer function):

from typing import Callable

def make_foo() -> Callable[[], list[int]]:

def foo(l: list[int] = []) -> list[int]:

l.append(1)

return l

return foo

def test_foo() -> None: # demo

Evaluating the def again creates a new binding for the implicit para-
meter, as expected:

assert make_foo()() == [1]

assert make_foo()() == [1]

If we remember the result of a single def and call it twice, we are back
where we started (again, as expected):

foo = make_foo()

assert foo() == [1]

assert foo() == [1, 1]

Another featureworthmentioning are keyword arguments. In Python,
with the exception of a couple special cases, all arguments are ‘keyword’
by default. That is, whether an argument is used as a keyword argu-
ment or a positional argument is up to the caller to decide. To wit:

def test_keyword() -> None: # demo

assert power_sum([1, 2], power = 4) == 17

assert power_sum(values = [3, 4]) == 7

There are some limitations: all positional arguments (in the call) must
precede all keyword arguments – no backfilling is done, so you cannot
skip a positional argument and provide it as a keyword. If you want to
pass an argument using a keyword, you must also do that for all the
subsequent (formal) arguments. Implicit arguments may be of course
left out entirely, but if they are not, they take effect after supplied
keyword arguments.
With that out of the way, the main exception from ‘all arguments

are keyword arguments’ are variadic functions29 that take a tuple of
arguments (as opposed to a dict of them). Like this one:

def sum_args(*args: int) -> int:

total = 0

for a in args:

total += a

return total

In the body of the function, args is a tuple with an unspecified num-
ber of elements which must all be of the same type, as far as mypy is
concerned (Python as such doesn’t care, obviously). Of course, that
type might be an union, but the body might involve some isinstance

gymnastics.
Anyway, the function is used as you would expect (of course, since
no names are given to the arguments, they cannot be passed using
keywords):

def test_sum_args() -> None: # demo

assert sum_args() == 0

assert sum_args(1) == 1

assert sum_args(1, 2) == 3

assert sum_args(3, 2) == 5

There is another type of variadic function, which does permit (and in
fact, requires keyword arguments):

def make_dict(**kwargs: int) -> dict[str, int]:

return kwargs

def test_make_dict() -> None: # demo

assert make_dict() == {}

assert make_dict(foo = 3) == { 'foo': 3 }

All of the above can be combined, but the limitations on call syntax
remain in place. In particular:

def bar(x: int, *args: int, y: int = 0, **kwargs: int) -> int:

return x + sum(args) + y + sum(kwargs.values())

Note that y cannot be passed as a non-keyword argument, because
*args is greedy: it will take up any positional arguments after x. On
the other hand, if x is passed as a keyword argument, args will be
necessarily empty and everything must be passed as keyword args.

def test_bar() -> None: # demo

assert bar(0) == 0

assert bar(x = 0) == 0

assert bar(1, 1) == 2

assert bar(1, 1, y = 3) == 5

assert bar(1, 1, y = 3, z = 1) == 6

assert bar(x = 1, z = 1) == 2

3.d.2 [closure] As explained earlier, closures happen when a function
refers to a local variable of another function. This is really only rele-
vant in languages:

1. with lexical scoping – variables are looked up syntactically, in the
surrounding text (i.e. in a surrounding function, or a block, etc.)
and not on the execution stack (that would be dynamic scope),

2. where functions are first class entities – that is, we can return them
from other functions, bind them to local or global names, or accept
them as parameters, etc.,

3. in which functions can be defined in local scopes (i.e. other than
global/module and class scopes).

29 The other exception are certain built-in functions, which have documented parameter names,
but those names cannot be used as keywords in calls. E.g. int() takes, according to help(int)

an argument called x, but you cannot write int(x = 3). You can, however, say int('33',

base = 5).

PV248 Python 22/68 November 2, 2022

A language with all the above properties (e.g. Python) will naturally
gain lexical closures, at least unless they are specifically forbidden. If
we look away from implementation details, it is clear why this must
be so:

from typing import Callable

Writer = Callable[[int], None]

Reader = Callable[[], int]

Let us implement a simple ‘machine’ for keeping a median (upward-
biased, for simplicity) of a sequence, without exposing the sequence
in any way. We will call it a median_logger. The idea is to only use the
features from the above list and derive closures.

def median_logger() -> tuple[Writer, Reader]:

When median_logger executes, the first thing it does is create a new
object – an empty list – and bind it to a local name, items.

items: list[int] = []

Now we define a function that adds a value to the list. We can define
a function here as per (3) and we can refer to items because it is in the
lexical scope, as per (1). Do keep in mind that items is bound during exe-
cution of median_logger: it starts existing after the function is entered,
and stops existing when it is left.30

def writer(value: int) -> None:

items.append(value)

And another function to pull out the median (but nothing else). Again,
items is in the lexical scope, so we can refer to it. It is the same items

as above, used by writer, because we are in the same scope.

def reader() -> int:

items.sort()

return items[len(items) // 2]

Since functions are first-class objects, per (2), we can return them. So
we do:

return writer, reader

For reference, let’s add a very simple function which binds an empty
list the same way, but returns the bound value directly (please excuse
the redundancy):

def make_list() -> list[int]:

items: list[int] = []

return items

def test_median_logger() -> None: # demo

It should be obvious, but let’s triple check that value (cell) construction
in functions behaves the way we expect it to:

l_1 = make_list()

l_2 = make_list()

assert l_1 is not l_2

l_1.append(1)

assert l_1 != l_2

Nowwith that sorted, let’s get back to median_logger. Like above, let us
make two ‘copies’ of whatever the function returns. This is interesting,
because normally you would expect a function to be only defined once
(and the function ‘body’ actually is) and the returned value to be the
same.

30 Except it doesn’t, because it is captured. But normally, that’s exactly what would happen.

w_1, r_1 = median_logger()

w_2, r_2 = median_logger()

But alas, it is not: the behaviour aligns with make_list, which is just
as well. While an implementation detail, we can also check that the
‘bodies’ actually are the same.

assert w_1 is not w_2

assert w_1.__code__ is w_2.__code__

Let’s check the behaviour. We expect that w_1 and r_1 internally share
the same list, i.e. adding elements using w_1will influence the result
of r_1. And this is so:

w_1(5)

assert r_1() == 5

w_1(2)

w_1(3)

assert r_1() == 3

While w_1 is entirely independent from r_2 and vice-versa:

w_2(10)

w_2(10)

assert r_2() == 10 # and not 5

assert r_1() == 3 # also not 5

If the above is clear, we can have a little peek at the internals. First, we
check that it is the ‘captures’ that are different between w_1 and w_2:

assert w_1.__closure__ is not w_2.__closure__

And also that they are actually the same between w_1 and r_1, even
though those have different bodies:

assert w_1.__code__ is not r_1.__code__

assert len(w_1.__closure__) == 1

assert len(r_1.__closure__) == 1

assert w_1.__closure__[0] is r_1.__closure__[0]

Part 3.e: Elementary Exercises

3.e.1 [counter]

K = TypeVar('K')

V = TypeVar('V')

R = TypeVar('R')

The make_counter function should return a pair consisting of a function
fun and a dictionary ctr, where fun accepts a single parameter of type
K, which is also the key type of ctr. Calling fun on a value key then
increments the corresponding counter in ctr. Don’t forget the type
annotations.

def make_counter(): pass

Part 3.p: Practice Exercises

3.p.1 [merge]

class SupportsLessThan(Protocol):

def __lt__(self: K, other: K) -> bool: ...

K = TypeVar('K', bound = SupportsLessThan)

V = TypeVar('V')

W = TypeVar('W')

Write a function merge_dictwhich takes these 3 arguments:

• a dict instance, in which some keys are deemed equivalent: the
goal of merge_dict is to create a newdictionary, where all equivalent

PV248 Python 23/68 November 2, 2022

keys have been merged; keys which are not equivalent to anything
else are left alone (though the single value is still passed through
combine),

• a list of set instances, where each set describes one set of equiva-
lent keys (the sets are pairwise disjoint), and finally,

• a function combinewhich takes a list of values (not a set, because
we may care about duplicates): merge_dict will pass, for each set
of equivalent keys, all the values corresponding to those keys into
combine.

In the output dictionary, create a single key for each equivalent set:

• the key is the smallest of the keys from the set which were actually
present in the input dict,

• the value is the result of calling combine on the list of values associ-
ated with all the equivalent keys in the input dict.

Do not modify the input dictionary.

def merge_dict(dict_in: dict[K, V],

equiv: list[set[K]],

combine: Callable[[list[V]], W]) \

-> dict[K, W]:

pass

3.p.2 [dice] Typing note: If you decide to use type annotations,
be aware that they are quite heavy. What’s worse, zip_n_with

and chunk_with cannot be typed using Callable without resorting to
Callable[..., X] which is just a masked way to use Any. You have
been warned (but it’s still an interesting exercise to make it type, with
this limitation in mind).
The zip_with function takes 2 lists and a callback and constructs a new
list from results of applying the callback to pairs of items from the
input lists (each item from one of the lists). Stop when the shorter list
runs out.

def zip_with(func, list_1, list_2): pass

The pair_with function is similar, but only has a single input list and
applies the callback to consecutive non-overlapping pairs of items in
this list. Any unpaired items at the end of the list are thrown away.

def pair_with(func, items): pass

The following two functions are like the above, but work with more
than 2 items at a time. The lists in the zip case must be all of the same
type (to make things typecheck).

def zip_n_with(func, *args): pass

def chunk_with(func, chunk_size, items): pass

3.p.3 [newton] Implement Newton’s method for finding roots (zeroes)
of differentiable, real-valued functions. The function newton takes 4
arguments: the function f for which we are finding the root, its first
derivative df, the initial guess ini and the precision p = prec. Return a
number x, such that ∃u ∈ ⟨x − p, x + p⟩.f(u) = 0.
How it works: if you have an estimate x0 for x, you can get a better
estimate by subtracting f(x0)/f′(x0) from x0 (where f′ is the deriva-
tive, df). Repeat until satisfied (you can assume quadratic convergence,
meaning that the error is bounded by the improvement one step ear-
lier).

def newton(f, df, ini, prec): pass

Using newton, implement a cube root function. Hint: given z (the num-
ber to be cube-rooted), find a function f(x) such that f(x) = 0 iff z = x3.
Clearly, the zero of f is the cube root of z. The meaning of prec is the
same as in newton.

def cbrt(z, prec): pass

Note: if all inputs are integers, make sure the functions use integers
throughout, so that they can be used with very large numbers. In type
annotations, using float is OK, because mypy treats float as a super-
class of int (which is very wrong, but alternatives are… complicated).

3.p.4 [sort] Implement the following functions:

• sort_by (with an order relation)
• group_by (with an equivalence relation)
• nub_by (likewise)

The order/equivalence relation are callbacks that take two elements
and return a boolean. The order is given as less-or-equal: order(x, y

)means x <= y.
The sort_by function should return a new list, sorted according to the
order The sort must be stable (i.e. retain the relative order of items
which compare equal).
The group_by function should return a list of lists, where each sub-
list contains equivalent items. Joining all the sub-lists together must
yield the original list (i.e. the order of input elements is retained). The
sub-lists must be as long as possible.
Finally nub_by should output a list where each equivalence class has
at most one representative – the first one that appears in the input
list. The relative order of items must remain unperturbed. In other
words, if an item is equivalent (according to the provided equivalence
relation) to an earlier item, do not include the new item in the output.

def sort_by(data, order): pass

def group_by(data, eq_rel): pass

def nub_by(data, eq_rel): pass

3.p.5 [file] Your task is to write a function which takes:

• a list of input files,
• a function get_name which maps input filenames to output file-

names.
• a pure function funwhich maps strings to strings,

For each input file file, read the content, apply fun to that content and
write the result to get_name(file). Make sure things work if get_name
is an identity function. Process the files left to right. Later files may be
overwritten due to processing of earlier files.

def with_files(files, get_name, fun): pass

3.p.6 [ts3comp] This is the final part of the ‘template system 3’ series
of exercises (previously: 01/p3_ts3esc, 02/p2_ts3norm, 02/p3_ts3render
and 02/r3_ts3bugs).
Our starting point this time is 02/p3_ts3render – we will add support
for missing data types and for rendering of composite data.
For scalar substitution (using ${…}), add the following data types (on
top of existing Document and Template):

• int → it is formatted as a decimal number and the resulting string
replaces the ${…},

• list → the length of the list is formatted as if it was an int, and
finally,

• dict → .default is appended to the path and the substitution is
retried.

Composite rendering using #{…} is similar, but:

• a dict is rendered as a comma-separated (with a space) list of its
values, after the keys are sorted alphabetically, where each value
is rendered as a scalar,

• a list is likewise rendered as a comma-separated list of its values
as scalars,

• everything else is an error: like before, treat this as a failed precon-
dition, fail an assert, and leave it to someone else (or future you) to
fix later.

PV248 Python 24/68 November 2, 2022

Everything else about ts3_render is unchanged from the last time.

def ts3_render(tree: OutputDoc) -> str:

pass

Part 3.r: Regular Exercises

3.r.1 [fold] Implement foldr, a function which takes a binary callback
f, a list l and an initial value i. Use the function f to reduce the list to
a single value, from right to left. (Note: this is similar, but not the same
as functools.reduce, due to different bracketing).

def foldr(f, l, i): pass

Now use foldr to implement the following functions:

• fold_len – get the length of a list,
• fold_pairs – create a ‘cons list’ made of pairs, such that [1, 2, 3]

becomes (1, (2, (3, ()))),
• fold_rev – reverse the input list.

You will probably need Any to type fold_pairs (there might be ways
around it, but they are going to be ugly).

def fold_len(l): pass

def fold_pairs(l): pass

def fold_rev(l): pass

3.r.2 [trees]

T = TypeVar('T')

S = TypeVar('S')

Given the following representation of trees:

class Node(Generic[T]):

def __init__(self, val: T) -> None:

self.left : Optional[Node[T]] = None

self.right : Optional[Node[T]] = None

self.val : T = val

class Tree(Generic[T]):

def __init__(self) -> None:

self.root : Optional[Node[T]] = None

Implement a bottom-up fold on binary trees, with the following argu-
ments:

• a ternary callback f: the first argument will be the value of the
current node and the other two the folded values of the left and
right child, respectively,

• the binary tree tree,
• an ‘initial’ value which is used whenever a child is missing (leaf

nodes are folded using f(leaf_val, initial, initial)).

def fold(f, tree, initial): pass

3.r.3 [bisect] Write a function bisect, which takes f which is a con-
tinuous function, two numbers, x1 and x2 such that sgn(f(x1)) ≠
sgn(f(x2)) and precision p. Return x such that ∃z.x − p ≤ z ≤
x + p ∧ f(z) = 0.

def bisect(f, x_1, x_2, prec): pass

3.r.4 [each] Write a function each that accepts a unary callback and a
traversable data structure (one that is either iterable, or provides an
eachmethod). Arrange for f to be called once on each element.

def each(f, data): pass

Use each to implement:

• each_len – count the number of elements
• each_sum – count the sum of all the elements
• each_avg – compute the average of all elements
• each_median – likewise, but median instead of average

(return the ⌊n/2⌋ element if there is no

definite median, or None on an empty list)

def each_len(data): pass

def each_sum(data): pass

def each_avg(data): pass

def each_median(data): pass

3.r.5 [objects]

T = TypeVar('T')

class Obj(Protocol):

def __call__(self, __msg: str, *args: Any) -> Any: ...

Build a simple closure-based object system and use it to model a pedes-
trian crossing with a button-operated traffic light. Design two objects:

• traffic_light – a 2-state light, either ‘red’ or ‘green’, toggled bymes-
sages set_red, set_green and queried using is_green; the set_green

method operates immediately (is_green right after set_green re-
turns True) but set_red has a safety timeout: the light turns red,
but is_green will only become False after 5 seconds to clear the
crossing,

• button – takes a reference to two traffic lights; when pushed (mes-
sage push), it requests that the first is turned green, then after a
timeout (20s), requests it to go back to red; the second light vice-
versa; it must ensure that under no circumstances the lights both
return is_green at the same time.

Every second, all objects in the system receive a tickmessage with no
arguments.

def traffic_light(): pass

def button(pedestrian_light, vehicle_light): pass

Part 4: Iterators, Coroutines
Demonstrations:

1. (to be done)

Practice exercises in this chapter:

1. flat – flattening nested data with generators
2. send – understanding full coroutines
3. getline – coroutine-based data streams
4. lexer – more streams
5. parser – coroutine-based lexer + parser combination
6. mbox – event-based (SAX-like) parsing with coroutines

Regular exercises:

1. iscan – iterator-based scanning
2. gscan – similar, but with generators
3. itree – iterating a binary tree
4. gtree – generators vs trees
5. dfs – walking graphs with coroutines
6. guided – A* search with coroutines

Voluntary exercises:

1. (nothing here yet)

PV248 Python 25/68 November 2, 2022

Part 4.1: Iterators

Of the two concepts in this unit, iterators are by far the simpler. An
iterator is, conceptually, a ‘finger’ that points at a particular element
of a ‘sequence’ (you could say ‘pointer’ instead of ‘finger’, but that is an
already wildly overloaded term).
Further, there are two more concepts with the same root as ‘iterator’,
and that are closely related to them:

1. iterables, which are objects that can be iterated – you could perhaps
call them sequences, but iterable is more general (we will get to it),

2. to iterate [an iterable x], whichmeans to create an iterator for x and
then use it (usually until it is exhausted, but not necessarily).

The three elementary operations on an iterator are:

1. check whether there are any items left in the sequence,
2. shift to the next item,
3. get the current item.

All three are actually implemented as a single operation in Python,
called next. It has these effects:

1. checkwhether the sequence is empty, and if so, raise StopIteration
(yes, really),

2. grab the current item (the sequence is not empty, so there is one)
so that it can be returned later,

3. shift the ‘finger’ to the next element (mutating the iterator),
4. return the value grabbed in step 2.

This essentially tells you everything that you need to know about
iterators to use them directly (call next repeatedly to get items and shift
the iterator, until it raises StopIteration). However, an overwhelming
majority of iterator uses are, in Python, implicit – either in a for loop:

for value in iterable:

pass

or passed as an argument to a (library, builtin) function which con-
sumes the iterable (e.g. list, sorted, map, sum and so on). Youmay notice
that the results of many of those are in turn also iterable.
Notice the distinction between iterator and iterable: in Python, every
iterator is an iterable, but the converse is not true: a list is iterable
but is not an iterator – next([1]) is an error. To get an iterator for an
iterable, you need to use the built-in function iter – next(iter([1]))

works and evaluates to 1.31Notice that the call to iter is implicit in a for
loop (i.e. you can really use an iterable that is not an iterator – probably
quite obviously, since you can use for to iterate a list).
When using iterators, one additional property needs to be kept inmind
– there are two flavours of iterables:

1. ‘one shot’ iterables, which are consumed by iterating over them,
and hence can be iterated at most once (you could call them
streams),

2. ‘restartable’ iterables, which can be iterated multiple times (these
are what we normally think of as sequences).

By convention, one-shot iterables are their own iterators (as in, the
iterator is literally the same object – not a different instance of the same
class), though this is not required. In a complementary convention,
iterators are one-shot iterables (recall that each iterator must be also
an iterable), even when they are derived from a restartable iterable:

i = iter([1, 2]) # list is restartable

j = iter(i) # list_iterator is one-shot

assert next(i) == 1

assert next(j) == 2

31 Both iter and next simply delegate to themethods __iter__ and __next__ of the object they are
called on. We will see this when we implement our own iterables and iterators.

next(i) # StopIteration

Additional technical details can be found in the demos (including a
short ‘how to write an iterator’ tutorial).

Part 4.2: Generators

Before confronting coroutines in their full generality, we will make
a stop at so-called generators, or semi-coroutines. This puts us on a
middle rung of three stages of generalisation:

1. functions can call any number of other functions; they may run
forever or they eventually return to their caller once,

2. generators / semi-coroutines differ by the ability to return more
than once, but again only to their caller – in this context, the ‘re-
turning’ is called yielding because they can continue executing if
resumed,

3. full coroutines can yield into arbitrary other coroutines – they are
not restricted to keep returning into their ‘caller’.

Before we go on, it is important to note that coroutines provide ad-
ditional expressive power – they make certain things much easier to
write – but in principle, they can be always simulated with functions
and explicit state (or more conveniently using objects).32

In some sense, generators represent a ‘sweet spot’ between expressive-
ness and intuitiveness: full coroutines can be very hard to grasp (i.e.
they can be very unintuitive), even though they provide additional
power over generators. On the other hand, generators can provide
a huge benefit in both readability and in ease of writing a particular
piece of code.33 We will have some opportunities to contrast explicit
iterators with generators and the improvements the latter can yield
(excuse the pun).
So how do we represent multiple ‘returns’ from a function? If these
returns are all into the caller (as is the case with generators), we can
think of the values that are being returned as a sequence, or a stream.
It is not a coincidence that iterators and generators are closely related.
A common pattern for using generators is this:

1. call into the generator to obtain a value,
2. process the value,
3. resume the generator to obtain another value,
4. repeat until the generator is exhausted.

This does look an awful lot like iteration, and that is exactly how gener-
ators are commonly used in Python – the result of a generator function
is automatically iterable (in fact, an iterator) and as such can be used
in a for loop.
Like we did with iterators, we need to clear up some terminology:

• a generator function is what looks like a regular function except
that it uses a yield keyword; when called, a generator function
returns immediately and the result is

• a generator, which is an object that represents a suspended corou-
tine – it is this generator object that can be iterated.

Or, using an example:

def make_gen():

print('this is gen')

32 Of course, any program you can write using coroutines, you can rewrite without them. This
is true of essentially all abstractions in all programming languages – all you really need to
compute anything that can be computed is 2 unlimited counters and a conditional goto. By
comparison, even Turing machines have awfully rich semantics.

33 Code readability is a struggle between two opposing forces: readable codemust be both simple
(intuitive) but also succinct – code that is simple but long-winded is not readable, because the
reader cannot hold all of it in their short-term ‘working’ memory. More abstraction usually
means shorter code, but also more complicated. And since expressive power is really a mea-
sure of abstraction, a language that is ‘too powerful’ is just as bad as a language that is not
powerful enough. Hence the seeking of middle ground.

PV248 Python 26/68 November 2, 2022

yield 3

gen = make_gen()

In this piece of code, make_gen is a generator function while gen is a
generator. As written, the code does not print anything: the body of
the generator function does not start executing at the time it is called.
Instead, it is captured as a generator object and returned to the caller.
This is very closely related to how lexical closures arise. Compare:

def make_fun():

def fun():

print('this is fun')

return 3

return fun

fun = make_fun()

The result in this case is a function object (i.e. a lexical closure), while
it was a generator object in the generator case above. In both cases,
to actually perform the code, the gen / fun object needs to be used.
How that is done of course differs: to use fun, we simply call it: fun().
With gen, we instead iterate it – Python has provided a built-in __next__

method for the generator object (just like it provided a __call__method
for the function object) that interacts with the coroutine:

1. calling next resumes the coroutine,
2. if a yield is encountered, the coroutine is suspended and next re-

turns the yielded value,
3. if a return is encountered, the coroutine is destroyed, its return

value is wrapped in a StopIteration object and raised by next.

Since for ignores the value inside StopIteration, in most situations,
the return value (as opposed to values passed to yield) is worthless.
Nonetheless, it can be obtained when a generator is used directly,
though this is not common.

Part 4.3: Coroutines

As explained earlier, coroutines can be understood as a further gener-
alisation of generators. In fact, what Python calls a generator turns
out to be, almost by accident, a full coroutine. Like in case of lexical
closures, this is the result of a ‘conspiracy’ of a few seemingly unrelated
features:

1. generators exist, obviously,
2. suspended generators are first-class objects,
3. generators actually return into the caller of next.

The second point has beenmade implicitly earlier: a generator function
returns a generator object and the latter is the requisite first-class
representation of a suspended generator.
Now recall that in the initial definitions, we have demanded that semi-
coroutines (generators) can return multiple times into their caller. But
in Python, this is coincidental: the generator returns into the function
that called next – and usually, that is indeed the caller, because gener-
ators are normally used directly in a for loop. But since we can pass
the suspended coroutine around, anyone can call next and the next
yield in the coroutine’s body will transfer control back to the caller of
next, not to the original caller of the coroutine. Again, it is purely by
convention that these two functions are usually the same.
Then there is an added bonus: suspended generators can be resumed
by calling their send built-in method, instead of using next. In fact,
next(coro) is equivalent to coro.send(None). What does it do is that
the yield on which the coroutine was previously suspended returns
a value. Specifically, it returns whatever was given to send as an argu-

ment.34 And while this ability is not strictly necessary (we can send
values from one coroutine to the next by other means), it makes using
Python generators as ‘full’ coroutines a bit more convenient.
So what does all this mean in practice? We already have some experi-
ence with lexical closures, which are functions with some additional
captured state. Generators are like that, except they also remember a
sort of ‘return address’ – in this case, an address which tells the inter-
preter where to continue executing the coroutine when it is resumed.
Since all local variables of the generator function are, by construction,
used by the generator object, the generator object really keeps the
entire frame of its ‘parent’ function:

def make_gen():

print('hello')

x = 1

yield x

x += 1

yield x

gen = make_gen()

next(gen)

And the corresponding picture, at the point right after the last state-
ment above:

gen

yield x

x += 1

yield x

x = 1

print…

x

return to

1

code

frame

And after calling next(gen) a second time (changes are highlighted):

gen

yield x

x += 1

yield x

x = 1

print…

x

return to

2

code

frame

Part 4.d: Demos

4.d.1 [iter] TBD: How to write an iterator.

4.d.2 [gen] Normally, generators are used in for loops. However, when
you simply call a generator, the result is an object of type generator,
which represents the suspended computation. (For future reference,
native coroutines declared with async def behave the same way, just
the object type is different.)
Let’s define a generator:

def gen1() -> Generator[int, None, None]:

print("before yield 1")

yield 1

print("before yield 2")

yield 2

To actually run the computation, you can call __next__() on the gen-

34 See the demos for an executable example.

PV248 Python 27/68 November 2, 2022

erator object. Alternatively, you can call next with generator object
as the argument. Once you do that, the execution of the body of gen1
starts, and continues until it hits a yield. At that point, the yielded
value becomes the return value of __next__(), like this:

def test_gen1() -> None: # demo

x = gen1()

print("constructed gen1")

assert x.__next__() == 1

print("no longer interested in gen1...\n")

Since x is just a normal object, we can abandon it at any time. Nothing
forces us to keep calling __next__() on it. Let’s look at send() now.

def gen2() -> Generator[int, int, None]:

v = yield 1

print("received", v)

yield 2

print("returning from gen2()")

pass # StopIteration is automatically raised here

def test_gen2() -> None: # demo

y = gen2()

assert y.__next__() == 1

assert y.send(24) == 2 # resumes execution of ‹y›

print("sent 24, got 2 back")

try: y.__next__() # generators do not return

except StopIteration: print("generator done")

4.d.3 [trampoline] In languages with ‘general’ or ‘full’ coroutines, the
yield (or resume) operation takes the form:

result = yield <value> to <coroutine>

This cannot be directly written in Python, yet earlier we have claimed
that thanks to first-class nature of coroutines and the fact that they
can be resumed from anywhere (though they cannot themselves yield
to arbitrary other coroutines).

Part 4.p: Practice Exercises

4.p.1 [flat] Write a generator that completely flattens iterable struc-
tures (i.e. given arbitrarily nested iterables, it will generate a stream of
scalars). Note: while strings are iterable, there are no ‘scalar’ charac-
ters, so you do not need to consider strings.
Note: This function is unreasonably hard to type statically with mypy.
Feel free to use Any for the items (but try to give a correct ‘outer’ (top-
level) type for both the argument and the return value).

def flatten(g):

pass

4.p.2 [send] Write two generators, one which simply yields numbers
1-5 and another which implements a counter (which also starts at 1):
sending a number to the generator will adjust its value by the amount
sent. Then write a driver loop that sends the output of numbers() into
counter(). Try adding print statements to both tomake it clear inwhich
order the code executes.

def numbers(): pass # generate numbers 1-5

def counter(): pass

def driver(): pass # another generator – the driver loop

After you are done with the above, implement the same thing with
plain objects: Numbers with a get() method and Counter with a get()

and with a put(n)method.

class Numbers: pass

class Counter: pass

def driver_obj(): pass # a driver loop again, now with objects

4.p.3 [getline] This is the first in a series of exercises focused on work-
ing with streams. A stream is like a sequence, but it is not held in
memory all at once: instead, pieces of the stream are extracted from
the input (e.g. a file), then processed and discarded, before another
piece is extracted from the input. Some of the concepts that we will
explore are available in the asyncio library which we will look at later.
However, for now, we will do everything by hand, to get a better un-
derstanding of the principles.
A stream processor will be a (semi)coroutine (i.e. a generator) which
takes another (semi)coroutine as an argument. It will extract data from
the ‘upstream’ (the coroutine that it got as an argument) using next and
it’ll send it further ‘downstream’ using yield.
For now, we will use the convention that an empty stream yields None
forever (i.e. we will not use StopIteration). A source is like a stream
processor, but does not take another stream processor as an argument:
instead, it creates a new stream ‘from nothing’. A sink is another
variation: it takes a stream, but does not yield anything – instead,
it consumes the stream. Obviously, stream processors can be chained:
the chain starts with a source, followed by some processors and ends
with a sink.
To see an example, look near the bottom of the file, where we define a
simple source, which yields chunks of text. To use it, do something like:
stream, cnt = make_test_source(). The cnt variable will keep track of
how many chunks were pulled out of the stream – this is useful for
testing.
What follows is a very simple sink, which prints the content of the
stream to stdout (might be useful for tinkering and debugging):

def dump_stream(stream: Iterator[Optional[str]]) -> None:

while True:

x = next(stream)

if x is None: break

print(end = x)

Your first goal is to define a simple stream processor, which takes a
stream of chunks (like the test source above) and produces a stream of
lines. Each line ends with a newline character. To keep in line with
the stated goal of minimizing memory use, the processor should only
pull out as many chunks as it needs to, and not more.

def stream_getline(stream):

pass

4.p.4 [lexer] In the second exercise in the stream series, wewill define
a simple stream-based lexer. That is, we will take, as an input, a stream
of text chunks and on the output produce a stream of lexemes (tokens).
The lexemes will be tuples, where the first item is the classification (a
keyword, an identifier or a number) and the second item is the string
which holds the token itself.
Let the keywords be set, add and mul. Identifiers start with an alpha-
betic letter and continue with letters and digits. Numbers are made of
digits. You can use StrStream below as a template for writing the type
of a ‘lexeme stream’.

StrStream = Generator[Optional[str], None, None]

IDENT = 1

KW = 2

NUM = 3

def stream_lexer(text_stream):

pass

4.p.5 [parser] In this exercise, we will write a very simple 2-stage
parser (i.e. one with a separate lexer) using coroutines (one for the
lexer and one for the parser itself). The protocol is as follows:

PV248 Python 28/68 November 2, 2022

• the parser will get the lexer in the form of a generator object as an
argument,

• the parser will yield individual statements,
• the parser will use next(lexer) to fetch a token when it needs one,
• the language has ‘include’ directives: the parser may need to in-

struct the lexer to switch to a different input file, which it’ll do by
send-ing it the name of that file.

For simplicity, the lexer will get a dictwith file names as keys and file
content as values (both strings). It will start by lexing the file named
main. When the lexer reaches an end of an included file, it will continue
wherever it left off in the streamwhichwas interrupted by the include
directive.
There are 4 basic lexeme (token) types: keyword, identifier, number
(literal) and a linebreak (which ends statements). The keywords are:
set, add, mul, print and include. Identifiers are made of letters (isalpha)
and underscores and literals are made of digits (isdecimal). Statements
are of these forms:
[set|add|mul] ident [num|ident] print ident include ident
A statement to be yielded is a 2- or 3-tuple, startingwith the keyword as
a string, followedby the operands (int for literals, strings for identifiers).
E.g. mul x 3 shows up as ('mul', 'x', 3). The include statement is
never yield-ed.
The following type alias should help you with typing parse. Even
though this is not very intuitive, a tuple is also a sequence.

Statement = Sequence[str | int]

def lexer(program):

pass

def parser(lex):

pass

4.p.6 [mbox] Write a coroutine-based parser for mbox files. It should
yield elements of the message as soon as it has enough bytes. The
input will be an iterable, but not indexable, sequence of characters.
In an mbox file, each message starts with a line like this:

From someone@example.com Wed May 1 06:30:00 MDT 2019

You do not need to look at the structure of this line, look for the string
From (with a trailing space) at the start of a line, and gobble it up to the
nearest newline.
After the separator line, an rfc-822 e-mail follows, with any lines that
start with From changed to >From (do not forget to un-escape those).
The headers are separated from the rest of the body by a single blank
line. You can also assume that each header takes exactly one line.
The reported elements are always pairs of strings, with the following
content:

• message start: the string ’message’ followed by the content of the
separator line with the From removed,

• header: yield the name of the field and the content; yield as soon
as you read the first character of the next header field, or the body
separator,

• body: yield a single string with the entire body in it, as soon as you
encounter the end of the file

def parse_mbox(chars):

pass

Part 4.r: Regular Exercises

4.r.1 [iscan] Implement a prefix sum and a prefix list on arbitrary
Iterable instances, using the iterator approach (class with an __iter__

method).
Examples:

dump(prefixes([1, 2, 3])) # [] [1] [1, 2] [1, 2, 3]

dump(prefix_sum([1, 2, 3])) # [1, 3, 6]

def prefixes(list_in):

pass

def prefix_sum(list_in):

pass

4.r.2 [gscan] Implement suffix list and suffix sum as a generator, with
an arbitrary Sequence as an input.
Examples:

suffixes([1, 2]) # [] [2] [1, 2]

suffix_sum([1, 2, 3]) # [3, 5, 6]

def suffixes(list_in):

pass

def suffix_sum(list_in):

pass

4.r.3 [itree]

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, value: T,

left: Optional[Tree[T]] = None,

right: Optional[Tree[T]] = None) -> None:

self.left = left

self.right = right

self.value = value

self.parent : Optional[Tree[T]] = None

if left is not None:

left.parent = self

if right is not None:

right.parent = self

Write an in-order iterator for binary trees. Write it as a class with a
__next__method.

class TreeIter: pass

4.r.4 [gtree] Write recursive generators which walk a binary tree in
pre-/in-/post-order.

def preorder(tree): pass

def inorder(tree): pass

def postorder(tree): pass

4.r.5 [dfs] Write a semi-coroutine which yields nodes of a graph in
the ‘leftmost’ DFS post-order. That is, visit the successors of a vertex
in order, starting from leftmost (different exploration order will result
in different post-orders). The graph is encoded using neighbour lists.

def dfs(graph, initial):

pass

4.r.6 [guided] Write an A* ‘guided search’ that finds a shortest path in
a graph, implemented using coroutines. The search coroutine should
yield the nodes of the graph as they are explored. In response to each
yield, the driver (semantically also a coroutine, though not necessarily
a coroutine or a generator in the Python sense) will send the corre-
sponding prioritywhich should be assigned to exploring the successors
of the given node.

T = TypeVar('T')

S = TypeVar('S')

class cor_iter(Generic[T, S]): pass

Note: A* is essentially just BFSwith a priority queue instead of a regular

PV248 Python 29/68 November 2, 2022

queue. To simplify matters, here is an implementation of standard BFS.

Graph = dict[T, set[T]]

Gen2 = Generator[T, S, None]

def bfs(graph: Graph[T], start : T) -> Gen2[T, int]:

q : Queue[T] = Queue()

q.put(start)

seen : set[T] = set()

while not q.empty():

item = q.get()

for succ in graph[item]:

yield succ

if succ not in seen:

q.put(succ)

seen.add(succ)

def a_star(graph, start): pass

Part S.1: Introductory Tasks
The programming tasks for this block are as follows:

1. a_while – an interpreter for simple ‘while programs’,
2. b_splay – a self-balancing binary search tree,
3. c_same – a solver for ‘same game’,
4. d_shelter – a simple information system.

The tasks at hand only require basic programming skills and no special
tricks nor advanced Python constructs. Some of the tasks require
exceptions to be raised on errors, but again only basic use is needed
(you should be fine with raise RuntimeError('foo')).
In the splay task, type annotations are optional, since they are a little
tricky (the tree is generic in the type of values, but these values must
be less-than comparable; you can find a ‘recipe’ for solving this in
02/p1_dsw).

Part S.1.a: while

Implement an interpreter for simple ‘while programs’ (so called because
their only looping construct is while). The syntax is as follows:

• one line = one statement (no exceptions),
• the program is a sequence of statements,
• blocks are delimited by indentation (1–5 spaces),
• there are following statement types:

∘ assignment,
∘ if statement,
∘ while statement.

All variables are global and do not need to be declared (they come into
existence when they are first used, with a default value 0). Variables
are always integers. Variable names startwith a letter andmay contain
letters, underscores and digits.
The if and while statements are followed by a body: a block indented
one space beyond the if or while itself. The body might be empty. The
if and while keywords are followed by a single variable name. Zero
means false, anything else means true.
Assignments are of two forms:

• constant assignments of the form name = number (where number is
an integer written in decimal, and might be negative),

• 3-address code operations, of the form

name₀ = operation name₁ name₂

Valid operations are:

• logic: and, or, nand (the result is always 0 or 1),
• relational (result is again 0 or 1):

∘ lt, gt (less/greater than),
∘ eq (equals),
∘ leq and geq (less/greater or equal),

• arithmetic: add, sub, mul, div, mod.

Example program:

x = 0

y = 7

one = 1

if x

x = add x x

while y

y = sub y one

x = add x one

Write a function do_whilewhich takes a ‘while program’ (as a string)
and returns a dictionary with variable names as keys and their final
values as values (of type int).
If the program contains an error, create a special variable named #error

and set its value to the offending line number. Return immediately
after encountering the error. In this case, other variables may or may
not be included in the resulting dictionary.
Check syntax before you start executing the program (i.e. the following
program should return an error on line 3 and should not loop forever):

x = 1

while x

x ++

Syntax errors may be due to malformed statements (e.g. while x =

1, x ++ above, etc.), or due to undefined operations (e.g. x = fdiv x y).
Report the first error (nearest to the top of the input). At runtime,
detect and report any attempts to divide by zero.

Part S.1.b: splay

Implement the splay tree data structure (an adaptively self-balancing
binary search tree). Provide at least the following operations:

• insert – add an element to the tree (if not yet present)
• find – find a previously added element (return a bool)
• erase – remove an element
• to_list – return the tree as a sorted list
• filter – remove all elements failing a given predicate
• root – obtain a reference to the root node

Nodes should have (at least) attributes left, right and value. The class
which represents the tree should be called SplayTree.
You can find the required algorithms online (wikipedia comes to mind,
but also check out https://is.muni.cz/go/uvcjn9 for some intuition
how the tree works).
The main operation is ‘splaying’ the tree, which moves a particular
node to the root, while rebalancing the tree. How balanced the tree
actually is depends on the order of splay operations. The tree will have
an expected logarithmic depth after a random sequence of lookups
(splays). If the sequence is not random, the balance may suffer, but the
most-frequently looked up items will be near the root. In this sense,
the tree is self-optimizing.
Note: it’s easier to implement erase using splaying than by using the
‘normal’ BST delete operation:

1. splay the to-be-deleted node to the root, then

PV248 Python 30/68 November 2, 2022

2. join its two subtrees L and R:
∘ use splay again, this time on the largest item of the left sub-

tree L,
∘ the new root of L clearly can’t have a right child,
∘ attach the subtree R in place of the missing child.

Part S.1.c: same

Your task will be to implement a simple solver for ‘same game’. The
rules of the game are:

1. the game is played on a rectangular board with n ×m rectangular
cells,

2. a cell can be empty, or occupied by a ‘stone’ of a particular type (we
will use numbers to represent these types, and None to represent
an empty cell),

3. the player can remove an area made up of 3 or more identical
adjacent stones (each stone has 4 neighbours); all matching stones
are removed at once,

4. the game ends when no more stones can be removed.

Unlike most versions of the game, to keep things simple, we will not
implement gravity or replenishment of the stones (at least not in this
iteration). The scoring rules are as follows:

1. the base score of removal is the value of the stone v times the num-
ber of stones n removed from the board times the base-2 logarithm
of the same: v ⋅n ⋅ log2(n), the entire number rounded to the closest
integer,

2. this score is doubled if at least one of the removed stones is directly
adjacent to a cell that was occupied before the last round (i.e. it
belonged to a stone that was removed in the last round),

3. it is also doubled if the last removal was of the same type of stone
(note that conditions 2 and 3 are mutually exclusive).

When the game ends, the scores for each round are summed: this is
the game score.
Write a function samegamewhich takes 2 arguments: the initial board
in the form of a single list of numbers (with None used to represent
empty spaces) and the width of the playing board. You can assume
that the number of items in the list will be an integer multiple of the
width. The result of the function should be the maximum achievable
game score.

def samegame(board: list[int], width: int) -> int:

pass

Part S.1.d: shelter

You volunteer for a local animal shelter, and they really need to get
more organized. Since you are a programmer, you decide to step up to
the job and write a small information system for them. Here is what it
needs to do:

• track all the resident animals and their basic stats: name, year of
birth, gender, date of entry, species and breed,

• store veterinary records: animals undergo exams, each of which
has a date, the name of the attending vet and a text report,

• record periods of foster care: animals can be moved out of the
shelter, into the care of individuals for a period of time – record the
start and end date of each instance, along with the foster parent,

• for each prospective foster parent, keep the name, address, phone
number and the number of animals they can keep at once,

• record adoptions: when was which animal adopted and by whom,
• keep the name and address of each adopter.

In the remainder of the spec, we will make full use of duck typing: for
each entity, we will only specify the interface, the exact classes and

their relationships are up to you, as long as they provide the required
methods and attributes. The only class given byname is Shelter, which
is the entry point of the whole system.
The Shelter class needs to provide the following methods:

• add_animal which accepts keyword arguments for each of the ba-
sic stats listed above: name, year_of_birth, gender, date_of_entry,
species and breed, plus adoption_date, where:
∘ the date of entry is a datetime.date instance,
∘ year_of_birth is an integer,
∘ everything else is a string,
∘ name, species and date_of_entry are required, the rest is op-

tional,
∘ adoption_date can be set in cases where an animal is being

added retroactively and is equivalent to calling adopt (see below)
atomically,

and returns the object representing the animal (see list_animals below
for details about its interface),

• list_animalswhich accepts:
∘ optional keyword arguments for each of the basic stats: only an-

imals that match all the criteria (their corresponding attribute
is equal to the value supplied to list_animals, if it was supplied)
should be listed,

∘ a date keyword argument: only animals which were possibly
present in the shelter at this time (i.e. were not adopted on an
earlier date, and were not in foster care that entire day) should
be listed;

The elements of the list returned by list_animals should have:
∘ each of the basic stats as an attribute of the corresponding type

(see add_animal),
∘ method add_exam which accepts keyword arguments vet and

date and report, where vet and report are strings and date is
a datetime.date instance, and returns an object representing
the exam, with attributes corresponding to the keyword argu-
ments,

∘ method list_examswhich takes keyword arguments start and
end, both datetime.date instances, or None (the range is inclusive;
in the latter case, the range is not limited in that direction),

∘ method adopt which takes keyword arguments date (a date-

time.date instance) and optionally adopter_name and adopter_ad-
dresswhich are strings,

∘ method start_fosterwhich takes a date (again a datetime.date

instance), parent (which accepts one of the objects returned by
available_foster_parents listed below) and an optional end_date
(for cases when the fostering is recorded retroactively),

∘ end_fosterwhich takes a date,
• add_foster_parentwhich accepts keyword arguments name, address

and phone_number (all strings) and max_animalswhich is an int and
returns the object representing the foster parent,

• available_foster_parents which takes a keyword argument date
and lists foster parents with free capacity at this date (i.e. those
who can keep more animals than they are or were keeping at the
given date – if an animal is taken or returned on a given date, it
still counts into the limit).

Raise a RuntimeError in (at least) these cases:

• start_foster was called on an animal that was already in foster
care at the given date, or end_foster on an animal that was not in
foster care on the given date, or start_foster is called without an
end_date on a date that predates an existing fostering record, or
start_foster is called with an end_date that overlaps an existing
fostering record,

• attempting to adopt an animal that was in foster care on that day,
or attempting to put an animal that has been adopted on that or
earlier day into foster care, or was not at the shelter that day at all
for some other reason,

PV248 Python 31/68 November 2, 2022

• attempting to do a veterinary exam on an animal which is in foster
care or already adopted at the time (however, exams can be per-
formed on the same day as fostering is started or ended, or on the
day of adoption),

• an attempt is made to exceed the capacity of a foster parent,
• adoption of an animal that has already been adopted is attempted

(regardless of dates),
• adoption of an animal at a date that predates a recorded veteri-

nary exam (i.e. the exam record would be rendered invalid by the

adoption),
• to avoid confusion, an action is prevented if it would cause two

animalswith the samename and species to be housed by the shelter
at the same time (it is still an error even if they would never meet
due to fostering – an animal of the same name & species can only
be accepted into the shelter after the first was adopted; of course,
having ‘Jesenius’ and ‘Jesenius II’ at the same time is perfectly
acceptable).

Part 5: Memory management, reference counting
Please note that the content of this chapter might change considerably
before it comes up.
Demonstrations:

1. (to be added)

Practice exercises:

1. refcnt – a reference counting manager
2. final – deterministic object finalization
3. reach – reachability from a set of roots
4. sweep – a mark and sweep collector
5. malloc – low-level memory management
6. trace – tracing composite objects

Regular exercises:

1. refcnt – reference counting with data
2. reach – reachability again
3. sweep – mark and sweep v2
4. semi – a copying ‘semi-space’ collector
5. cheney – improved version of the same
6. python – reference counting + mark & sweep

Voluntary exercises:

1. (nothing here yet)

Part 5.p: Practice Exercises

5.p.1 [refcnt] Implement a simple reference-counting garbage collec-
tor. The interface is described in the class Heap below. The root objects
are immortal (those are established by add_root). The countmethod re-
turns the number of reachable live objects. The alivemethod checks
whether a given object is alive. All objects start out dead.
References are added/removed using add_ref and del_ref. You can
assume that the number of del_ref calls on given arguments is always
atmost the same as thenumber of corresponding add_ref calls. Assume
that no reference cycles are created. You need to keep track of the
references yourself.

class Heap:

def add_root(self, obj: int) -> None: pass

def add_ref(self, obj_from: int, obj_to: int) -> None: pass

def del_ref(self, obj_from: int, obj_to: int) -> None: pass

def count(self) -> int: pass

def alive(self, obj: int) -> bool: pass

5.p.2 [final] Same as previous exercise, but with the additional re-
quirement that whenever an object becomes garbage (unreachable), a
finalizer is immediately called on it. The finalizer may perform arbi-
trary heap manipulation (as long as it is otherwise legal; in particular,
it may ‘re-animate’ the object it is finalizing, by storing a reference to
this object). A finalizer must not be called on an object if a reference
exists to this object (even if that reference is from another dead object).

class Heap:

def add_root(self, obj): pass

def add_ref(self, obj_from, obj_to): pass

def del_ref(self, obj_from, obj_to): pass

def set_finalizer(self, callback): pass

5.p.3 [reach] Implement the ‘mark’ phase of a mark & sweep collector.
That is, find all objects which are reachable from the root set.
Like before, roots are marked using add_root and references are
added/removed using add_ref and del_ref. You can assume that the
number of del_ref calls on given arguments is always at most the same
as the number of corresponding add_ref calls.

class Heap:

def add_root(self, obj: int) -> None: pass

def add_ref(self, obj_from: int, obj_to: int) -> None: pass

def del_ref(self, obj_from: int, obj_to: int) -> None: pass

def reachable(self) -> Set[int]: pass

5.p.4 [sweep] Add the ‘sweep’ phase to themark & sweep collector from
previous exercise. That is, find all objects which are reachable from
the root set, then ‘free’ all objects which were previously alive but are
not anymore. Freeing objects is simulated using a callback, which is
passed to the constructor of Heap. The callback must be passive (unlike
the finalizer from p2_final).
Again, roots are marked using add_root and references are added/re-
moved using add_ref and del_ref. You can assume that the number
of del_ref calls on given arguments is always at most the same as the
number of corresponding add_ref calls.

class Heap:

def __init__(self, free: Callable[[int], None]) -> None:

pass

def add_root(self, obj: int) -> None: pass

def add_ref(self, obj_from: int, obj_to: int) -> None: pass

def del_ref(self, obj_from: int, obj_to: int) -> None: pass

def collect(self) -> None: pass

5.p.5 [malloc] In this exercise, we will move one level down and one
step closer to reality. Your task is to implement simplified versions of
the malloc and free functions, in a fixed-size memory represented as a
Python list of integers.
For simplicity, the memory will be ‘word-addressed’, that is, we will
not deal with individual bytes – instead, each addressable memory cell
will be an int. To further simplify matters, freewill get the size of the
object as a second parameter (you can assume that this is correct).
Use a first-fit strategy: allocate objects at the start of the first free chunk
ofmemory. It is okay to scan for freememory in linear time. The malloc
method should return None if there isn’t enough (continuous) memory
left.

class Heap:

def __init__(self, size: int) -> None: pass

def read(self, addr: int) -> int: pass

def write(self, addr: int, value: int) -> None: pass

def malloc(self, size: int) -> Optional[int]: pass

def free(self, addr: int, size: int) -> None: pass

PV248 Python 32/68 November 2, 2022

Part 5.r: Regular Exercises

5.r.1 [refcnt] Implement a simple reference-counting garbage collec-
tor. The interface is described in the class Heap below. Objects are
represented using lists of integers, and the heap as a whole is a list of
such objects. Negative numbers are data, non-negative numbers are
references (indices into the main list of objects). The root object (with
index 0) is immortal.
The interface:

• the countmethod returns the number of live objects,
• the write method returns True iff the write was successful (the

object was alive and the index was within its bounds)
• likewise, the readmethod returns None if the object is dead or invalid

or the index is out of bounds.
• the makemethod returns an unused object identifier (and grows the

heap as required).

The first call to make creates the root object. A freshly-made objects
starts out with zero references. A reference to this object must be
written somewhere into the heap.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

pass # …

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.2 [reach] Implement the mark part of a mark & sweep collector.
The interface of Heap stays the same as it was in r1.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

5.r.3 [sweep] Add the sweep procedure to the Heap implementation
from previous exercise.

class GcHeap(Heap):

def collect(self) -> None: pass

5.r.4 [semi] Write a semi-space collector, using the same interface
as before. The requirement is that after a collection, the objects all
occupy contiguous indices. For simplicity, we index the semispaces
independently, so the objects always start from 0. Make sure that the
root always retains index 0.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

def collect(self) -> None: pass

5.r.5 [cheney] Write a Cheney-style semi-space collector, using the
same interface and requirements as before. The main difference is
in the overhead of the algorithm (only 2 pointers outside of to/from
spaces are available in the implementation of collect in this exercise).

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def count(self) -> int: pass

def collect(self) -> None: pass

5.r.6 [python] Implement the ‘Python’ collector: reference counting,
withmark & sweep to deal with cycles. Objects that are not on loops, or
reachable from loops, are destroyed immediately when last reference
to them is lost. Unreachable loops are destroyed on collect.

class Heap:

def __init__(self):

self.data : List[List[int]] = []

def read(self, obj_id: int, index: int) -> Optional[int]: pass

def write(self, obj_id: int, index: int,

value: int) -> bool: pass

def make(self, size: int) -> int: pass

def collect(self) -> int: pass

Part 6: Objects 2
Demonstrations:

1. (to be done)

Practice exercises:

1. poly – polynomials with operator overloading
2. mod – finite rings (integers mod N)
3. noexcept – turn exceptions into None returns
4. with – a simple context manager
5. numeric – a simple meta-class exercise
6. record – ‘data classes’ using data descriptors

Regular exercises:

1. trace – advanced print debugging
2. profile – a very simple profiler
3. record – more data classes
4. array – array with automatic resizing

5. bitset – a compact set of small integers
6. undo – a data descriptor with a history

Voluntary exercises:

1. (nothing here yet)

Part 6.p: Practice Exercises

6.p.1 [poly] Implement polynomials which can be added and printed.
Do not print terms with coefficient 0, unless it is in place of ones and
the only term. For example:

x = Poly(2, 7, 0, 5)

y = Poly(2, 4)

print(x) # prints 2x³ + 7x² + 5

PV248 Python 33/68 November 2, 2022

print(y) # prints 2x + 4

print(x + y) # prints 2x³ + 7x² + 2x + 9

The implementation goes here:

class Poly:

pass

We will do one more exercise with operators, mod.py, before moving
on to exceptions.

6.p.2 [mod] In this exercise, you will implement the ring ℤ/nℤ of inte-
gers modulo n. Welcome to abstract algebra: a ring is a set with two
operations defined on it: addition and multiplication. The operations
must have some nice properties. Specifically, the set we consider in
this exercise is the set of all possible remainders in the division by n;
you can read up on the necessary axioms on e.g. Wikipedia (under
`Ring (mathematics)`).
Interaction of elements in different modulo classes results in a TypeEr-

ror. When printing, use the notation [x]n, such as [5]7 to represent all
integers with remainder 5. Implement equality, comparison, printing,
and the respective addition and multiplication (all should also work
with plain integer operands on either side).
An instance of Mod represents a congruence class xmodulo n.

class Mod:

def __init__(self, x: int, n: int) -> None:

pass

6.p.3 [noexcept] Write a decorator @noexcept(), which turns a function
which might throw an exception into one that will instead return None.
If used with arguments, those arguments indicate which exception
types should be suppressed.
Note: typing this correctly with mypy is probably impossible. You can
try using Callable[..., Any] and/or Any if you want to add annota-
tions.

def noexcept(*ignore):

def decorate(f):

return f

return decorate

6.p.4 [with] Write a simple context manager to be used in a with block.
The goal is to enrich stack traces with additional context, like this:

def context(*args):

pass

For example:

def foo(x: int, y: int) -> None:

with context("asserting equality", x, '=', y):

assert x == y

Calling foo(1, 1) should print nothing (the assertion does not fail
and no exceptions are thrown). On the other hand, foo(7, 8) should
print something like this:

asserting equality 7 = 8

Traceback (most recent call last):

File "with.py", line 20, in <module>

foo(7, 8)

File "with.py", line 17, in foo

assert x == y

AssertionError

6.p.5 [numeric] Implement a meta-class Numeric such that numbers
(floats, integers, …) may appear to be instances of Numeric-based classes
(the normal, non-meta class itself should be able to decide which, if
any; you may find a class attribute useful here).
Don’t forget to derive your custom metaclass from the builtin (default)
metaclass, type. When dealing with mypy, you can get away with an-

notating the type of the (non-meta!) class attribute you want to use in
the isinstance override directly in the metaclass.

class Numeric: pass

Now implement classes Complex which represents standard complex
numbers (based on float) and Gaussian, which represents Gaussian
integers (complex numbers with integer real and imaginary part). The
following should hold:

• integer values (including literals) are instances of Gaussian,
• float values are not instances of Gaussian,
• both integer and float values (including literals) are instances of

Complex.

Other than that, implement addition and equality so that all reasonable
combinations of parameters work (integers can be added to Gaussian
integers and all of floats, normal integers and Gaussian integers can
be added to Complex numbers).

class Gaussian: pass

class Complex: pass

6.p.6 [record] Implement Field, a data descriptor which can be used to
create classes that simply keep attributes (records, data classes), with-
out having to type out the __init__ method. The use case is similar
to the dataclass decorator, though our approach will be much simpler
(and also much more limited). When initializing an instance, make
sure that the default value is copied, so that default lists and other
mutable values are not accidentally shared between instances (see also
standard module copy).
Hint: The data descriptor can keep the value in the regular instance
__dict__. Remember the diagram used by the default __getattribute__
for lookup? You can even use the same name, so the value is not
directly exposed.
Bonus: If you like a challenge, extend Field so that it monkey-patches
an __init__method into the ‘data’ class (i.e. the one with Field-typed
attributes). This synthetic __init__ should accept arguments in the
declaration order of the fields and initialize them to non-default values,
if provided (see tests below).
PS: You can make Field a Generic and with some fiddling, make the
types sort of work (may need a cast in __get__)

class Field: pass

class Data: # helper to silence ‹mypy› in the bonus part

def __init__(self, *args: Any) -> None: pass

Part 6.r: Regular Exercises

6.r.1 [trace] Write a decorator that prints a message every time a
function is called or it returns. The output should be indented when
calls are nested, and should include arguments and the return value.
Aim for output like this:

foo [13]

bar [13] -> 20

bar [26] -> 33

returned 53

def traced(f):

pass

6.r.2 [profile] Implement a decorator which will keep track of how
many times which function was called. The decorator should be avail-
able as @profile and calling profile.get() should return a dictionary
with function names as keys and call counts as values.

def profile(f): pass

PV248 Python 34/68 November 2, 2022

6.r.3 [record] Re-do p6_record, including the bonus, but using a class
decorator. That is, implement a decorator recordwhich takes a class

which only contains (class) variables and turn it into a proper classwith
instance attributes of the same names, and with appropriate default
values.

def record(cls): pass

class Data: # helper to silence ‹mypy›

def __init__(self, *args: Any) -> None: pass

6.r.4 [array] Implement a class Array which acts like a list, with the
following differences:

• no push, pop, remove and similar ‘list-like’ methods – only item access
via indexing,

• the constructor takes a default value, which is used as the initial
value for cells that have not been explicitly set,

• all indices are always valid: both reading and writing an index
automatically resizes the underlying list (using the default given
above to fill in missing cells).

The default value should be copied into new cells, so that arrays with
mutable work reasonably. Use shallow copies.

class Array: pass

Part 7: Pitfalls, testing, profiling
This week will cover hypothesis, a rather useful tool for testing Python
code. Hypothesis is a property-based testing system: unlike traditional
unit testing, we do not specify exact inputs. Instead, we provide a
description of an entire class of inputs; hypothesis then randomly sam-
ples the space of all inputs in that class, invoking our test cases for each
such sample.
The main interface to hypothesis is the hypothesis.given decorator. It
is used like this:

import hypothesis

import hypothesis.strategies as s

@hypothesis.given(s.lists(s.integers()))

def test_sorted(x):

assert sorted(x) == x # should fail

@hypothesis.given(x = s.integers(), y = s.integers())

def test_cancel(x, y):

assert (x + y) - y == x # looks okay

Calling the decorated function will perform a number of randomized
tests. The strategies dictate what values will be attempted for each
argument (arguments and strategies are matched by name).
Demonstrations:

1. (to be done)

In practice exercises this week, you will write tests for different pieces
of (better or worse) code. The ‘tests for the tests’ that are enclosed try
to make sure your tests can tell bad code from good code, though of
course there are limitations.

1. inner – dot product on 3D vectors with integer components
2. cross – same, but cross product
3. part – partitioning lists based on a predicate
4. search – binary search, an off-by-one bonanza
5. sort – sorting lists
6. heap – tests for heap-organized arrays

Unlike other weeks, we will not be writing new programs in the sem-
inar either. Instead, you get the following programs that are already
written and your task is to write tests for them, to make sure they are
correct (or find and fix bugs if they aren’t).
The rules for activity points will be relaxed, so that you can split into
subgroups and compete with each other to decide the correctness of
as many programs as you can. Your tutor will arrange the details with
you.

1. life – game of life
2. dfs – depth first search, the perennial favourite
3. record – a decorator for making record types
4. bipartite – checking whether a graph is bipartite
5. treap – testing data structures

6. itree – an in-order tree iterator

Voluntary exercises:

1. (nothing here yet)

Part 7.p: Practice Exercises

7.p.1 [inner]

1. Implement the standard dot product on 3D integer vectors.
2. Use hypothesis to check its properties:

∘ commutativity
∘ distributivity over addition a⋅(b + c) = a⋅b + a⋅c
∘ bilinearity a⋅(rb + c) = r(a⋅b) + (a⋅c)
∘ compatibility with scalar multiplication: (ra)⋅(rb) = rr(a⋅b)

Bonus: Try the same with floats. Cry quietly. Disallow inf. And nan.
Then cry some more.

Vector = Tuple[int, int, int]

Inner = Callable[[Vector, Vector], int]

def add(a: Vector, b: Vector) -> Vector:

ax, ay, az = a

bx, by, bz = b

return (ax + bx, ay + by, az + bz)

def mul(r: int, a: Vector) -> Vector:

ax, ay, az = a

return (r * ax, r * ay, r * az)

def dot(a, b): pass

def check_commutativity(dot: Inner) -> None: pass

def check_distributivity(dot: Inner) -> None: pass

def check_bilinearity(dot: Inner) -> None: pass

def check_compatibility(dot: Inner) -> None: pass

7.p.2 [cross] Implement the cross product and check the following
properties:

• anti-commutativity
• distributivity over addition
• compatibility with scalar multiplication: ra × b = a × rb = r(a × b)
• Jacobi identity: a × (b × c) + b × (c × a) + c × (a × b) = 0

Check all of them on integer inputs.

Vector = Tuple[int, int, int]

BinOp = Callable[[Vector, Vector], Vector]

def add(a: Vector, b: Vector) -> Vector:

ax, ay, az = a

bx, by, bz = b

return (ax + bx, ay + by, az + bz)

PV248 Python 35/68 November 2, 2022

def mul(r: int, a: Vector) -> Vector:

ax, ay, az = a

return (r * ax, r * ay, r * az)

def cross(a, b): pass

def check_anticommutativity(cross: BinOp) -> None: pass

def check_distributivity(cross: BinOp) -> None: pass

def check_jacobi(cross: BinOp) -> None: pass

def check_compatibility(cross: BinOp) -> None: pass

7.p.3 [part]

T = TypeVar('T')

Write a function, partition, which takes a predicate and a list and
returns a pair of lists: one with items that pass the predicate (like filter)
and the other with items which don’t.

def partition(predicate, items): pass

Then write tests using hypothesis that show a given implementation
of partitionworks as expected.

def check_partition(part): pass

7.p.4 [search] Write a function, search, which takes an item and a
sorted list of integers and returns a bool indicating whether the item
was present in the list. Implement it using binary search.

def search(needle, haystack): pass

As before, make sure the search predicate is correct. Write some tests
by hand and then write a hypothesis check. Which do you reckon is
easier and which harder?

def check_search_manual(part): pass

def check_search_auto(part): pass

7.p.5 [sort] Write a procedure which sorts the input list and removes
any duplicated entries (in place).

def sort_uniq(items): pass

Write a hypothesis-based test function which ensures a given sort-
uniq procedure is correct.

def check_sort(sort): pass

7.p.6 [heap] Write sift_down, a procedure which takes 2 parameters: a
list, and an index idx. The list is amax-heap,with the possible exception
of the node stored at index idx, which may be out of place.
The children of the node stored at an arbitrary index i are stored at
indices 2i + 1 and 2i + 2.

def sift_down(heap: List[int], idx: int) -> None:

pass

Write a hypothesis-based test function which ensures that sift_down
is correct.

def check_sift(sift): pass

Part 7.r: Regular Exercises

7.r.1 [life] Remember the game of life fromweek 1? A quick reminder:
it is a 2D cellular automaton where each cell is either alive or dead. In
each generation (step of the simulation), the new value of a given cell
is computed from its value and the values of its 8 neighbours in the
previous generation. The rules are as follows:

state alive neigh. result

alive 0–1 dead
alive 2–3 alive
alive 4–8 dead

dead 0–2 dead
dead 3 alive
dead 4-8 dead

An example of a short periodic game:

○○○

○

○

○

○○○→ →

Enclosed is an implementation of the game that is maybe correct, but
maybe not. Write tests and find out which it is. Fix the bugs if you
find any.

def updated(x, y, cells):

count = 0

alive = (x, y) in cells

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

if dx and dy:

count += (x + dx, y + dy) in cells

return count in { 2, 3 } if alive else count == 3

def life(cells, n):

if n == 0:

return cells

todo = set()

for x, y in cells:

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

todo.add((x + dx, y + dy))

ngen = { (x, y) for x, y in todo if updated(x, y, cells) }

return life(ngen , n - 1)

7.r.2 [dfs] You are given a semi-coroutine which is supposed to yield
nodes of a graph in the ‘leftmost’ DFS post-order. That is, it visits the
successors of a vertex in order, starting from leftmost. The input graph
is encoded using a dictionary of neighbour lists.
Make sure it is correct (and if not, fix it).

T = TypeVar('T')

def dfs(graph: Dict[T, List[T]], initial: T) \

-> Iterable[T]:

seen : Set[T] = set()

yield from dfs_rec(graph, initial, seen)

def dfs_rec(graph: Dict[T, List[T]], initial: T,

seen: Set[T]) -> Iterable[T]:

seen.add(initial)

for n in graph[initial]:

yield from dfs_rec(graph, n, seen)

yield initial

7.r.3 [record] Below is an implementation of a @record decoratorwhich
can be used to create classes that simply keep attributes (records, data
classes), without having to type out the __init__method.
The use case is similar to the dataclass decorator, but the below imple-

PV248 Python 36/68 November 2, 2022

mentation is much simpler. Default values must always be set, and
they are shallow-copied into each instance. Additionally, the synthetic
__init__ method takes an optional argument for each attribute, in
which case the given attribute is initialized to that value, instead of
the default.
Make sure the decorator works as advertised. If not, fix it.

def record(cls: type) -> type:

class rec:

def __init__(self, *args: Any) -> None:

from copy import copy

counter = 0

for k, v in cls.__dict__.items():

if not k.startswith('__'):

if len(args) > counter:

self.__dict__[k] = args[counter]

else:

self.__dict__[k] = copy(v)

counter += 1

return rec

7.r.4 [bipartite] An undirected graph is given as a set of edges E. For
any (u, v) ∈ E, it must also be true that (v, u) ∈ E. The set of vertices
is implicit (i.e. it contains exactly the vertices which appear in E).
Below is a predicate which should decide whether a given graph is
bipartite (can be coloured with at most 2 colours, such that no edge
goes between vertices of the same colour). Make sure it is correct, or
fix it.

def is_bipartite(graph):

colours = {}

queue = []

vertices = list(set([x for x,_ in graph]))

for v in vertices: # can be disconnected

if v in colours:

continue

queue.append(v)

colours[v] = 1

colour = 1

while queue:

v = queue.pop(0)

colour = 2 if colours[v] == 1 else 1

for neighb in [y for x, y in graph if x == v]:

if neighb in colours and \

colours[neighb] != colour:

return False

if neighb not in colours:

colours[neighb] = colour

queue.append(neighb)

return True

7.r.5 [treap]

class SupportsLessThan(Protocol):

def __lt__(self, other: Any) -> bool: ...

def __le__(self, other: Any) -> bool: ...

T = TypeVar('T', bound = SupportsLessThan)

Remember treaps from week 2? A treap is a combination of a binary
search tree and a binary heap: each node has a key (these form a search
tree) and a randomized priority (these form a heap).
The role of the heap part of the structure is to keep the tree approxi-
mately balanced. Your task is to decide whether the below treap im-
plementation works correctly. Keep in mind that treaps are only ap-
proximately balanced: your tests need to take this into account.

class Treap(Generic[T]):

def __init__(self, key: T, priority: int):

self.left : Optional[Treap[T]] = None

self.right : Optional[Treap[T]] = None

self.key = key

self.priority = priority

def rotate_left(self: Treap[T]) -> Treap[T]:

assert self.left is not None

r = self.left

detach = r.right

r.right = self

self.left = detach

return r

def rotate_right(self: Treap[T]) -> Treap[T]:

assert self.right is not None

r = self.right

detach = r.left

r.left = self

self.right = detach

return r

def _insert(node: Optional[Treap[T]], key: T, prio: int)

-> Treap[T]:

if node is None:

return Treap(key, prio)

else:

return node.insert(key, prio)

def _fix_right(self) -> Treap[T]:

assert self.right is not None

if self.priority > self.right.priority:

return self

else:

return self.rotate_right()

def _fix_left(self) -> Treap[T]:

assert self.left is not None

if self.priority > self.left.priority:

return self

else:

return self.rotate_left()

def insert(self, key: T, prio: int) -> Treap[T]:

if key > self.key:

self.right = Treap._insert(self.right, key, prio)

return self._fix_right()

else:

self.left = Treap._insert(self.left, key, prio)

return self._fix_left()

7.r.6 [itree] Below, you will find an implementation of an in-order
iterator for binary trees. Make sure it is correct and fix it if it isn’t.

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, value: T,

left: Optional[Tree[T]] = None,

right: Optional[Tree[T]] = None) -> None:

self.left = left

self.right = right

self.value = value

self.parent : Optional[Tree[T]] = None

if left is not None:

left.parent = self

if right is not None:

right.parent = self

class TreeIter(Generic[T]):

def __init__(self, tree: Tree[T]) -> None:

PV248 Python 37/68 November 2, 2022

self.n : Optional[Tree[T]] = tree

def descend(self) -> None:

assert self.n is not None

while self.n.left is not None:

self.n = self.n.left

def ascend(self) -> None:

assert self.n is not None

while (self.n.parent is not None and

self.n == self.n.parent.right):

self.n = self.n.parent

self.n = self.n.parent # coming from left

def __iter__(self) -> TreeIter[T]:

assert self.n is not None

i = TreeIter(self.n)

i.descend()

return i

def __next__(self) -> T:

v = self.n.value

if self.n.right is not None:

self.n = self.n.right

self.descend()

else:

self.ascend()

return v

Part 8: Coroutines 2, async def

This chapter extends what we know about coroutines and generators
to include async coroutines, how they are used, how they are related
to generators and how they ‘tick’ in general.
Demonstrations:

1. request – communication with the scheduler
2. fibres – how to schedule fibres (aka green threads)
3. spawn – creating new fibres on demand
4. yield – asynchronous generators and async for

5. context – context managers and async

Practice exercises:

1. rrsched – a round-robin coroutine scheduler
2. priority – a simple priority-driven scheduler
3. exchange – coordinate async producers and consumers
4. box – a simplified version of the above
5. (exercise missing)
6. sort – sorting with real-time latency constraints

Regular exercises:

1. sleep – planning execution of sleepy coroutines
2. ioplex – multiplex incoming IO to multiple coroutines
3. search – low-latency binary search trees
4. (3 more exercises missing)

Voluntary exercises:

1. (nothing here yet either)

Part 8.1: async Coroutines

We have already dealt with generators (aka ‘semi-coroutines’) and
how to extend them to full coroutines using a trampoline. Python has
another system of coroutines that is related, but in some sense more
restricted. The main use case for async coroutines is asynchronous IO
(we will look at that more specifically in a few weeks) and the syntax
is tailored to this use case.
When using generators35, we are mainly interested in yield and ex-
tracting the values that were passed to yield (mainly through iteration,
sometimes through direct calls to next or send). The return value of a
generator is usually ignored (after all, the only way to get this return
value is to catch StopIteration).
In some sense, async def and particularly await is the polar opposite.
In x = await y, the x is the return value of the coroutine object y. Or

35 And ‘normal’ coroutines – to avoid confusion, wewill call them generators in this unit, though
everything said about generators applies equally to normal coroutines.

to be more specific:

async def foo():

return 3

async def bar():

x = await foo() # x is set to 3 here

On the other hand, using the async def syntax, there is no way to yield
anything, even though internally, coroutine objects created by async

def are very similar to generators. The entire interaction with yield

and the mechanics of next and StopIteration are hidden in the await

expression (and in the scheduler – more on that in the next section).
Before we go on, let us recall the distinction between generator objects
and generator functions (and their relationship to lexical closures).
Given:

def foo():

yield 3

foo itself is a generator function, the result of calling foo() is a gener-
ator object and calling __next__ on this object actually runs the code
written in foo (until it yields).
Unsurprisingly, async def works the same way, though the result is
not called a generator object but a coroutine object, and there is one
more twist: you cannot directly call __next__ on a coroutine object (i.e.
it is not an Iterator). Instead, it is Awaitable, which means you first
need to call __await__ on it, and that gives you an iterator. Like this:

async def foo():

return 3

coro_awaitable = foo()

coro_iterator = coro_awaitable.__await__()

next(coro_iterator) # raises StopIteration(3)

Knowing this, we can unpack what the common construct x = await

foo() actually means:

foo_awaitable = foo()

foo_iterator = foo_awaitable.__await__()

try:

while True:

yield next(foo_iterator)

except StopIteration as e:

x = e.value

Besides the awaitable/iterator dance (which is just a technicality), what
happens is that await transparently passes through every yield from
the callee to the caller. That is, given:

PV248 Python 38/68 November 2, 2022

async def async_1():

return await magic_sleep(0)

async def async_2():

return await async_1()

async def async_3():

return await async_2()

If a return happens, the callee grabs that value and uses it as the result
of the await expression.
However, if magic_sleep yields (which its real-world equivalents nor-
mally do), the await in async_1 takes the value yielded by the callee
(magic_sleep) and passes it to its caller (async_2). Same process repeats
in async_2, which takes the value that async_1 secretly yielded and
passes it onto its own caller, async_3.
Basically, async def coroutines form a stack, which is sandwiched be-
tween two magic pieces:

1. at the top, a magic (library-provided) function which can yield¹,
2. at the bottom, a scheduler, which is the piece that actually calls

next (or rather send) and is what we are going to look at next.

Part 8.2: An async Scheduler

Syntactic restrictions on async def mean that it isn’t possible to use
them normally (via await) from the toplevel, nor from standard func-
tions. Usually, the missing piece is provided by a library (asyncio in
most cases): to transition from the world of functions to the world
of coroutines, you need a standard function to which you can pass a
coroutine. One such function is asyncio.run, but it’s entirely possible
to write such function with what we already know. Of course, the
other way (calling normal functions from async coroutines) works fine
(with some caveats related to latency).
However, asyncio.run is not simply glue that lets you call an async

coroutine from a normal function – that wouldn’t be very useful.
Nonetheless, let’s have a look at this minimal glue, for future reference:

try:

while True:

next(coro)

except StopIteration as e:

return e.value

Wewill have to refine that, because nothing interesting is happening
above: all values that were yielded are ignored and the suspended
coroutine is immediately woken up again. We need to add two things
to make it actually useful:

1. we need to be able to switch between coroutines (that’s the entire
point of the exercise, after all),

2. we need to react to the values that the other magic half (which
typically comes from the same library, so in this case fromus) yields
(all the intermediate async def coroutines just forward it, until it
reaches the schedule).

Let’s start with the second part. Schematically:

result = None

while True:

try:

request = coro.send(result)

result = process(request)

except StopIteration as e:

return e.value

The heavy lifting is done by process, but we are not really interested in
the details of that. In asyncio, the requests are IO requests and process

dispatches those IO requests to the operating system. We will discuss
that in more detail another week. For a more complete sketch, see

d1_request.
The other half of scheduler’s job is implementing fibres, or green
threads. Notable features of fibres are:

1. The most important feature of fibres is that they are cheap, in the
sense you can make lots of them, and switching from one to the
next is also cheap. This is universally true across many languages
that provide them.

2. Python brings another feature with its implementation of fibres:
the only place where a fibre can be interrupted (suspended) is dur-
ing an await. This makes concurrency much easier to deal with,
because it is immediately obvious where a thread might be sus-
pended and another might be resumed. There is no parallelism: at
any given time, at most a single fibre is executing. A data race is
only possible if you split a complex update of a shared data structure
across an await – something that is much harder to do by accident
than, say, forgetting to lock a mutex.

3. Combined with asyncio36, fibres can provide IO parallelism where
multiple IO requests from multiple fibres are processed in parallel
by the low-level IO loop. The actual Python code still runs sequen-
tially, but since IO causes a lot of latency, using the delays while IO
is executing in the OS to run other fibres can considerably improve
overall throughput, and/or per-client latency in applications with
multiple client connections.

To get fibres, we need to be able to do two things, essentially:

1. suspend an entire coroutine stack, which is easily done: await al-
ready propagates a yield from special methods all the way to the
scheduler,

2. put suspended coroutines on a queue (or into a system of queues)
– again easily done, since suspended coroutines are just regular,
inert objects and can be put into a list or a deque like any other
object,

3. pick and resume a particular fibre from the queue: this is done by
calling next or send on the coroutine object that we picked from the
queue.

The system of queues is usually arranged the same way an OS sched-
uler is: there is a run queue for fibres that are ready to execute (i.e. they
are not waiting for any IO operation), and then additional queues are
created for resources that can block the execution of a fibre (whether
it is a synchronisation device, a communication queue or an IO opera-
tion). Whenever the resource becomes available, the fibre is moved to
the run queue and eventually resumed.
The only thing that remains is that we need to be able to actually
create new fibres. But since fibres are nothing but stacks of suspended
coroutines, we can create a new one by creating a coroutine object (by
calling a coroutine function, aka an async function) and sending the
result to the scheduler using a ‘please put this on your queue’ request.
Along the lines of:

async def fibre():

pass # do stuff here

async def main():

coro = fibre() # create a suspended coroutine

await async_spawn(coro) # send it to the scheduler

The implementation of async_spawn is then straightforward. For a
worked example, see d3_spawn.

36 Notably, asyncio is more or less modelled after node.js, which is itself modelled after the IO
loop used in traditional, single-threaded UNIX daemons. This approach to concurrency has a
long tradition, but the introduction of node.js and asynciomade it considerably easier to use.

PV248 Python 39/68 November 2, 2022

Part 8.d: Demos

8.d.1 [request] In this demo, wewill look at first part of the scheduler’s
job: handling requests from ‘special’ functions. First, however, let’s
define a helper class to represent the requests that we are going to
pass from the async functions to the scheduler. To make things simpler,
the scheduler will pass back the result by updating the request (in
particular its result attribute, which we set up in __init__).

class Request:

pass

class ReadRequest(Request):

def __init__(self, file: str):

self.file = file

self.result : str

class WriteRequest(Request):

def __init__(self, file: str, data: str):

self.file = file

self.data = data

self.result = None

To simplify working with type annotations, we will define a pair of
generic aliases. The first, AwaitGen is going to be the type of __await__
methods that cooperate with our scheduler (and hence they yield in-
stances of Request). The latter, Coro, is the type of coroutines that we
want to use. Somewhat unfortunately, mypy does not actually care
about the yield (or send) type of the async def – we are sufficiently
deep into plumbing that we are simply expected to get this right with-
out static types.

ResultT = TypeVar('ResultT')

AwaitGen = Generator[Request, None, ResultT]

Coro = Coroutine[Request, None, ResultT]

With that out of the way, we can define some ‘special’ functions that
can be awaited, but are not defined using async def, which means that
they will be able to yield into the scheduler. Recall that await expects
an awaitable object and calls __await__ on it. The result of __await__
should be an iterator.
Of course, we can simply provide __await__ as a method, and to make
things particularly easy, we can make it a generator. That way, calling
__await__ automatically gets us a generator object, which happens to
also be an iterator. We have already prepared a type alias for this
occasion above: AwaitGen.
As always, calling async_read('foo') will use __init__ to initialize
the object, at which point we create the request so that __await__ can
forward it into the scheduler using yield. When control returns to
__await__, we extract the result and pass it onto our caller.

class async_read:

def __init__(self, file: str):

self.req = ReadRequest(file)

def __await__(self) -> AwaitGen[str]:

yield self.req

return self.req.result

Basically the same as above. Notice the different annotation on
__await__, and how that matches the type of self.result in the above
request types.

class async_write:

def __init__(self, file: str, data: str):

self.req = WriteRequest(file, data)

def __await__(self) -> AwaitGen[None]:

yield self.req

return self.req.result

A helper function to actually process requests in the scheduler. We
fake everything, for the sake of a demonstration.

def process(request: Request) -> None:

if isinstance(request, ReadRequest):

request.result = f'content of {request.file}'

if isinstance(request, WriteRequest):

print('async_run: writing',

request.data, 'into', request.file)

Finally the scheduler itself (not the most accurate name in this case,
since it ‘schedules’ a single coroutine). We will look at the other aspect
(actually scheduling green threads) in the next demo. Notice that we
always send None as the response – we could actually send a response,
but that would make the types uglier, and updating the request is also
quite reasonable.

def async_run(coro: Coro[ResultT]) -> ResultT:

while True:

try:

request = coro.send(None)

process(request)

except StopIteration as e:

return cast(ResultT, e.value)

Finally, we write a couple of ‘user’ functions using async def. To call
into other async coroutines, We use the standard await construct now
(we are no longer doing plumbing).

async def read_foo() -> str:

foo = await async_read('foo')

return f'read_foo: {foo}'

async def main() -> int:

x = await read_foo()

print(f'main: result of read_foo was "{x}"')

await async_write('bar', 'stuff')

return 13

8.d.2 [fibres] In this demonstration, wewill leave out requests (except
a very simple one, that will allow us to actually switch fibres) and
focus on fibre switching. For this purpose, our scheduler will take two
coroutines at the start and switch between them whenever one of
them yields37 the CPU. First the trivial request:

class sched_yield:

def __await__(self) -> Generator[None, None, None]:

yield None

A couple of type aliases for later convenience.

T = TypeVar('T')

Coro = Coroutine[None, None, T]

That done, we can focus on the scheduler. As mentioned, we will pass
two coroutines (each of them becoming a ‘main’ function of a single
fibre) to the scheduler. We will collect their results and return them as
a 2-tuple. For simplicity, we require both coroutines to have the same
return type.

def run_scheduler(coro_a: Coro[T],

coro_b: Coro[T]) -> tuple[T, T]:

result: dict[Coro[T], T] = {}

Since we have exactly two fibres, we can simply bind them to a pair

37 Please note that if you use the pseudo-code from the Sleator & Tarjan paper, you need to be
careful about parallel assignment – in Python, it does not have the semantics intended by the
authors and you will need to write it out in multiple steps.

PV248 Python 40/68 November 2, 2022

of variables to indicate their status. The active fibre will be the one to
execute in the next ‘timeslot’.

active: None | Coro[T] = coro_a

waiting: None | Coro[T] = coro_b

And the main loop: while we have a fibre to run, run it. If it yields
(using sched_yield), swap it with the waiting fibre (if we have one, i.e.
it did not terminate yet). If a fibre terminates, stash its result in a
dictionary.

while active:

try:

active.send(None)

except StopIteration as e:

result[active] = e.value

active = None

if waiting:

active, waiting = waiting, active

Both fibres have terminated, give back their results to the caller.

return result[coro_a], result[coro_b]

That’s all there is for the scheduler. We can nowwrite a simple (async)
function which will serve as the main function of both our test fibres.
It will simply print some progress messages and yield the processor in
between. What message order do we expect?

async def fibre(n: int) -> int:

print(f'fibre {n} runs')

await sched_yield()

for i in range(2 * n):

print(f'fibre {n} continues')

await sched_yield()

print(f'fibre {n} done')

return n

8.d.3 [spawn] The final piece of using async coroutines to implement
fibres is creation of fibres on demand. In some sense, this is just a
straightforward extension of the previous example: we simply need
to realize that coroutine objects (and thus fibres) can be created by
existing fibres and that they can be passed to the scheduler using the
same request mechanism we have been using earlier (but with a new
twist, combining the special function and the ‘request’ into a single
entity – notice the yield self):

class async_spawn:

def __init__(self, coro: Coro):

self.coro = coro

def __await__(self) -> AGen:

yield self

Coro = Coroutine[async_spawn, None, None]

AGen = Generator[async_spawn, None, None]

We also need to extend the scheduler from the previous example to
support an arbitrary number of fibres (instead of just two). We will put
them on a queue (implemented using a deque), running a fibre until we
can, then popping it off when it returns.

def run_scheduler(main: Coro) -> None:

queue : deque[Coro] = deque()

active : None | Coro = main

reqs = 0

Request processing: there is only one type of request, so this is really
simple. When spawning a new fibre is requested, put the ‘main’ of that
fibre at the end of the queue. Eventually, it will get to run as fibres that

spawned earlier terminate.

def process(req):

if isinstance(req, async_spawn):

queue.append(req.coro)

else:

assert False # no other type of request exists

And themain loop: while we have a fibre to run, run it. If it terminates,
pull out the next one from the queue. If the queue is empty, we are
done. We also keep and return the count of requests that we served,
as a simple sanity check.

while active:

try:

process(active.send(None))

reqs += 1

except StopIteration as e:

active = queue.popleft() if queue else None

return reqs

That’s our last demo scheduler. You can make a guess how the execu-
tion goes (i.e. what fibres will run and in what order).

async def fibre(n: int) -> int:

for i in range(n % 10):

print(f'fibre {n} spawns {10 * n + i}')

await async_spawn(fibre(10 * n + i))

print(f'fibre {n} done')

return n

8.d.4 [yield] TBD

8.d.5 [context] TBD

Part 8.p: Practice Exercises

8.p.1 [rrsched] Write an async (coroutine) scheduler which executes a
given list of coroutines (the async def type) in a round-robin fashion.
That is:

• provide suspend, an asyncmethod, which, when awaited, suspends
the currently executing coroutine and allows the others to be sched-
uled (that is, given sched, a reference to the scheduler, a coroutine
should be able to perform await sched.suspend()),

• tasks are added using add, which takes an unstarted (never awaited)
coroutine as an argument and appends it to the end of the round-
robin execution order (i.e. the coroutine that is added first is ex-
ecuted first, until it suspends, then the second executes until it
suspends, and so on; when the last coroutine on the list suspends,
wake up the first to continue, until it suspends, wake up the second,
…),

• after at least one coroutine is added, calling run on the scheduler
will start executing the tasks; run returns normally after all the
tasks finish (note, however, that some tasks may terminate earlier
than others).

See test_basic for a simple usage example. A few hints follow (you can
skip them if you know what you are doing):

1. To implement suspend, youwill want to create a low-level awaitable
object (i.e. one which is not the result of async def). This is done by
providing a special method __await__, which is a generator (i.e. it
uses yield).

2. This yield suspends the entire stack of awaitables (most of which
will be typically async coroutines), returning control to whoever
called next on the iterator (the result of calling __await__ on the
top-level awaitable).

3. Regarding mypy:

PV248 Python 41/68 November 2, 2022

∘ the task passed to add should be a Coroutine (since the scheduler
won’t touch any of its outputs, these can be all set to object,
instead of the much more problematic Any),

∘ the Awaitable protocol needs __await__ to be a Generator (you
will need this for implementing suspend),

∘ when you call __await__() on an awaitable, the result is, among
others, an Iterator.

class RoundRobin: pass

8.p.2 [priority] Write an async scheduler which executes a given list
of coroutines in a priority-driven fashion. The add method takes, in
addition to the coroutine itself, a static priority. Higher priorities get
executed more often. Here is how it works:

1. In addition to the static priority (a fixed number), each task is as-
signed a dynamic priority. The dynamic priority starts out equal
to the static one, but is decremented each time a coroutine is awak-
ened.

2. The next coroutine to be awakened is always the one with the
highest dynamic priority.

3. Whenever the highest dynamic priority in the systemdrops to zero,
all tasks get their dynamic priority reset to their static priority.

Except as noted above, the interface and semantics of the scheduler
carry over from p1.

class PrioritySched: pass

8.p.3 [exchange] Implement a classwhich coordinates amulti-producer,
multi-consumer system built out of async coroutines. Each coroutine
can either produce items (by calling put) or consume them (by calling
get). Constraints:

• a given coroutine cannot call both put and get,
• a producer is blocked until the item can be consumed,
• a consumer is blocked until an item is produced.

These constraints mean that there can be at most one unconsumed
item per producer in the system. If multiple producers have a value
ready, the system picks up the one that has beenwaiting the longest. If
multiple consumers are waiting for an item, again, the longest-waiting
one is given the next item.
When run is called, all coroutines are started up, until each blocks on
either put or get. The system terminates when no further items can
be produced (there are no producers left).

T = TypeVar('T')

class Exchange(Generic[T]): pass

8.p.4 [box] Implement a class which coordinates a single producer and
a single consumer (the producer puts the value in the ‘box’, where the
consumer fetches it). The roles (producer vs consumer) are known
upfront. The coroutines are passed to the constructor unevaluated
(i.e. not as coroutine objects, but as functions which take the box as a
parameter and return coroutine objects; see also below).

T = TypeVar('T')

class Box(Generic[T]): pass

8.p.6 [sort] You are given sched_yield, an awaitable that allows the
scheduler to switch to a different coroutine, if needed. Given that,
write a ‘low-latency’ sort function – one that does only O(1) work be-
tween two consecutive calls to sched_yield. Requirements:

• the sort should be in-place,
• the total runtime should be O(n⋅logn),
• use data.compare(a, b) to compare items:

∘ -1means data[a] < data[b],

∘ 0means data[a] == data[b]

∘ finally 1means data[a] > data[b],
• use data.swap(a, b) to swap values with indices a, b,
• len(data) gives you the number of items.

class Array(Sized):

def compare(self, a: int, b: int) -> int: ...

def swap(self, a: int, b: int) -> None: ...

async def sort(data: Array, suspend: Suspend) -> None: pass

def check_run(data: Sequence[int]) -> List[int]:

counter = 0

work_done = []

def tick() -> None:

nonlocal counter

counter += 1

def lap() -> None:

nonlocal counter

work_done.append(counter)

counter = 0

class array(Array):

def __init__(self, data: List[T]) -> None:

self.__data = data

def compare(self, idx_a: int, idx_b: int) -> int:

tick()

a = self.__data[idx_a]

b = self.__data[idx_b]

return 0 if a == b else 1 if a > b else -1

def swap(self, idx_a: int, idx_b: int) -> None:

tick()

val_a = self.__data[idx_a]

val_b = self.__data[idx_b]

self.__data[idx_b] = val_a

self.__data[idx_a] = val_b

def __len__(self) -> int:

return len(self.__data)

Pause = Generator[Tuple[()], None, None]

class pause(Awaitable[None]):

def __await__(self) -> Pause: yield ()

to_sort = array(list(data))

the_sort = sort(to_sort, pause).__await__()

try:

while True:

assert next(the_sort) == ()

lap()

except StopIteration:

lap()

for i in range(len(data) - 1):

assert to_sort.compare(i, i + 1) <= 0

return work_done

Part 8.r: Regular Exercises

8.r.1 [sleep] Write an async (coroutine) scheduler which executes a
given list of coroutines (the async def type). When a coroutine sus-
pends (using sched.suspend) it specifies how long it wants to sleep, in
milliseconds. The scheduler wakes up a particular coroutine when its
sleep timer expires (it should try to do it exactly on time, but sometimes
this will be impossible because another coroutine blocks for too long).
Like before, implement add to attach coroutines to the scheduler and
run to start executing them. The latter returns when no coroutines
remain.

PV248 Python 42/68 November 2, 2022

class Sched: pass

8.r.2 [ioplex] Write an IO multiplexer for async coroutines. The con-
structor is given a ‘coroutine function’ (i.e. an async def, that is a func-
tion which returns a coroutine object) which serves as a factory. There
are 3 methods:

• connect, which creates a new connection (i.e. it spawns a new
server coroutine to handle requests) and returns a connection iden-
tifier,

• closewhich, given a valid identifier, terminates the corresponding
connection,

• sendwhich, given a connection identifier and a piece of data, sends
the latter on to the corresponding server coroutine and returns the
reply of that coroutine.

When creating server coroutines, themultiplexer passes read and write

as arguments to the factory, where read is an async function (i.e. its
result is await-ed) and returns the data that was passed to send; write,
on the other hand, is a regular function and is called when the server

coroutine wants to send data to the client. In other words, reading
may block, but not writing.

class IOPlex: pass

8.r.3 [search] The class Tree represents a binary search tree. Imple-
ment search that performs a search for a given key, in logarithmic time
and constant latency (between two calls to suspend). In each step, pass
the value through which the search has passed to suspend, so that the
caller can monitor the progress of the search.

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, value) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

self.value = value

async def search(self, key, suspend):

pass

Part S.2: Interpreters, Coroutines
In this set, there are 2 interpreters of simple languages – one with
recursion and closures, another with explicit pointers and garbage
collection. The third task explores an extension of the game solver
from the first set (did you know that generators can be used to nicely
encode backtracking?), while the fourth task is focused on the use of
semi-coroutines (generators) in a latency-sensitive context.

1. a_rec – recursive programs
2. b_ptr – pointers and garbage collection
3. c_gravity – same game, iteration 2
4. d_rst – real-time splay trees

Part S.2.a: rec

Implement an interpreter for simple recursive programs. The follow-
ing syntax is taken unchanged from s1/a_while:

• one line = one statement (no exceptions),
• blocks are delimited by indentation (1–5 spaces),
• there are following statement types:

∘ assignment,
∘ if statement.

There are also two important changes:

1. The right-hand side of an assignment can be a function call, in
addition to a built-in operation, written as:

name₀ = func name₁ name₂ … nameₙ

2. There is a new statement type, function definition, which can only
appear in the top-level scope (and is the only statement than can
appear there), of the form:

def funcname name₁ name₂ … nameₙ

All functions can call all other functions, regardless of the

order in which they are defined in the source. Function names

follow the same rules as variable names.

Semantics change in the following way:

• all variables are local to the function in which they are used (decla-
rations are still not needed),

• the result of a function call is the value of a variable with the same

name, i.e. in function foo, the statement foo = 7 sets the return
value to 7 (but does not terminate the function),

• the namespaces for variables and for functions are separate; oper-
ation names (add, and, …) must not be used for functions (but they
can be used for variables).

Like if, a def statement is followed by a body, indented by a single
space. Other restrictions on blocks remain the same as in s1/a_while.
Example program:

def fib n

one = 1

two = 2

fib = 1

rec = gt n two

if rec

n_1 = sub n one

n_2 = sub n two

fib_1 = fib n_1

fib_2 = fib n_2

fib = add fib_1 fib_2

Write a function do_recwhich takes a recursive program (as a string), a
function name, and an arbitrary number of integers. The result is the
return value of the function invoked, or a tuple of (line number, error
string) in case the program fails. Return the first error in this order
(within a group, return the number of the first line with an error):

1. syntax errors (including attempts to redefine a function),
2. errors in function calls:

∘ use of an undefined function or
∘ mismatch in the number of arguments,

3. runtime errors (division by zero).

Errors of type 2 should be reported even if they are in unused code
(i.e. the test must be static). If the function passed to do_rec does not
exist or the number of arguments does not match, return an error on
(virtual) line 0.

Part S.2.b: ptr

In this task, you will extend s1/a_while with pointers and garbage
collection. The syntax is unchanged, except for addition of 3 new
operations:

PV248 Python 43/68 November 2, 2022

• addr_ = set addr val takes the value from variable val and stores
it at the address addr; the result is addr shifted one cell to the right,

• val = get addr off loads the value from address addr + off and
stores it in val,

• addr = alloc count init allocates a new object with count cells; all
the cells are set to the value of variable init.

The memory available to the program is a fixed-size array of cells (its
size is given to the interpreter at the start). It is an error if the program
attempts to allocate more memory than it has available.
However, if the total size of reachable objects never exceeds that of the
fixed-size memory, the program must not die with an out-of-memory
error. A reachable object is one that the program can, at least in princi-
ple, read using a get operation (‘in principle’ means, in this case, that
the programmight need to execute an arbitrary sequence of operations
to read the memory – even if the sequence doesn’t actually appear in
the program).
Addresses are treated as a distinct data type from numbers:

• the first argument of get and setmust be a number,
• new addresses are created by alloc,
• adding a number and an address results in an address iff the result

is within the bounds of the same object as the original address
(same limitation applies to the result of set),

• an address may be stored in memory using set, and will still be an
address if it is later retrieved by get,

• the numeric values of addresses are unspecified, except that:
∘ addresses of different objects always compare unequal,
∘ addresses within the same object compare reasonably (higher

offsets are greater),
∘ addresses always evaluate as true in while or if, or when used

as an operand in a logical operator,
• the result of any other operation is a number (if any addresses

appear as operands, the result will depend on their unspecified
numeric values).

New semantic errors (compared to s1/a_while) – these are all reported
at runtime i.e. when the offending operation executes:

• passing a number (i.e. not an address) as a first argument of get
or set, or an address as the first argument to alloc or as a second
argument to get,

• adding the address and the offset passed to get is out of bounds of
the object into which the address originally pointed,

• memory allocation which would exceed the permitted memory
size.

The error reporting mechanism is otherwise unchanged. An example
program:

one = 1

two = 2

off = 2

x = alloc off two

while off

off = sub off one

y = get x off

z = add z y

The interpreter shall be available via do_ptrwith the program and the
memory size in cells as arguments, and a dictionary of variables as the
result.

Part S.2.c: gravity

In this task, we will continue with the implementation of ‘same game’
from the first set. All the rules remain the same (ha-ha) except that
gravity causes the board to reshuffle when more than nm/10 stones
are removed all at once (where the board has n x m cells). A stone will

fall if it is are either:

• unsupported - there is an empty cell right below it, or
• unstable – a stone is unstable on the left if it is missing both its

direct left neighbour and the bottom-left diagonal neighbour (in-
stability on the right is symmetrical); however edges of the board
are considered stable (they do not count as ‘missing a neighbour’).

At most one stone is falling at any given time. The first stone to fall is
the one nearest to the bottom (if there are multiple such stones, the
leftmost one falls first).
The mechanics of the fall are as follows:

1. an unsupported stone will fall in a straight line toward the bottom
until it hits another stone,

2. an unstable stone will roll off its position, by moving either to the
empty cell below and to its left (or right, if it cannot roll to the left),

3. a stone that started to fall will continue to fall until it is both sup-
ported and stable (on both sides),

4. if a stone becomes unsupported due to another stone falling, it
will be the next to fall (this does not apply to stones that become
unstable – those are processed in the usual bottom-up, left-to-right
order).

The reshuffle is considered part of the round that caused it. The scoring
rule about adjacent removals remains otherwise unchanged (i.e. it
might be triggered by a cell whose stone went missing due to gravity,
and vice-versa, the bonus is not awarded when removing stones that
got buried by an earthquake).
The entry point, samegame, is also unchanged.

Part S.2.d: rst

This task is based on the splay tree from s1/b_splay. The changes
are aimed at making the tree useful in low-latency applications: all
operations become coroutines which must perform at most a constant
amount of work between yields. This way, if the application needs to
attend to other tasks while a lengthy splay is ongoing, it can simply
keep the coroutine suspended. At any point of execution, the time
until the next suspend is bounded by a constant, giving us a worst-
case latency guarantee (i.e. the data structure is, in principle, suitable
for hard-realtime systems).
To achieve the required properties, the tree needs to use top-down
splaying, where the lookup is performed as part of the splay. Re-
sources describing the top-down splay operation can be found here:
https://www.link.cs.cmu.edu/splay/ (including pseudocode¹ and a C im-
plementation of the operation). Here is my own description of the
top-down splay operation:

• set up 2 subtrees, initially both empty, called l and r,
• there are 3 or 4 helper functions:

∘ link_left, which takes a subtree and hangs it onto l using the
rightmost link (i.e. as the right child of the bottom-right node)
– you must maintain a pointer to that bottom-right node, to
ensure link_left runs in O(1),

∘ link_right, which is the mirror image of link_left,
∘ the usual rotate (with two nodes as arguments, or possibly split

into rotate_left and rotate_right);
• repeat until not interrupted:

∘ if the value belongs into the left-left subtree of the current root,
rotate the root with its left child (if this child exists) [first step
of the zig-zig case],

∘ if the new root lacks its left child, break the loop,
∘ if the value belongs to the left subtree, perform link_right on

the root and shift the root pointer to its right child [completes
the zig-zig, or performs a simplified zig-zag],

∘ the right-right and right cases are mirror images of the same.
• reassemble the tree:

PV248 Python 44/68 November 2, 2022

∘ perform link_left on the left child of the current root,
∘ link_right on its right child,
∘ attach l and r to the root, l as the left and r as the right child

(replacing the now invalid links).

Remaining operations (find, insert and erase) must perform all oper-
ations that are not O(1) by splaying the tree (and yield to the caller
whenever the splay operation yields). The ‘splay maximum to the top’
operation (needed for erase) can be implemented by repeatedly ‘splay-
ing to the right’ (in the sense of splay(root.right.value), though of
course taking 2 steps at a time will leave the tree in a significantly
better shape),
The splay itself proceeds in a standard manner, except that after each
step (zig, zig-zag, or zig-zig as appropriate), it yields the key of the
new root. If the result of that yield is None (as happens when simply
iterating the coroutine), the splay continues as usual. If it is anything
else (delivered via send), the tree is reassembled into a consistent state
(this must still happen in constant time!) and the operation is aborted.

The code to perform tree operations looks like this:

for _ in tree.insert(7): pass

for _ in tree.erase(3): pass

for _ in tree.filter(pred): pass

for x in tree.find(5):

if x == 5:

found()

Finally, the to_list operation is replaced by an iterator. This iterator is
the only exception to the O(1) latency bound – it should not use splay.
Instead, it should implement standard in-order traversal of the tree
(i.e. yielding the keys stored in the tree in sorted order). It must be
possible to have multiple simultaneously-active iterators over a single
tree. All iterators however become invalid upon invocation of any
of the remaining 4 operations. (Note: it is possible to implement an
O(1)-latency iterator with a standard interface, but not one that also
iterates the tree in sorted order.)

Part 9: Text, JSON
This chapter will focus on working with text and structured textual
data (JSON and related formats, such as YAML and TOML). We will
look at both writing parsers ‘from scratch’ (using both regular expres-
sions and recursive descent), but also using parsing libraries (the json

and csvmodules) and working with binary data.
Demonstrations:

1. (to be done)

Practice exercises:

1. grep – match regular expressions against text files
2. magic – identify file type by content
3. report – parse JSON and print human-readable output
4. elements – convert CSV to JSON
5. mueval – evaluate LISPy (prefix) expressions
6. flatten – convert JSON to TOML(-ish)

Regular exercises:

1. email – parsing e-mails the simple way
2. toml – recursive descent and INI files
3. resolv – parse a simplified resolv.conf

4. fstab – read and parse /etc/fstab

5. yaml – convert JSON to (readable) YAML
6. cpp – a simplified C preprocessor

Voluntary exercises:

1. (nothing here yet)

Part 9.p: Practice Exercises

9.p.1 [grep] The goal of this exercise is to write a simple program that
works like UNIX grep.
Part 1: Write a procedure which takes 2 arguments, a string represen-
tation of a regex and a filename. It will print the lines of the file that
match the regular expression (in the same order as they appear in the
file). Prefix the line with its line number like so (hint: check out the
enumerate built-in):

43: This line matched a regex,

Part 2: Change the code in the if __name__ … block below to only
run test_main if an argument --test is given. Otherwise, expect 2
command-line arguments: a regular expression and a file name, and
pass those to the grep procedure.

def grep(regex, filename):

pass

9.p.2 [magic] Write function identifywhich takes rules, a list of rules,
and data, a bytes object to be identified. It then tries to apply each rule
and return the identifier associated with the first matching rule, or
None if no rules match. Each rule is a tuple with 2 components:

• name, a string to be returned if the rule matches,
• a list of patterns, where each pattern is a tuple with:

a. offset, an integer,
b. bits, a bytes object,
c. mask, another bytes object,
d. positivity, a bool.

The mask and the pattern must have the same length. A rule matches
the data if all of its patterns match.
A pattern match is decided by comparing the slice of data at the given
offset to the ‘bits’ field of the pattern, after both the slice and the bits
have been bitwise-anded with the mask. The pattern matches iff:

• the bits and slice compare equal and positivity is True, or
• they compare inequal and positivity is False.

def identify(rules, data):

pass

9.p.3 [report] The goal here is to load the file zz.report.json which
contains a report about a bug in a C program, and print out a simple
stack trace. You will be interested in the key active stack (near the
end of the file) and its format. The output will be plain text: for each
stack frame, print a single line in this format:

function_name at source.c:32

import json # go for ‹load› (via io) or ‹loads› (via strings)

def report():

pass

9.p.4 [elements] In this exercise, we will read in a CSV (comma-
separated values) file and produce a JSON file. The input is in zz.el-

ements.csv and each row describes a single chemical element. The
columns are, in order, the atomic number, the symbol (shorthand) and
the full name of the element. Generate a JSON file which will consist
of a list of objects, where each object will have attributes atomic number,
symbol and name. The first of these will be a number and the latter two
will be strings. The names of the input and output files are given to
csv_to_json as strings.
Note that the first line of the CSV file is a header.

PV248 Python 45/68 November 2, 2022

import csv # we want csv.reader

import json # and json.dumps

def csv_to_json(source, target):

pass

9.p.5 [mueval] Write an evaluator for a very small lisp-like language.
Let there only be compound expressions (delimited by parentheses)
which always have an integer arithmetic operator in the first position (+,
-, *, /) and the remainder of the compound are either non-negative in-
teger constants or other compounds. Assume the input is well-formed.

def mueval(expr: str) -> int:

pass

9.p.6 [flatten] In this exercise, your task is to write a function that
flattens JSON data to a form suitable for storing as TOML.
The result is a single-level (flat) dictionary, where the keys represent
the previous structure of the data. We will use the period . for subob-
jects and # for subarrays. Tomake unambiguous un-flattening possible,
if you encounter . or # in the original data, prefix it with a dollar sign, $
(i.e. write out $. or $#), if you encounter $. or $#, escape it with another
dollar sign, to $$. or $$#, etc.
Example:

{ 'student': { 'Joe': { 'full name': 'Joe Peppy',

'address': 'Clinical Street 7',

'aliases': ['Joey', 'MataMata'] } } }

Flattened:

{ 'student.Joe.full name': 'Joe Peppy',

'student.Joe.address': 'Clinical Street 7',

'student.Joe.aliases#0': 'Joey',

'student.Joe.aliases#1': 'MataMata' }

def flatten(data: str) -> str:

pass

Part 9.r: Regular Exercises

9.r.1 [email] In this exercise, we will parse a format that is based on
RFC 822 headers, though our implementation will only handle the
simplest cases. The format looks like this:

From: Petr Ročkai <xrockai@fi.muni.cz>

To: Random X. Student <xstudent@fi.muni.cz>

Subject: PV248

and so on and so forth. In real e-mail (and in HTTP), each header entry
may span multiple lines, but we will not deal with that.
Our goal is to create a dictwhere the keys are the individual header
fields and the corresponding values are the strings coming after the
colon. In this iteration, assume that each header is unique.

def parse_rfc822(filename):

pass

9.r.2 [toml] Write a recursive descent parser for simplified TOML (es-
sentially an old-style INI file with restricted right-hand sides), with the
following grammar:

top = { line } ;

line = (header | kvpair), '\n' ;

header = '[' word ']' ;

kvpair = word, '=', word ;

word = alpha, { alnum } ;

alpha = ? any letter on which isalpha() is true ? ;

alnum = ? any letter on which isalnum() is true ? ;

If the input does not conform to the grammar exactly, reject it and
return None. Otherwise return a dictionary of sections (see the type
below). If the initial section does not have a header, it is stored under
'' (empty string) in the section dictionary.

Section = Dict[str, str]

TOML = Dict[str, Section]

def parse_toml(toml: str) -> Optional[TOML]:

pass

9.r.3 [resolv] Write a parser (of any kind) that validates a resolv.conf

file (which contains DNS configuration). The simplified grammar is as
follows:

top := { stmt | comment } ;

stmt := server, (comment | [spaces], '\n') ;

server := 'nameserver', spaces, addr ;

addr := num, '.', num, '.', num, '.', num ;

num := '0' | nonzero, { digit } ;

nonzero := '1' | '2' | … | '9' ;

digit := '0' | nonzero ;

spaces := ws_char, { ws_char } ;

ws_char := ? isspace() is True, except newline ? ;

comment := [ws], '#', { nonnl }, '\n' ;

nonnl := ? any char except '\n' ? ;

def resolv_valid(rc: str) -> bool: pass

9.r.4 [fstab] Write a non-validating parser for the fstab file, which
in traditional UNIXes contains information about filesystems. The
format is as follows:
Comments start with # and extend until the end of line. Comments, ad-
ditional whitespace, and blank lines are ignored. After comments and
blanks are stripped, each line of the file describes a single filesystem.
Each such description has 6 columns:

1. the device (path to a block device or an UUID),
2. the mount point,
3. the file system type,
4. a comma-separated list of mount options,
5. dump frequency in days (a non-negative integer, optional),
6. file system check pass number (same).

The type below describes the form in which to return the parsed data.
If items 5 or 6 are missing, set them to 0.

FS = Tuple[str, str, str, List[str], int, int]

def read_fstab(path: str) -> List[FS]:

pass

9.r.6 [cpp] Implement a C preprocessor which supports #include "foo"

(without a search path, working directory only), #define without a
value, #undef, #ifdef and #endif. The input is provided in a file, but the
output should be returned as a string. Do not include line and filename
information that cpp normally adds to files.

def cpp(filename: str) -> str:

pass

Part 10: Databases
This chapter is all about SQL and using relational databases to store
and query data using Python. We will only look at the ‘bare bones’

low level interfaces (things like SQL Alchemy and ORMs are topics a
little too big to tackle in this small course). We will be using SQLite3 in

PV248 Python 46/68 November 2, 2022

place of a ‘real’ database, but replacing it with PostgreSQL or MariaDB
or some big commercial database is a question of changing a few lines.
And then learning a lot of SQL to make good use of them.
Demonstrations:

1. (to be done)

Prep exercises:

1. bimport – import books into a database
2. bexport – export books from a database
3. bquery – query the book database
4. lcreate – shopping with Python and SQL
5. lsearch – retrieve shopping lists from the database
6. lupdate – update lists in the database

Regular exercises:

1. schema – create tables given as JSON
2. upgrade – same, but with schema upgrade
3. pkgs – simple queries on a package database
4. depends – fetching transitive dependencies

Voluntary exercises:

1. (nothing here yet)

Part 10.p: Practice Exercises

10.p.1 [bimport] Load the file zz.books.json and store the data in a data-
base with 3 tables: author, book and book_author_list. Each author is
uniquely identified by their name (which is a substantial simplification,
but let’s roll with it). The complete schema is defined in zz.books.sql

and you can create an empty database with the correct data definitions
by running the following command:

$ sqlite3 books.dat < zz.books.sql

import sqlite3

import json

NB. You want to execute pragma foreign_keys = on before inserting
anything into sqlite. Otherwise, your foreign key constraints are just
documentation and are not actually enforced. Let’s write an opendb

function which takes a filename and returns an open connection. Exe-
cute the above-mentioned pragma before returning.

def opendb(filename):

pass

Of course, you can also create the schema using Python after opening
an empty database. See executescript. Define a function initdbwhich
takes an open sqlite3 connection, and creates the tables described in
sql_file (in our case zz.books.sql). You can (and perhaps should) open
and read the file and feed it into sqlite using executescript.

def initdb(conn, sql_file):

pass

Now for the business logic. Write a function store_bookwhich takes a
dict that describes a single book (using the schema used by books.json)
and stores it in an open database. Use the executemethod of the con-
nection. Make use of query parameters, like this (cur is a cursor, i.e.
what you get by calling conn.cursor()):

cur.execute("insert into ... values (?)", (name,))

The second argument is a tuple (one-tuples are written using a
trailing comma). To fetch results of a query, use cur.fetchone() or
cur.fetchall(). The result is a tuple (even if you only selected a single
column). Or rather, it is a sufficiently tuple-like object (quacks like a
tuple and all that).

def store_book(conn, book):

pass

With the core logic done, we need a procedure which will set up the
database, parse the input JSON and iterate over individual books, stor-
ing each:

def import_books(file_in, file_out):

pass

10.p.2 [bexport] In the second exercise, we will take the database cre-
ated in the previous exercise (books.dat) and generate the original JSON.
You may want to use a join or two.
First write a functionwhichwill produce a list of dict’s that represent
the books, starting from an open sqlite connection.

import sqlite3

import json

def read_books(conn):

pass

Now write a driver that takes two filenames. It should open the data-
base (do you need the foreign keys pragma this time? why yes or why
not? what are the cons of leaving it out?), read the books, convert the
list to JSON and store it in the output file.

def export_books(file_in, file_out):

pass

10.p.3 [bquery] In the final exercise of this set, you will write a few
functions which search the book data. Like you did for export, get a
cursor from the connection and use execute and fetchone or fetchall
to process the results. Use SQL to limit the result set.
Fetching everything (select * from tablewithout a where clause) and
processing the data using Python constructs is bad and will make your
program unusable for realistic data sets.
The first function will fetch all books by a given author. Use the
like operator to allow substring matches on the name. E.g. calling
books_by_author(conn, "Brontë") should return books authored by
any of the Brontë sisters.

def books_by_author(conn, name):

pass

The second will fetch the set of people (i.e. each person appears at
most once) who authored a book with a name that contains a given
string. For instance, authors_by_book(conn, "Bell") should return
the 3 Brontë sisters and Ernest Hemingway. Try to avoid fetching the
same person multiple times (i.e. use SQL to get a set, instead of a list).

def authors_by_book(conn, name):

pass

Another functionwill return names of books which have at least count
authors. For instance, there are 3 books in the data set with 2 or more
authors.

def books_by_author_count(conn, count):

pass

Finally, write a function which returns the average author count for a
book. The function should return a single float, and ideally it would
not fetch anything from the database other than the result: try to do
the computation only using SQL.

def average_author_count(conn):

pass

10.p.4 [lcreate] The file zz.lists.sql contains a database schema for

PV248 Python 47/68 November 2, 2022

keeping shopping lists. Besides shopping lists themselves, we will keep
a table of item descriptions, a table of shops (vendors) and a table of
supplies currently in your pantry. This last table also keeps track of
a ‘minimal’ and ‘preferred’ amount for each item. Those will come in
handy when we will want to create shopping lists automatically.
Each item may be available from multiple vendors, and of course each
vendor stocks multiple items. Therefore, items and shops are in an
M:N relationship, and we will keep this relationship in an auxiliary
table. Finally, each vendor has, for each item, an individual unit price
that is valid starting on a given date. A null price indicates that the
item is not available in the given timespan. New start date overrides
the price.
A shopping list, then, is a list of items to obtain. Each item on the list
comes with:

• the quantity to obtain,
• the shop where to buy it and
• the quantity actually obtained.

Besides the list of items, the shopping list has a date attached to it. In
this exercise, we will start by providing an interface for creating new
lists.

from datetime import date

from sqlite3 import Connection

from typing import Optional, Callable, Type, Union

The classes in this exercise (and its follow-ups) will be associated with
records in the database. Each class will hold onto an optional id: if the
id is None, the record is not stored in the database (yet). So far, we will
only set the id in the createmethod.
The only method which is allowed to change the database is create

(in a later exercise, we will add update). All set_* and add_* methods
(and later remove_*) methods should simply remember the changes and
additions, until the user calls create, which then stores everything at
once. Other methods may, however, query the database for data, if it
is convenient to do so.
Finally, feel free to add a suitable base class, from which the other
classes can be derived.

SQLT = Union[str, int, float, date,

Optional[str], Optional[int]]

SQLP = tuple[SQLT, ...] # the 2nd parameter of Connection.execute

class Shop:

Creates an empty item, not yet associated with anything in the data-
base. Set the internal id to None.

def __init__(self, db: Connection):

pass

def set_name(self, name: str):

pass

Create a record in the database. If the instance is already associated
with a record, raise a RuntimeError. If the shop does not have a name,
raise a RuntimeError.

def create(self):

pass

All the remaining classes are analogous to Shop.

class Item:

def __init__(self, db: Connection):

pass

def set_name(self, name: str):

pass

Prices are associated not with just an item, but also a time period and

a specific shop.

def set_price(self, vendor: Shop, price: Optional[int],

start: date):

pass

If the item does not have a name, raise a RuntimeError.

def create(self):

pass

class ShoppingList:

def __init__(self, db: Connection):

pass

def set_date(self, when: date):

pass

def add_item(self, item: Item, qty: int):

pass

A shopping list might be empty, but it must have a date set. If it does
not, refuse to create it (raise a RuntimeError).

def create(self):

pass

10.p.5 [lsearch] In this exercise, we will extend the classes from
list_create by adding various ways to fetch them from the database.

class FetchableShop(Shop):

Find the shop in the database by its name. If no such shop is in the data-
base, raise a RuntimeError. If found, set the internal id of the instance.
Only allow fetching if the calling Shop instance’s id is not set yet. If
there are several shops with the same name, raise a RuntimeError.

def fetch_by_name(self, name: str):

pass

def fetch_by_id(self, ID: int):

pass

The top-level function find_shopswill do a substring search on all the
shops in the database, and return a Shop instance for each match.

def find_shops(db: Connection, pattern: str):

pass

class FetchableItem(Item):

def fetch_by_name(self, name: str):

pass

def fetch_by_id(self, ID: int):

pass

Find a price at the given time in the given shop. Return None if the item
is not available from the vendor at the time.

def get_price(self, vendor: Shop, when: date):

pass

Find the best price available on a given date. Return a tuple of int (the
price) and a Shop (the vendor which has this price), or None if the item
is not available at all. Tie breaks alphabetically (prefer vendors with
names that come first in a dictionary).

def get_best_price(self, when: date):

pass

class FetchableShoppingList(ShoppingList):

def fetch_by_id(self, ID: int):

pass

PV248 Python 48/68 November 2, 2022

Find all shopping lists that have a given item on it, in quantity at least
qty. Returns a list of ShoppingList instances.

def find_lists_by_item(db: Connection, item: Item, qty: int):

pass

10.p.6 [lupdate]

T = TypeVar('T')

In this exercise, we will extend the classes from list_search by adding
an updatemethod to each. If the entity does not exist in the database,
update should raise a RuntimeError. After update, the database should
reflect any changes and additions that have been done on the instance
since it was either created, fetched or last updated.
Also add a deletemethod, which removes the entry and all the records
it owns, from all relevant tables in the database. If you are deleting an
entry that has associated records in other tables but does not own these
records, raise a RuntimeError instead (an example would be removing
a shop, while a pricing entry for that shop exists). After delete, the
instance can no longer be used for anything (but you do not need to
enforce this).

class UpdatableShop(FetchableShop):

def update(self):

pass

def delete(self):

pass

class UpdatableItem(FetchableItem):

def update(self):

pass

def delete(self):

pass

class UpdatableShoppingList(FetchableShoppingList):

def remove_item(self, item: Item):

pass

def update(self):

pass

def delete(self):

pass

The following function will check the current supplies and update the
given shopping list so that afterwards, fetching everything on the list
results in all supplies being at least at their ‘minimum’ level (if preferred
is False) or at their ‘preferred’ level (if preferred is True). Do not remove
anything from the list.
Note that some of the required items might be already on the list (but
possibly in an insufficient quantity). Do not add more of an item than
required for the restock, unless it already was on the list (specifically,
calling add_missing a second time should have no effect, unless the
current supply levels changed in the meantime).

def add_missing(shop_list: UpdatableShoppingList, preferred: bool

):

pass

Part 10.r: Regular Exercises

10.r.1 [schema] You are given a JSON file which describes a (very rudi-
mentary) database schema. The top-level value is an object (dictionary)
with table names as keys and objects which describe the columns as
values.

The keys in the table description are column names and values (strings)
are SQL types of those columns. Given a database connection and a
path to the JSON file, create the tables. If one of them already exists,
raise an error.

from sqlite3 import Connection, OperationalError, connect

def create_tables(schema: str, db: Connection):

pass

10.r.2 [upgrade] This exercise is the same as the previous one, with
one important difference: if some of the tables already exist, this is
not an error. However, the columns of the existing table and those
specified by the schema might be different. In this case, create any
missing columns, but do not touch columns that already exist.
Optional extension: print names of any extra columns, as a warning to
the user that they no longer appear in the current schema and should
be removed.
Note: the alter table command in sqlite is very limited. In a ‘real’ data-
base, it is possible to alter column types, add and remove constraints
and so on, all transactionally protected.

from sqlite3 import Connection, OperationalError, connect

def upgrade_tables(schema: str, db: Connection) -> None:

pass

10.r.3 [pkgs] You are given a database which stores information about
packages, with the following tables:

package: id (primary key), name (string)

version: id (primary key), package_id (foreign key),

number (string)

depends: version_id (foreign key), depends_on (foreign key)

Where depends_on also refers to version.id. Write the following func-
tions.

from sqlite3 import Connection, connect

from typing import List, Tuple

Return a list of packages, along with the number of distinct versions
of each package.

def list_packages(db: Connection) -> List[Tuple[str, int]]:

pass

Return the package versions (as a tuple of the package name and ver-
sion ‘number’) that are not required by any other package (i.e. they
form leaf nodes in the dependency tree).

def list_leaves(db: Connection) -> List[Tuple[str, str]]:

pass

For each package version, give the number of packages (package ver-
sions) which directly depend on it.

def sum_depends(db: Connection) -> List[Tuple[str, str, int]]:

pass

—– >% —– >% —–

def mkdb() -> Connection:

conn = connect(':memory:')

c = conn.cursor()

c.execute('create table package (id integer primary key, ' + \

'name varchar)')

c.execute('create table version (id integer primary key, ' + \

'package_id integer, number varchar)')

c.execute('create table depends (version_id integer,' + \

'depends_on integer)')

def add_pkg(name: str, *vers: str) -> None:

PV248 Python 49/68 November 2, 2022

c.execute('insert into package (name) values (?)',

(name,))

pid = c.lastrowid

for v in vers:

c.execute('insert into version (package_id, ' + \

'number) values (?, ?)', (pid, v))

def add_dep(p1: str, v1: str, p2: str, v2: str) -> None:

get = '(select version.id from version join ' + \

'package on package.id = package_id ' + \

'where name = ? and number = ?)'

c.execute('insert into depends (version_id, depends_on) '

+ \

f'values ({get}, {get})', (p1, v1, p2, v2))

add_pkg('libc', '2.0', '2.1', '2.2')

add_pkg('ksh', '1.0', '1.1')

add_pkg('dummy')

add_dep('ksh', '1.0', 'libc', '2.0')

add_dep('ksh', '1.1', 'libc', '2.1')

return conn

Part 11: Asynchronous Programming
Coroutines again, this time in a very practical context: asyncio (finally).
We will be writing both clients and servers using a modern approach
based on an IO dispatch loop (bundled with asyncio) and suspending
coroutines. I am sure you will be happy to learn that asyncio is essen-
tially what node.js is for JavaScript (and we all know how popular that
is). Low latency, high-throughput applications, here we come (yes, I
know it’s Python).
Demonstrations:

1. (to be done)

Practice exercises:

1. sem – semaphore synchronisation in asyncio

2. proc – asyncio processes
3. multi – more processes
4. tcp – a simple TCP echo server
5. http – an HTTP client with a subprocess
6. merge – process data from multiple sockets

Regular exercises:

1. sleep – sleep, running tasks in parallel
2. counter – two-way communication with a process
3. pipeline – multi-stage asynchronous processing
4. tokenize – another stream pipeline exercise
5. minilisp – an asynchronous parser
6. rot13 – listening on UNIX domain sockets

Voluntary exercises:

1. (nothing here yet)

Part 11.p: Practice Exercises

11.p.1 [sem] Use gather() to spawn 10 tasks, each running an infinite
loop. Create a global semaphore that is shared by all those tasks and set
its initial value to 3. In each iteration, each task should queue on the
semaphore and when it is allowed to proceed, sleep 2 seconds before
calling notify, and relinquishing the semaphore again.
notify adds a tuple – containing the task id (1 - 10) and the time when
the task reached the semaphore – to the global list reached.
Observe the behaviour of the program. Add a short sleep outside of
the critical section of the task. Compare the difference in behaviour.
After your program works as expected, i.e. only 3 tasks are active at
any given moment and the tasks alternate fairly, switch the infinite
loop for a bounded loop: each task running twice, to be consistent with
the tests.
Note: Most asyncio objects, semaphores included, are tied to an event
loop. You need to create the semaphore from within the same event
loop in which your tasks will run. (Alternatively, you can create the
loop explicitly and pass it to the semaphore.)

import asyncio

import time

reached: list[tuple[int, float]] = []

begin = time.time()

def notify(i: int) -> None:

t = time.time() - begin

print("task {} reached semaphore at {}".format(i, t))

reached.append((i, t))

async def semaphores() -> None:

pass

11.p.2 [proc] In this exercise, we will look at talking to external pro-
grams using asyncio. There are two coroutines in the asynciomodule
for spawning new processes: for simplicity, we will use create_sub-

process_shell.
However, before you start working, try the following shell command:

$ while read x; do echo x is $x; done

and type a few lines. Use ctrl+d to terminate the loop.
This is one of the programs we will interact with. Use stdout and stdin
streaming to talk to this simple shell program from python: send a line
and read back the reply from the program. Copy it to the standard
output of the python program. Apart from printing, return a list of
all outputs from the shell program. There are two arguments, the
command to run and a list of inputs to serve this program one-by-one.
NOTE: The data that goes into the process and that comes out is bytes,
not strings. Make sure to encode and decode the bytes as needed.

import asyncio

from asyncio.subprocess import PIPE

from typing import List

async def pipe_cmd(command: str,

inputs: List[str]) -> List[str]:

pass

11.p.3 [multi] Spawn 2 slightly different instances of the shell program
from previous exercise, then use gather to run 3 tasks in parallel:

• two that print the output from each of the processes
• one that alternates feeding data into both of the subprocesses

First shell program reads its input and outputs p1: [input value].
Second shell program reads its input and outputs p2: [input value].
Process 3 sends characters a through h to the two printing processes;
it first sends the character to process 1, then waits 0.5 seconds, then
it sends the same character to process 2 and waits 0.2 seconds. The
outputs of the two main processes are printed to stdout, so that you
can follow what is going on, and added to the global data list, along
with a timestamp (see p1) – as a tuple.
Don’t forget to clean up at the end.

import asyncio

from asyncio.subprocess import PIPE

PV248 Python 50/68 November 2, 2022

from typing import Tuple

data : list[tuple[str, float]] = []

async def multi() -> None:

pass

11.p.4 [tcp] Start a server, on localhost, on the given port (using asyn-

cio.start_server) and have two clients connect to it. The server takes
care of the underlying sockets, so we will not be creating them manu-
ally. Data is, again, transferred as bytes object.
The server should return whatever data was sent to it. Clients should
send hello and world, respectively, then wait for the answer from the
server and return this answer. Add print statements to make sure
your server and clients behave as expected; print data received by the
server, sent to the clients and sent and received by the clients on the
client side. Make sure to close the writing side of sockets once data is
exhausted.

import asyncio

Server-side handler for connecting clients. Read the message from the
client and echo it back to the client.

async def handle_client(reader, writer):

pass # print("server received & sending", ...)

Client: connect to the server, send a message, wait for the answer and
return this answer. Assert that the answer matches the message sent.
Sleep for 1 second after sending world, to ensure message order.

async def client(port: int, msg: str):

pass # print("client sending", ...)

pass # print("client received", ...)

The start function should start the server on the provided port and
return it. The stop function should stop the server returned by start.

async def start(port: int):

pass

async def stop(server) -> None:

pass

async def test_main() -> None:

import sys

import random

from io import StringIO

stdout = sys.stdout

out = StringIO()

sys.stdout = out

port = random.randint(9000, 13000)

server = await start(port)

data = await asyncio.gather(client(port, 'hello'), client(

port, 'world'))

await stop(server)

assert data == ['hello', 'world'], data

sys.stdout = stdout

output_ = out.getvalue()

output = output_.split('\n')

assert 'client sending hello' in output[0 : 4], output

assert 'client sending world' in output[0 : 4], output

assert 'server received & sending hello' in \

output[1 : 3], output

assert 'server received & sending world' in \

output[1 :], output

11.p.5 [http] Use aiohttp (python -mpip install aiohttp) to fetch a
given URL and stream the HTML into tidy (html-tidy.org). Specifically,
use tidy 2>&1 as the command that you start with asyncio.create_sub-

process_shell. Capture the stdout and return the output until the first
blank line, as a list of bytes objects.

import aiohttp

import asyncio

from asyncio.subprocess import PIPE

async def tidy(url):

pass

11.p.6 [merge] Write a ‘merge server’, which will take 2 string argu-
ments, both paths to unix sockets. The first socket is the ‘input’ socket:
listen on this socket for client connections, until there are exactly 2
clients. The clients will send lines, sorted lexicographically.
Connect to the ‘output’ socket (second argument) as a client. Read lines
as needed from each of the clients and write them out to the output
socket, again in sorted order. Do not buffer more than 1 line of input
from each of the clients.
Use readline on the input sockets’ streams to fetch data, and relational
operators (<, >, ==) to compare the bytes objects.

import asyncio

The merge_server coroutinewill simply start the unix server and return
the server object, just like asyncio.start_unix_server does.

async def merge_server(path_in, path_out):

pass

Part 11.r: Regular Exercises

11.r.1 [sleep] Demonstrate the use of native coroutines and basic asyn-
cio constructs. Define 2 coroutines, say cor1() and cor2(), along with
an asynchronous driver, sleepy(). Make the coroutines suspend for a
different amount of time (say 0.7 seconds and 1 second) and then print
the name of the function, in an infinite loop.
Use asyncio.gather to run them in parallel (from your sleepy(), which
you should invoke by using asyncio.run() at the toplevel) and observe
the result. What happens if you instead await cor1() and then await

cor2()? Try making the loops in corN finite (tests are meant for 5 itera-
tions, but feel free to play around with them).

async def sleepy():

pass

11.r.2 [counter] Spawn a given number of instances of the following
shell program:

while true; do echo .; sleep {n}; done

Where the values for {n} are given in the argument sleeps. Run all
these programs in parallel and monitor their output (asserting that
each line they print is exactly a single dot).
Once a second, use queue.put to send a list of numbers, each of which
gives the number of dots received from the i-th subprocess. For in-
stance, the first list should be approximately [1, 2, 10] if sleeps

were given as [1, 0.5, 0.1]. The last parameter, iterations tells you
how many one-second intervals to run for (and hence, how many
items to put into the queue). After the given number of iterations, kill
all the subprocesses.

async def counters(queue, sleeps, iterations):

assert False

—– >% —– >% —–

PV248 Python 51/68 November 2, 2022

def fuzzy(a: List[int], b: List[int]) -> bool:

from math import ceil

for i, j in zip(a, b):

if abs(i - j) > ceil(j / 10.0):

return False

return True

async def check(q: asyncio.Queue[List[int]]) -> None:

assert fuzzy(await q.get(), [1, 2, 10])

assert fuzzy(await q.get(), [2, 4, 20])

assert fuzzy(await q.get(), [3, 6, 30])

async def main() -> None:

q : asyncio.Queue[List[int]] = asyncio.Queue()

await asyncio.gather(check(q), counters(q, [1, 0.5, 0.1],

3))

11.r.3 [pipeline] In this (and the next) exercise, we will write corou-
tines which can be connected into a sort of pipeline, like what we did
with generator-based streams in week 4. Again, there will be sources,
sinks and processors and the coroutines will pass data to each other as
it becomes available.
Native coroutines have an arguably a more intuitive and more pow-
erful construct to send data to each other than what is available with
generators: asyncio.Queue. The queues are of two basic types: bounded
and unbounded. The former limits the amount of memory taken up
by ‘backlogs’ and enforce some level of synchronicity in the system.
In the special case where the size bound is set to 1, the queue behaves
a lot like send/yield. Trying to get an item from a queue that is empty
naturally blocks the coroutine (making it possible for the writer corou-
tine to run) – this is quite obvious. However, if the queue is bounded,
the opposite is also true: writing into a full queue blocks the writer
until space becomes available. This lets the reader make progress at
the expense of the writer. Recall also the schedulers from week 8.
We will use such queues to build up our stream pipelines: sinks and
sources will accept a single queue as a parameter each (sink as its input,
source as its output), while a processor will accept two (one input and
one output). Like before, we will use None to indicate an empty stream,
however, we will not repeat it forever (i.e. only send it once).
In this exercise, we will write two simple processors for our stream
pipelines:

• a chunkerwhich accepts str chunks of arbitrary sizes and produces
chunks of a fixed size,

• getline which accepts chunks of arbitrary size and produces
chunks that correspond to individual lines [TBD pre-made tests
missing].

Note: if you use Python 3.8, asyncio.Queue is not a generic type. You
will need to adjust the type annotations accordingly.

def chunker(size):

async def process(q_in, q_out):

await q_out.put(None)

return process

async def test_main() -> None:

sink_done = False

Queue = asyncio.Queue[Optional[str]]

async def source(q_out: Queue) -> None:

await q_out.put('hello ')

await q_out.put('world')

await q_out.put(None)

async def check(pipe: Queue, expect: Optional[str]) -> None:

x = await pipe.get()

assert x == expect, f"{x} == {expect}"

async def sink_4(q_in: Queue) -> None:

nonlocal sink_done

await check(q_in, 'hell')

await check(q_in, 'o wo')

await check(q_in, 'rld')

await check(q_in, None)

sink_done = True

async def sink_2(q_in: Queue) -> None:

nonlocal sink_done

await check(q_in, 'he')

await check(q_in, 'll')

await check(q_in, 'o ')

await check(q_in, 'wo')

await check(q_in, 'rl')

await check(q_in, 'd')

await check(q_in, None)

sink_done = True

def pipeline(*elements: Any) -> List[Any]: # coroutines

q_out : Queue = asyncio.Queue(1)

line = [elements[0](q_out)]

for e in elements[1 : -1]:

q_in = q_out

q_out = asyncio.Queue(1)

line.append(e(q_in, q_out))

line.append(elements[-1](q_out))

return line

async def run(*pipe: Any) -> None:

nonlocal sink_done

sink_done = False

await asyncio.gather(*pipeline(*pipe))

assert sink_done

await run(source, chunker(4), sink_4)

await run(source, chunker(2), chunker(4), sink_4)

await run(source, chunker(7), chunker(4), sink_4)

await run(source, chunker(7), chunker(2), sink_2)

await run(source, chunker(4), chunker(2), sink_2)

await run(source, chunker(3), chunker(2), sink_2)

11.r.4 [tokenize] Nothing here yet. Please try again later.

11.r.5 [minilisp] Write an asynchronous parser for a very limited sub-
set of the LISP grammar from t3/lisp.py. Specifically, only consider
compound expressions and atoms. Represent atoms using str and
compound expressions using lists (note: it might be hard to find a rea-
sonable mypy type – it is quite okay to skip mypy in this exercise). The
argument to the parser is an asyncio.StreamReader instance. Your best
bet is reading the data using readexactly(1). The parser should imme-
diately return after reading the closing bracket of the initial expression.

async def minilisp(reader):

pass

async def test_main() -> None:

import os

loop = asyncio.get_running_loop()

r_fd, w_fd = os.pipe()

w_file = os.fdopen(w_fd, 'w')

r_stream = asyncio.StreamReader()

await loop.connect_read_pipe(lambda:

asyncio.StreamReaderProtocol(r_stream),

os.fdopen(r_fd))

def send(data: str) -> None:

w_file.write(data)

w_file.flush()

async def check(*expect: Any) -> None:

PV248 Python 52/68 November 2, 2022

got = await minilisp(r_stream)

assert got == list(expect), f"{got} == {expect}"

send('(hello)')

await check('hello')

send('(hello world)')

await check('hello', 'world')

send('(hello (world))')

await check('hello', ['world'])

send('((hello) (cruel (or not) world))')

await check(['hello'],

['cruel', ['or', 'not'], 'world'])

11.r.6 [rot13] We will do something similar to p4_tcp, but this time
we will use a UNIX socket. UNIX sockets exist in the filesystem and

need to be given a (file)name. Additionally, instead of simply echoing
the text back, we will use Caesar cipher (rotate the characters) with
right shift (the intuitive one) of 13. We will have to explicitly remove
the socket once we are done with it, as it will stay in the filesystem
otherwise.

async def handle_client(reader, writer):

pass # print("server received", ...)

pass # print("server sending", ...)

async def client(msg, path):

pass # print("client sending", ...)

pass # print("client received", ...)

async def unix_rot(path):

pass

Part 12: Math and Statistics
The last chapter (and possibly the least popular part of the course) is
about using Python for math. It is here mainly because Python is very
popular in scientific computation, aka number crunching (with numpy

and scipy doing all the heavy lifting there), and in data science (mainly
with pandas). It is also a gateway to more advanced statistics that is also
very often driven by Python scripts (think machine learning). All in
all, getting a feel for using the big toys cannot hurt, even if the math
perhaps does, a little.
NB. For exercises in this chapter, you need numpy ≥ 1.22, pandas and
pandas-stubs ≥ 2022.2.
Demonstrations:

1. (to be done)

Practice exercises:

1. linear – matrices warmup
2. volume – polyhedron volume
3. signal – generating sine waves
4. stats – simple stats with pandas
5. outliers – dealing with irregularities in data
6. student – the t-test

Regular exercises:

1. hist – drawing histograms with ASCII art
2. dft – discrete Fourier transform
3. null – the null space of a matrix
4. frames – slicing and dicing pandas dataframes
5. regress – linear regression, with outliers
6. anova – TBD analysis of variance

Voluntary exercises:

1. (nothing here yet)

Part 12.p: Practice Exercises

12.p.1 [linear] The goal of this exercise is to learn about numpy arrays.
Write a functionwhich takes a list of numbers, interprets it as a square
matrix and computes the inverse, second power, the determinant. The
function should return those values as a 3-tuple, with matrices repre-
sented the same way as input: as a flat list of numbers. Return None
in place of inverse if the matrix is singular, i.e. has no inverse.

import numpy as np

def linalg(matrix):

pass

12.p.2 [volume] Compute the volume of an n-dimensional simplex,

given as a list of n + 1 points. A 2D simplex is a triangle, given by
3 points, a 3D simplex is a 3-sided pyramid given by 4 points and so on.

def volume(pts):

pass

12.p.3 [signal] Write a function that generates 1 second of signal as
a sequence of amplitude samples, built from a given mix of sinus fre-
quencies. The result should contain count samples, including the initial
state at t = 0. 1 second is the time of 1 full cycle of a sine wave with
frequency 1. Return it as an ndarray.
Then write a function logscale, which takes a histogram represented
as a list of floats and converts its x axis to logscale. That is: the first
item is discarded, the second item becomes first, the average of 3rd and
4th item comes second, the average of 5th through 8th items comes
third, and so on. Compare np.ceil(np.log2(range(1, 32))).

import numpy as np

def freq(count, freqs):

pass

def logscale(data):

pass

12.p.4 [stats] Grab the data from the given filename and compute the
average, median, first and last quartile and variance of each numeric
column. Put the data into a dictionary with sub-dictionaries as values,
e.g.

{

'average': { 'age': 39.207, 'bmi': 30.663, … },

'variance': …,

'first quartile': { 'age': 27, … },

'last quartile': { 'age': 51, … },

…

}

def stats(filename):

pass

12.p.5 [outliers] Write a function that removes outliers from an oth-
erwise normally distributed data set, given as a list of 2-tuples (x, y).
You can create random inputs for testing with numpy.random.normal(

mean, stddev, count) and then add a few outliers manually.

import numpy as np

from numpy.typing import NDArray

from typing import List, Tuple

What exactly constitutes an outlier is somewhat domain- and dataset-

PV248 Python 53/68 November 2, 2022

specific, but using some small integer multiple (3-5) of σ (the standard
deviation) as the cutoff is quite common.
You can use pandas data frames in the implementation if you like, or
even construct them outside and pass them to the function directly.
Remove all outliers strictly outside the range given by the nsigmas

argument. Return the filtered list.

def drop_outliers(data, nsigmas):

pass

Now that we have a function to remove outliers, let’s look at what
effect it has. The following function should call f on both the original
data, and the outlier-culled variant. Return a 2-tuple of (original data,
outliers removed) where each is itself a 2-tuple (x, y). Apply f on each
axis separately (i.e. for a datasetwith x values xs and y values ys, return
f(xs), f(ys)).

Data = List[Tuple[float, float]]

def cmp_outliers(data: Data, nsigmas, f):

pass

Try computing mean, median, quartiles and standard deviation of a
few data sets with a more or less severe outlier problem.

12.p.6 [student] The t-test is used, among other things, to assess
whether two population means of some attribute are the same, based
on a sample of each of the two populations. The test makes a few
assumptions, the most important being:

1. the attribute is normally distributed,
2. the variances of the two samples are similar,
3. the sample sizes are equal.

The assumptions are not exact: small deviations only lead to small
inaccuracy in the result. Hence, we can set up some tolerances. Imple-
ment a predicate t_validate that takes 2 sets of numbers, and tolerance
arguments as follows:

• normality is the maximum p-value that we are willing to accept for
a normality test on the input data (use a Shapiro-Wilk test to obtain
the p-value),

• variance is the difference of variances thatwe arewilling to tolerate,
and finally

• relsize is the relative size difference that we are willing to accept
(i.e. we accept the samples if their size difference divided by their
size average is less than relsize).

def t_validate(s_1, s_2, normality, variance, relsize):

pass

Then implement a function split that takes:

• data, a pandas data frame,
• col, the column to test,
• split_col, the column by which the data is split into two disjoint

sets,
• split_val if None, split_colmust have exactly 2 values, which are

taken to be the sample sets to compare, otherwise split_val is a
number and split_col is numeric: then the two sets are given by
data[split_col] < split_val and data[split_col] >= split_val.

The result of split is two sets of numbers (in the form of single-column
data frames).

def split(data, col, split_col, split_val = None):

pass

Finally implement pvaluewhich takes 2 samples (sets of numbers) and
produces a p-value indicating the likelihood that the means of the
corresponding populations are equal.

def pvalue(s_1, s_2):

pass

Note on typing: if you decide to use scipy.stats, youwill need to import
it with # type: ignore, since scipy does not have mypy stubs.

Part 12.r: Regular Exercises

12.r.1 [hist] Write a function that takes a list of numbers and draws an
ASCII histogram (into a string). Normalize the height to 25 characters.
You can compare your output with example output which uses the *

character to represent value frequency.

def histogram(bins):

pass

12.r.2 [dft] Write a function which reconstructs the frequencies
which were given to freq in p3_signal.py, as an ascending list of in-
tegers.
Note that the FFT algorithm used in numpy will give you non-zero
amplitudes for every frequency – use isclose to check if the amplitude
is almost zero.
You can assume that the input only contains integer frequencies.
When testing, be careful to avoid aliasing (i.e. make sure the high-
est frequency passed to freq from p3_signal.py is less than half the
number of samples).

def dft(amp):

pass

12.r.3 [null] Given a square matrix, find its ‘null space’ in the form of
a list of unit-length basis vectors for that space. The null space (or a
kernel) of a matrix is the space of all vectors which, multiplied by the
matrix, come out as zero. For instance:

1 0 0 x x
0 1 0 × y = y
0 0 0 z 0

This comes out zero if x = y = 0, regardless of z. Hence, the null space
is spanned by the single vector (0, 0, 1). Indeed:

1 0 0 0 0
0 1 0 × 0 = 0
0 0 0 1 0

If we consider another matrix, we see:

1 1 0 x x + y
2 2 0 × y = 2x + 2y
0 0 0 z 0

The vector is zero whenever x = −y (and irrespective of z). Hence, the
null space is two-dimensional, spanned by (for instance) the vectors (1,
-1, 0) and (0, 0, 1).

1 1 0 1 0
2 2 0 × -1 = 0
0 0 0 0 0

1 1 0 0 0
2 2 0 × 0 = 0
0 0 0 1 0

Notice that we have chosen the basis so that it is orthogonal:

0
1 -1 0 × 0 = 0

1

It’s easy to make it orthonormal, just divide the first vector by a square
root of 2. In the exercise, however, orthogonality is not required (it just
makes it easy to see that the vectors are linearly independent).

PV248 Python 54/68 November 2, 2022

import numpy as np

from numpy.typing import NDArray

from typing import cast, List

FloatArray = NDArray[np.float64]

def null(m):

pass

12.r.4 [frames] The data for this exercise is in zz.frames.csv. The data
represents grading of a programming subject (with made-up names
and numbers, of course). The columns are names, number of points
from weekly exercises, from assignments and from reviews. Imple-
ment the following functions:
Return a DataFrame which only contains rows of students, which
achieved the best result among their peers in one of the categories
(weekly, assignments, reviews). If there are multiple such students for
a given category, include all of them.

def best(data):

pass

Return a DataFrame which contains the name and the total score (as
the only 2 columns). Don’t forget that the weekly exercises contribute
at most 9 points to the total.

def compute_total(data):

pass

Return a dictionarywith 4 keys (weekly, assignments, reviews and total)
where each value is the average number of points in the given category.
Consider factoring out a helper function from compute_total to get a
DataFramewith 5 columns.

def compute_averages(data):

pass

—– >% —– >% —–

def eq(data: pd.DataFrame, student: str, col: str, val: float) ->

bool:

matches = data[data['student'] == student][col]

return cast(bool, (matches == val).all())

12.r.5 [regress] In this case, the input data will again be (x, y) tuples,
but distributed around a straight line and we will compute linear re-
gression on the data. This time, we will remove outliers iteratively:
find the term with the greatest squared residual and if the squared
residual is larger than cutoff-times the sum of all squared residuals,
drop the data point and restart the regression. Stop when there are no
more outliers.
Feel free to use pandas and/or numpy.

def drop_outliers(data, cutoff): # add arguments if you like

pass # return filtered data

def regress(data, cutoff):

pass # remove outliers iteratively

return the slope and the intercept of the regression line

NOTE: In both p5 and in this exercise, we have taken a rather cavalier
approach to outlier removal. For real statistics on real data, you often
need to be much more careful and take the origin of the data set into
account. Always disclose any outliers you have removed from further
consideration.

Part S.3: Persistence
This task set is centered aroundpersistent data. There are twodatabase-
focused tasks and two parsing-focused tasks.

1. a_lisp – a simple context-free parser
2. b_squelter – storing the shelter objects with SQL
3. c_merkle – persistent trees
4. d_numeval – syntax + linear algebra

Part S.3.a: lisp

Write a simple LISP (expression) parser, following this EBNF grammar:

expression = atom | compound ;

compound = '(', expression, { whitespace, expression }, ')' |

'[', expression, { whitespace, expression }, ']' ;

whitespace = (' ' | ? newline ?), { ' ' | ? newline ? } ;

atom = literal | identifier ;

literal = number | string | bool ;

nonzero = '1' | '2' | '3' | '4' |

'5' | '6' | '7' | '8' | '9' ;

digit = '0' | nonzero ;

sign = '+' | '-' ;

digits = '0' | (nonzero, { digit }) ;

number = [sign], digits, ['.', { digit }] ;

bool = '#f' | '#t' ;

string = '"', { str_char }, '"' ;

str_lit = ? any character except '"' and '\' ? ;

str_esc = '\"' | '\\' ;

str_char = str_lit | str_esc ;

identifier = id_init, { id_subseq } | sign ;

id_init = id_alpha | id_symbol ;

id_symbol = '!' | '$' | '%' | '&' | '*' | '/' | ':' | '<' |

'=' | '>' | '?' | '_' | '~' ;

id_alpha = ? alphabetic character ?

id_subseq = id_init | digit | id_special ;

id_special = '+' | '-' | '.' | '@' | '#' ;

Alphabetic characters are those for which isalpha() returns True. It
is okay to accept additional whitespace where it makes sense. For the
semantics of (ISO) EBNF, see e.g. wikipedia.
The parser should be implemented as a toplevel function called parse

that takes a single str argument. If the string does not conform to the
above grammar, return None. Assuming expr is a string with a valid
expression, the following should hold about x = parse(expr):

• an x.is_foo() method is provided for each of the major non-
terminals: compound, atom, literal, bool, number, string and iden-

tifier (e.g. there should be an is_atom() method), returning a
boolean,

• if x.is_compound() is true, len(x) should be a valid expression and
x should be iterable, yielding sub-expressions as objects which also
implement this same interface,

• if x.is_bool() is true, bool(x) should work,
• if x.is_number() is true, basic arithmetic (+, -, *, /) and relational

(<, >, ==, !=) operators should work (e.g. x < 7, or x * x) as well as
int(x) and float(x),

• x == parse(expr) should be true (i.e. equality should be exten-
sional),

• x == parse(str(x)) should also hold.

If a numeric literal xwith a decimal dot is directly converted to an int,

PV248 Python 55/68 November 2, 2022

this should behave the same as int(float(x)). A few examples of
valid inputs (one per line):

(+ 1 2 3)

(eq? [quote a b c] (quote a c b))

12.7

(concat "abc" "efg" "ugly \"string\"")

(set! var ((stuff) #t #f))

(< #t #t)

Note that str(parse(expr)) == expr does not need to hold. Instead, str
should always give a canonical representation, e.g. this must hold:

str(parse('+7')) == str(parse('7'))

Part S.3.b: squelter

In this task, we will add persistence to the Shelter class from the pre-
vious installment (s1_d_shelter). You should provide 2 new functions,
load and store. The basic requirement is that doing a store → load →
store sequence will produce two identical copies of the same data.

• Both load and store expect a db keyword argument, which takes
an open sqlite3 connection.

• The load function accepts a single positional argument, an id of the
Shelter snapshot to load and returns a Shelter instance.

• The store function takes a Shelter instance as its only positional
argument, and returns an id (which can be then passed to load).

Please note that storing multiple Shelter instances in a single database
must be possible. Moreover, each animal and human should appear in
the entire database only once, even if they appear in multiple Shelter

snapshots (copies) stored in that database. We consider two people or
two animals the same if all their attributes match, with two exceptions:

• the max_capacity of a foster parent: the same foster parent may
appear in multiple Shelter instances with a different capacity,

• the date_of_entry of an animal, which works the same way (the
same animal still cannot re-enter the same shelter though).

A foster parent and an adopter with the same name and address are
the same person, and should only appear in the database once. Since
addresses for veterinarians are not stored, they are distinct from foster
parents and adopters, even if they have the same name.
Finally, if store is called on a Shelterwith the keyword argument dedu-
plicate set to True, and a snapshot with the exact same information
(i.e. the list of animals, adopters, foster parents, fostering records and
vet exams) is already present, do not add anything to the database and
return the id of the existing snapshot. It is okay for this check to be, in
the worst case, linear in the number of snapshots already stored (but it
should be still reasonably efficient, allowing a database to hold several
years worth of weekly snapshots).
The database schema is up to you, subject to the constraints above. If
store is called on an empty database, it should create the necessary
tables.

Part S.3.c: merkle

Implement class Merklewhich provides the following methods:

• __init__(conn) sets up the object, using conn as the database con-
nection (you can assume that this is an sqlite3 connection),

• store(path) stores the tree corresponding to the directory path

from the filesystem into the database (see below about format) and
returns its hash,

• diff_path(hash_old, path_new) computes a recursive diff be-
tween the directory given by the hash_old stored in the database
and the directory given by path_new (in the filesystem),

• diff(hash_old, hash_new) computes a recursive diff between two

directories stored in the database,
• fetch(hash, path) creates directory path in the filesystem (it is

an error if it already exists, or if anything else is in the way) and
makes a copy of the tree with root directory given by hash (from
the database into the filesystem), returning True on success and
False on error,

• find(root_hash, node_path) returns the hash of a node that is
reached by following node_path starting from the directory given
by root_hash, or None if there is no such node.

The format of the trees is as follows:

• a regular file corresponds to a leaf node, and its hash is simply the
hash of its content,

• a directorynode is a list of (itemhash, itemname) tuples; to compute
its hash, sort the tuples lexicographically by name, separate the
item hash from the name by a single space, and put each tuple on
a separate line (each line ended by a newline character).

These are the only node types. The same node (two nodes are the
same if they have the same hash) must never be stored in the database
twice. The find operation must be fast even for very large directories
(i.e. do not scan directories sequentially). Paths are given as strings,
components separated by a single / (forward slash) character.
The recursive diff should be returned as a dict instance with file paths
as its keys, where:

• a path appears in the dictionary if it appears in either of the trees
being compared (except if it is in both, and the content of the asso-
ciated files is the same),

• the values are Diff objects, with the following methods:
∘ predicates is_new, is_removed and is_changed,
∘ old_content, new_content which return a bytes object with the

content of the respective file (if applicable),
∘ unifiedwhich returns a str instance with a difflib-formatted

unified diff (it is the responsibility of the caller to make sure the
files are utf8-encoded text files).

For instance, doing diff(foo, foo) should return an empty dict. You
are encouraged to fetch the file content lazily. Diffing trees with a few
hundred files each, where most files are 100MiB, should be very fast
and use very little memory if we only actually read the content diff
for a single small file.
The hashes are SHA-2 256 and in the API, they are always passed
around as a bytes object (which contains the raw hash, 32 bytes long).
When hashing directories, the hashes are written out in hex (base 16).

Part S.3.d: numeval

Write an evaluator based on the grammar from t3/lisp.py. The basic
semantic rules are as follows: the first item in a compound expression
is always an identifier, and the compound expression itself is inter-
preted as a function application. Evaluation is eager, i.e. innermost
applications are evaluated first. Literals evaluate to themselves, i.e.
3.14 becomes a real with the value 3.14. Only numeric literals are
relevant in this homework, and all numeric literals represent reals
(floats). Besides literals, implement the following objects (<foo>+means
1 or more objects of type foo):

• (vector <real>+) – creates a vector with given entries
• (matrix <vector>+) – 1 vector = 1 row, starting from the top

And these operations on them:

• (+ <vector> <vector>) vector addition, returns a vector

• (dot <vector> <vector>) dot product, returns a real

• (cross <vector> <vector>) cross product, returns a vector

• (+ <matrix> <matrix>)matrix addition, returns a matrix

• (* <matrix> <matrix>)matrix multiplication, returns a matrix

• (det <matrix>) determinant, returns a real

PV248 Python 56/68 November 2, 2022

• (solve <matrix>) solve a system of linear equations, returns a vec-

tor

For solve, the argument is a matrix of coefficients and the result is
an assignment of variables – if there are multiple solutions, return a
non-zero one.

system matrix written as
x + y = 0 1 1 (matrix (vector 1 1)

-y = 0 0 -1 (vector 0 -1))

Expressions with argument type mismatches (both in object construc-
tors and in operations), attempts to construct a matrix where the indi-

vidual vectors (rows) are not of the same length, addition of differently-
shaped matrices, multiplication of incompatible matrices, addition or
dot product of different-sized vectors, and so on, should evaluate to an
error object. Attempt to get a cross product of vectors with dimension
other than 3 is an error. Any expression with an error as an argument
is also an error.
The evaluator should be available as evaluate() and take a string for
an argument. The result should be an object with methods is_real(),
is_vector(), is_matrix() and is_error(). Iterating vectors gives reals
and iteratingmatrices gives vectors. Both should also support indexing.
float(x) for x.is_real() should do the right thing.
You can use numpy in this task (in addition to standard modules).

Part K: Solution Key

Part K.1: Week 1

K.1.e.1 [fibfib]

def fibfib(n, k):

if n == 0:

a = 1

b = 1

for i in range(k - 2):

c = a + b

a = b

b = c

return b

else:

return fibfib(0, fibfib(n - 1, k))

K.1.r.1 [permute]

def int_to_list(number, base):

r = []

while number:

r.append(number % base)

number //= base

return r

def unique(lists):

return list(set(lists))

def list_to_int(list_, base):

res = 0

for i in range(len(list_)):

res += list_[i] * (base ** (len(list_)-i-1))

return res

def permute_digits(n, b):

perms = list(permutations(int_to_list(n, b)))

return unique(map(lambda x : list_to_int(x, b), perms))

K.1.r.2 [rfence]

def encrypt(text, rails):

res = ""

for i in range(1, rails + 1):

j = 0

res += text[i - 1]

next_i = False

while not next_i:

lines_until_up = None

lines_until_down = None

if i % rails != 0: # (==0) last row, no down

lines_until_down = rails - i

if i % rails != 1: # (==1) first row, no up

lines_until_up = i - 1

for shift in [lines_until_down, lines_until_up]:

if shift is not None:

j += shift * 2

if i + j - 1 >= len(text):

next_i = True

break

res += text[i + j - 1]

return res

def decrypt(text, rails):

switches, rest = divmod(len(text) - 1, rails - 1)

first_row_len = switches // 2 + 1

rows = [text[0 : first_row_len]]

i = first_row_len

while i < len(text):

mid_row = ""

if len(text) - i < switches: # last row

rows.append(text[i :])

break

for j in range(switches):

mid_row += text[i]

i += 1

if rest > 0:

mid_row += text[i]

i += 1

rest -= 1

rows.append(mid_row)

res = ""

while any(rows):

for i in list(range(0, len(rows))) + \

list(range(len(rows) - 2, 0, -1)):

if len(rows[i]) == 0:

break

res += rows[i][0]

rows[i] = rows[i][1 :]

return res

K.1.r.3 [life]

def updated(x, y, cells):

count = 0

alive = (x, y) in cells

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

if dx or dy:

count += (x + dx, y + dy) in cells

return count in { 2, 3 } if alive else count == 3

PV248 Python 57/68 November 2, 2022

def life(cells, n):

if n == 0:

return cells

todo = set()

for x, y in cells:

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

todo.add((x + dx, y + dy))

ngen = { (x, y) for x, y in todo if updated(x, y, cells) }

return life(ngen , n - 1)

K.1.r.4 [breadth] XXX

from statistics import median, mean

def breadth(tree):

last_level = [1]

widths = []

while last_level:

next_level = []

for i in last_level:

next_level += tree[i]

widths.append(len(last_level))

last_level = next_level

return mean(widths), median(widths), max(widths)

K.1.r.5 [radix]

def radix_sort(strings, idx = 0):

buckets = {}

result = []

for s in strings:

if len(s) > idx:

buckets.setdefault(s[idx], []).append(s)

else:

result.append(s)

for _, b in sorted(buckets.items(), key = lambda x: x[0]):

result.extend(radix_sort(b, idx + 1))

return result

K.1.r.6 [bipartite]

def is_bipartite(graph):

colours = {}

queue = []

vertices = list(set([x for x,_ in graph]))

for v in vertices: # can be disconnected

if v in colours:

continue

queue.append(v)

colours[v] = 1

colour = 1

while queue:

v = queue.pop(0)

colour = 2 if colours[v] == 1 else 1

for neighb in [y for x,y in graph if x == v]:

if neighb in colours and \

colours[neighb] != colour:

return False

if neighb not in colours:

colours[neighb] = colour

queue.append(neighb)

return True

Part K.2: Week 2

K.2.e.1 [geometry]

class Point:

def __init__(self, x: float, y: float) -> None:

self.x = x

self.y = y

def __sub__(self, other: 'Point') -> Vector:

return Vector(self.x - other.x, self.y - other.y)

def translated(self, vec: Vector) -> 'Point':

return Point(self.x + vec.x, self.y + vec.y)

class Vector:

def __init__(self, x: float, y: float) -> None:

self.x = x

self.y = y

def __mul__(self, s: float) -> Vector:

return Vector(self.x * s, self.y * s)

def length(self) -> float:

return sqrt(self.x * self.x + self.y * self.y)

def dot(self, other: Vector) -> float:

return self.x * other.x + self.y * other.y

def angle(self, other: Vector) -> float:

cos = self.dot(other) / (self.length() * other.length())

if isclose(cos, 1): cos = 1

if isclose(cos, -1): cos = -1

return acos(cos)

class Line:

def __init__(self, p1: Point, p2: Point):

self.p1 = p1

self.p2 = p2

def translated(self, vec: Vector) -> Line:

return Line(self.p1.translated(vec),

self.p2.translated(vec))

def get_point(self) -> Point:

return self.p1

def get_direction(self) -> Vector:

v_dir = self.p2 - self.p1

return v_dir * (1 / v_dir.length())

class Segment(Line):

def __init__(self, p1: Point, p2: Point) -> None:

super(Segment, self).__init__(p1, p2)

def length(self) -> float:

return (self.p2 - self.p1).length()

def translated(self, vec: Vector) -> Segment:

return Segment(self.p1.translated(vec),

self.p2.translated(vec))

def get_endpoints(self) -> Tuple[Point, Point]:

return (self.p1, self.p2)

class Circle:

def __init__(self, c: Point, r: float) -> None:

self.c = c

self.r = r

def translated(self, vec: Vector) -> Circle:

return Circle(self.c.translated(vec), self.r)

PV248 Python 58/68 November 2, 2022

def center(self) -> Point:

return self.c

def radius(self) -> float:

return self.r

def point_eq(p1: Point, p2: Point) -> bool:

return isclose(p1.x, p2.x) and \

isclose(p1.y, p2.y)

def dir_eq(u: Vector, v: Vector) -> bool:

return isclose(u.angle(v), 0) or \

isclose(u.angle(v), pi)

def line_eq(l1: Line, l2: Line) -> bool:

return dir_eq(l1.get_direction(), l2.get_direction()) and \

(point_eq(l1.get_point(), l2.get_point()) or

dir_eq(l1.get_point() - l2.get_point(),

l1.get_direction()))

K.2.r.1 [json]

def toJSON(val: Union[JSON, int, str]) -> JSON:

if isinstance(val, str):

return JsonStr(val)

if isinstance(val, int):

return JsonInt(val)

return val

class JsonArray:

def __init__(self) -> None:

self.arr : list[JSON] = []

def get(self, key: JsonKey) -> JSON:

assert isinstance(key, int)

return self.arr[key]

def set(self, key: int, val: Union[JSON, int, str]) -> None:

assert isinstance(key, int)

self.arr[key] = toJSON(val)

def append(self, val: JSON) -> None:

self.arr.append(val)

class JsonObject:

def __init__(self) -> None:

self.assoc : dict[str, JSON] = {}

def get(self, key: JsonKey) -> JSON:

return self.assoc[str(key)]

def set(self, key: JsonKey, val: Union[JSON, int, str]) ->

None:

self.assoc[str(key)] = toJSON(val)

class JsonWrapper:

def get(self, key: Union[str, int]) -> JSON:

assert False

def set(self, key: Union[str, int], val: JSON) -> None:

assert False

class JsonInt(int, JsonWrapper): pass

class JsonStr(str, JsonWrapper): pass

K.2.r.2 [rotate]

T = TypeVar('T')

class Tree(Generic[T]):

def __init__(self, value: T) -> None:

self.left : Optional[Tree[T]] = None

self.right : Optional[Tree[T]] = None

self.value = value

def rotate_left(self) -> Any:

assert self.left is not None

r = self.left

detach = r.right

r.right = self

self.left = detach

return r

def rotate_right(self) -> Any:

assert self.right is not None

r = self.right

detach = r.left

r.left = self

self.right = detach

return r

K.2.r.4 [treap]

class Treap(Tree[T]):

def __init__(self, key: T, priority: int):

self.left : Optional[Treap[T]] = None

self.right : Optional[Treap[T]] = None

self.priority = priority

self.key = key

def _insert(node: Optional[Treap[T]], key: T, prio: int)

-> Treap[T]:

if node is None:

return Treap(key, prio)

else:

return node.insert(key, prio)

def _fix_right(self) -> Treap[T]:

assert self.right is not None

if self.priority > self.right.priority:

return self

else:

return self.rotate_right()

def _fix_left(self) -> Treap[T]:

assert self.left is not None

if self.priority > self.left.priority:

return self

else:

return self.rotate_left()

def insert(self, key: T, prio: int) -> Treap[T]:

if key > self.key:

self.right = Treap._insert(self.right, key, prio)

return self._fix_right()

else:

self.left = Treap._insert(self.left, key, prio)

return self._fix_left()

K.2.r.5 [distance]

def distance_point_point(a: Point, b: Point) -> float:

p = a - b

return Vector(p.x, p.y).length()

def distance_point_line(a: Point, l: Line) -> float:

p1 = l.get_point()

p2 = p1.translated(l.get_direction())

x1, y1, x2, y2 = p1.x, p1.y, p2.x, p2.y

return (abs((y2 - y1) * a.x - (x2 - x1) * a.y +

(x2 * y1) - (y2 * x1)) /

sqrt((y2 - y1) * (y2 - y1) +

(x2 - x1) * (x2 - x1)))

def distance_line_line(p: Line, q: Line) -> float:

p1 = p.get_point()

PV248 Python 59/68 November 2, 2022

return distance_point_line(p1, q)

def distance_point_circle(a: Point, c: Circle) -> float:

return abs(distance_point_point(a, c.center()) - c.radius())

def distance_line_circle(l: Line, c: Circle) -> float:

dist = distance_point_line(c.center(), l) - c.radius()

return 0 if dist <= 0 else dist

def distance(a: Union[Point, Line, Circle],

b: Union[Point, Line, Circle]) -> float:

if type(a) == Point and type(b) == Point:

return distance_point_point(a, b)

if type(a) == Point and type(b) == Line:

return distance_point_line(a, b)

if type(a) == Line and type(b) == Point:

return distance_point_line(b, a)

if type(a) == Line and type(b) == Line:

return distance_line_line(a, b)

if type(a) == Point and type(b) == Circle:

return distance_point_circle(a, b)

if type(a) == Circle and type(b) == Point:

return distance_point_circle(b, a)

if type(a) == Line and type(b) == Circle:

return distance_line_circle(a, b)

if type(a) == Circle and type(b) == Line:

return distance_line_circle(b, a)

assert False

K.2.r.6 [istree]

class Tree:

def __init__(self) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

def is_tree_rec(root: Tree, visited: Set[Tree]) -> bool:

if root in visited:

return False

visited.add(root)

result = True

if root.left is not None:

result = result and is_tree_rec(root.left, visited)

if root.right is not None:

result = result and is_tree_rec(root.right, visited)

return result

def is_tree(root: Tree) -> bool:

return is_tree_rec(root, set())

Part K.3: Week 3

K.3.e.1 [counter]

def make_counter() -> Tuple[Callable[[K], None], Dict[K, int]

]:

ctr : Dict[K, int] = {}

def fun(key: K) -> None:

ctr.setdefault(key, 0)

ctr[key] += 1

return (fun, ctr)

K.3.r.1 [fold]

T = TypeVar('T')

S = TypeVar('S')

def foldr(f: Callable[[S, T], T], l: Sequence[S], i: T) ->

T:

res = i

for x in reversed(l):

res = f(x, res)

return res

def fold_len(l: Sequence[T]) -> int:

return foldr(lambda x, y: y + 1, l, 0)

def fold_pairs(l: Sequence[T]) -> Sequence[Any]:

return foldr(lambda x, y: (x, y), l, ())

def fold_rev(l: Sequence[T]) -> List[T]:

def app(x: T, y: List[T]) -> List[T]:

y.append(x)

return y

return foldr(app, l, [])

K.3.r.2 [trees]

def fold_node(f: Callable[[S, T, T], T],

node: Optional[Node[S]], init: T) -> T:

if node is None:

return init

return f(node.val,

fold_node(f, node.left, init),

fold_node(f, node.right, init))

def fold(f: Callable[[S, T, T], T], tree: Tree[S],

initial: T) -> T:

return fold_node(f, tree.root, initial)

K.3.r.3 [bisect]

def bisect(f: Callable[[float], float],

x_1: float, x_2: float, prec: float) -> float:

mid = (x_1 + x_2) / 2

if abs(x_1 - x_2) < 2 * prec:

return mid

if f(mid) * f(x_1) <= 0:

return bisect(f, x_1, mid, prec)

else:

return bisect(f, mid, x_2, prec)

K.3.r.4 [each]

T = TypeVar('T')

S = TypeVar('S', covariant = True)

class EachProto(Protocol, Generic[S]):

def each(self, __f: Callable[[S], object]) -> None: ...

Each = Union[Iterable[T], EachProto[T]]

def each(f: Callable[[T], object], data: Each[T]) -> None:

if hasattr(data, "each"):

cast(EachProto[T], data).each(f)

else:

for x in cast(Iterable[T], data):

f(x)

def each_len(data: Each[T]) -> int:

counter = 0

def inc(_: T) -> None:

nonlocal counter

counter += 1

each(inc, data)

return counter

def each_sum(data: Each[int]) -> int:

PV248 Python 60/68 November 2, 2022

sum_ = 0

def add(x: int) -> None:

nonlocal sum_

sum_ += x

each(add, data)

return sum_

def each_avg(data: Each[int]) -> float:

items = 0

sum_ = 0

def add(x: int) -> None:

nonlocal items, sum_

items += 1

sum_ += x

each(add, data)

return sum_ / items

def each_median(data: Each[int]) -> Optional[int]:

items = []

def add(x: int) -> None:

items.append(x)

each(add, data)

if not items:

return None

len_ = len(items)

return sorted(items)[len_ // 2 - ((len_ + 1) % 2)]

K.3.r.5 [objects]

def traffic_light() -> Obj:

is_green = False

timeout = 0

def dispatch(what: str, *args: Any) -> Any:

nonlocal is_green, timeout

if what == 'is_green':

return is_green

if what == 'set_green':

is_green = True

if what == 'set_red':

timeout = 5

if what == 'tick':

if timeout > 0:

timeout -= 1

if timeout == 0:

is_green = False

return dispatch

def button(pedestrian_light: Obj, vehicle_light: Obj) -> Obj:

timeout = 0

to_green = True

def dispatch(what: str, *args: Any) -> Any:

nonlocal to_green, timeout

if what == 'push':

vehicle_light('set_red')

if what == 'tick':

if not vehicle_light('is_green') and \

not pedestrian_light('is_green'):

if to_green:

pedestrian_light('set_green')

timeout = 20

else:

vehicle_light('set_green')

to_green = True

if timeout > 0:

timeout -= 1

if timeout == 0:

pedestrian_light('set_red')

to_green = False

return dispatch

Part K.4: Week 4

K.4.r.1 [iscan]

class Prefix:

FIXME list_in should be iterable, not list

def __init__(self, list_in: List[int]) -> None:

self.slice = 0

self.list = list_in

self.lenlist = len(list_in)

def __iter__(self) -> Prefix:

return self

def __next__(self) -> List[int]:

slice_ = self.slice

self.slice += 1

if slice_ > self.lenlist:

raise StopIteration

return self.list[0 : slice_]

class Sum:

def __init__(self, list_in: List[int]) -> None:

self.prefix = Prefix(list_in)

next(self.prefix)

def __iter__(self) -> Sum: return self

def __next__(self) -> int:

return sum(next(self.prefix))

def prefixes(list_in: List[int]) -> Prefix:

return Prefix(list_in)

def prefix_sum(list_in: List[int]) -> Sum:

return Sum(list_in)

K.4.r.2 [gscan]

def suffixes(iter_in: Iterable[int]) \

-> Generator[Iterable[int], None, None]:

list_in = list(iter_in)

for i in range(len(list_in), -1, -1):

yield list_in[i :]

def suffix_sum(iter_in: Iterable[int]) \

-> Generator[int, None, None]:

count = 0

for item in reversed(list(iter_in)):

count += item

yield count

K.4.r.3 [itree]

class TreeIter(Generic[T]):

def __init__(self, tree: Tree[T]) -> None:

self.n : Optional[Tree[T]] = tree

def descend(self) -> None:

assert self.n is not None

while self.n.left is not None:

PV248 Python 61/68 November 2, 2022

self.n = self.n.left

def ascend(self) -> None:

assert self.n is not None

while (self.n.parent is not None and

self.n == self.n.parent.right):

self.n = self.n.parent

self.n = self.n.parent # coming from left

def __iter__(self) -> TreeIter[T]:

assert self.n is not None

i = TreeIter(self.n)

i.descend()

return i

def __next__(self) -> T:

if self.n is None:

raise StopIteration()

assert self.n is not None # srsly

v = self.n.value

if self.n.right is not None:

self.n = self.n.right

self.descend()

else:

self.ascend()

return v

K.4.r.4 [gtree]

def preorder(tree: Optional[Tree[T]]) \

-> Generator[T, None, None]:

if tree is not None:

yield tree.value

yield from preorder(tree.left)

yield from preorder(tree.right)

def inorder(tree: Optional[Tree[T]]) \

-> Generator[T, None, None]:

if tree is not None:

yield from inorder(tree.left)

yield tree.value

yield from inorder(tree.right)

def postorder(tree: Optional[Tree[T]]) \

-> Generator[T, None, None]:

if tree is not None:

yield from postorder(tree.left)

yield from postorder(tree.right)

yield tree.value

K.4.r.5 [dfs]

T = TypeVar('T')

def dfs(graph: Dict[T, List[T]], initial: T) \

-> Generator[T, None, None]:

seen : Set[T] = set()

yield from dfs_rec(graph, initial, seen)

def dfs_rec(graph: Dict[T, List[T]], initial: T,

seen: Set[T]) -> Generator[T, None, None]:

if initial in seen:

return

seen.add(initial)

for n in graph[initial]:

yield from dfs_rec(graph, n, seen)

yield initial

K.4.r.6 [guided]

def a_star(graph: Graph[T], start: T) -> Gen2[T, int]:

q : PriorityQueue[tuple[int, T]] = PriorityQueue()

q.put((0, start))

while not q.empty():

prio, item = q.get()

for succ in graph[item]:

nprio = yield succ

q.put((nprio, succ))

class cor_iter(Generic[T, S]):

def __init__(self, cor: Gen2[T, S]) -> None:

self.to_send : Optional[S] = None

self.cor = cor

def __iter__(self) -> cor_iter[T, S]:

return self

def __next__(self) -> T:

if self.to_send is not None:

return self.cor.send(self.to_send)

else:

return next(self.cor)

def reply(self, v: S) -> None:

self.to_send = v

Part K.5: Week 5

K.5.r.1 [refcnt]

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.refs : List[int] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def put(self, obj_id: int) -> None:

if obj_id <= 0 or not self.boundcheck(obj_id, 0):

return

self.refs[obj_id] -= 1

if self.refs[obj_id] == 0:

for val in self.data[obj_id]:

self.put(val)

self.data[obj_id] = []

def get(self, obj_id: int) -> None:

if self.boundcheck(obj_id, 0):

self.refs[obj_id] += 1

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.get(value)

self.put(self.data[obj_id][index])

self.data[obj_id][index] = value

return True

def count(self) -> int:

return 1 + sum(1 if x else 0 for x in self.refs)

PV248 Python 62/68 November 2, 2022

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

self.refs.append(0)

return len(self.data) - 1

K.5.r.2 [reach]

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.marks : List[bool] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.data[obj_id][index] = value

return True

def mark(self, now: int) -> None:

if not self.boundcheck(now, 0) or self.marks[now]:

return

self.marks[now] = True

for x in self.data[now]:

self.mark(x)

def count(self) -> int:

self.marks = [False for _ in self.data]

self.mark(0)

return sum(self.marks)

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

return len(self.data) - 1

K.5.r.3 [sweep]

class GcHeap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.marks : List[bool] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.data[obj_id][index] = value

return True

def mark(self, now: int) -> None:

if not self.boundcheck(now, 0) or self.marks[now]:

return

self.marks[now] = True

for x in self.data[now]:

self.mark(x)

def count(self) -> int:

self.marks = [False for _ in self.data]

self.mark(0)

return sum(self.marks)

def collect(self) -> None:

self.marks = [False for _ in self.data]

self.mark(0)

for obj_id, live in enumerate(self.marks):

if not live:

self.data[obj_id] = []

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

return len(self.data) - 1

K.5.r.4 [semi]

class Heap:

def __init__(self) -> None:

self.fro : List[List[int]] = []

self.to : List[List[int]] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.to) and \

index < len(self.to[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.to[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.to[obj_id][index] = value

return True

def collect(self) -> None:

refmap : Dict[int, int] = {}

self.fro = self.to

self.to = []

self.copy(0, refmap)

def copy(self, now: int, refmap: Dict[int, int]) -> int:

if now < 0:

return now

if now in refmap:

return refmap[now]

refmap[now] = len(self.to)

copy : List[int] = []

self.to.append(copy)

for val in self.fro[now]:

copy.append(self.copy(val, refmap))

return refmap[now]

def make(self, size: int) -> int:

self.to.append([0 for _ in range(size)])

return len(self.to) - 1

K.5.r.5 [cheney]

class Heap:

def __init__(self) -> None:

self.fro : List[List[int]] = []

self.to : List[List[int]] = []

self.scan = 0

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

PV248 Python 63/68 November 2, 2022

obj_id < len(self.to) and \

index < len(self.to[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.to[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.to[obj_id][index] = value

return True

def collect(self) -> None:

self.fro = self.to

self.to = []

self.scan = 0

assert self.copy(0) == 0

while self.scan < len(self.to):

o = self.to[self.scan]

for i in range(len(o)):

o[i] = self.copy(o[i])

self.scan += 1

print(self.to)

def copy(self, ref: int) -> int:

if ref < 0:

return ref

nref = self.fro[ref][0] - len(self.fro)

if nref < 0:

nref = len(self.to)

self.to.append(self.fro[ref].copy())

self.fro[ref][0] = nref + len(self.fro)

return nref

def make(self, size: int) -> int:

self.to.append([0 for _ in range(size)])

return len(self.to) - 1

K.5.r.6 [python]

class Heap:

def __init__(self) -> None:

self.data : List[List[int]] = []

self.refs : List[int] = []

self.marks : List[bool] = []

def boundcheck(self, obj_id: int, index: int) -> bool:

return obj_id >= 0 and \

obj_id < len(self.data) and \

index < len(self.data[obj_id])

def read(self, obj_id: int, index: int) -> Optional[int]:

if not self.boundcheck(obj_id, index):

return None

return self.data[obj_id][index]

def write(self, obj_id: int, index: int, value: int) -> bool:

if not self.boundcheck(obj_id, index):

return False

self.get(value)

self.put(self.data[obj_id][index])

self.data[obj_id][index] = value

return True

def put(self, obj_id: int) -> None:

if obj_id <= 0 or not self.boundcheck(obj_id, 0):

return

self.refs[obj_id] -= 1

if self.refs[obj_id] == 0:

for val in self.data[obj_id]:

self.put(val)

self.data[obj_id] = []

def get(self, obj_id: int) -> None:

if self.boundcheck(obj_id, 0):

self.refs[obj_id] += 1

def mark(self, now: int) -> None:

if not self.boundcheck(now, 0) or self.marks[now]:

return

self.marks[now] = True

for x in self.data[now]:

self.mark(x)

def collect(self) -> None:

self.marks = [False for _ in self.data]

self.mark(0)

for obj_id, live in enumerate(self.marks):

if not live:

self.data[obj_id] = []

def make(self, size: int) -> int:

self.data.append([0 for _ in range(size)])

self.refs.append(0)

return len(self.data) - 1

Part K.6: Week 6

K.6.r.1 [trace]

T = TypeVar('T')

class traced(Generic[T]):

indent = 0

counter = 0

def __init__(self, f: Callable[..., T]) -> None:

self.f = f

def __call__(self, *args: Any, **kwargs: Any) -> T:

traced.counter += 1

cnt = traced.counter

if cnt > 1:

print()

print(' ' * traced.indent, self.f.__name__, list(args),

end = '')

print(kwargs if len(kwargs) else '', end = '')

traced.indent += 2

r = self.f(*args, **kwargs)

traced.indent -= 2

if cnt != traced.counter:

print('\n' + ' ' * traced.indent, "returned", r)

else:

print(' ->', r, end = '')

return r

K.6.r.2 [profile]

class profile:

stats : Dict[str, int] = {}

@staticmethod

def get() -> Dict[str, int]:

return dict(profile.stats)

def __init__(self, fun: Callable[..., Any]) -> None:

self.fun = fun

def __call__(self, *args: Any, **kwargs: Any) -> Any:

profile.stats.setdefault(self.fun.__name__, 0)

PV248 Python 64/68 November 2, 2022

profile.stats[self.fun.__name__] += 1

return self.fun(*args, **kwargs)

K.6.r.3 [record]

class Data: # helper to silence ‹mypy›

def __init__(self, *args: Any) -> None: pass

def record(cls: type) -> type:

class rec:

def __init__(self, *args: Any) -> None:

from copy import copy

counter = 0

for k, v in cls.__dict__.items():

if not k.startswith('__'):

if len(args) > counter:

self.__dict__[k] = args[counter]

else:

self.__dict__[k] = copy(v)

counter += 1

return rec

K.6.r.4 [array]

T = TypeVar('T')

class Array(Generic[T]):

def __init__(self, defval: T) -> None:

self.defval = copy(defval)

self.data : List[T] = []

def extend(self, idx: int) -> None:

while len(self.data) <= idx:

self.data.append(copy(self.defval))

def __setitem__(self, idx: int, val: T) -> None:

self.extend(idx)

self.data[idx] = val

def __getitem__(self, idx: int) -> T:

self.extend(idx)

return self.data[idx]

Part K.8: Week 8

K.8.r.1 [sleep]

Task = Coroutine[object, object, object]

class Sched:

def add(self, task: Task) -> None:

self.tasks.append(task.__await__())

def __init__(self) -> None:

self.tasks : List[Iterator[int]] = []

self.queue : PriorityQueue[Tuple[float, int]]

self.queue = PriorityQueue()

class suspend:

def __init__(self, n: int) -> None:

self.msec = n

def __await__(self) -> Generator[int, None, None]:

yield self.msec

def schedule(self, i: int) -> None:

try:

task = self.tasks[i]

delay = next(task)

item = (time() + delay / 1000, i)

self.queue.put(item)

except StopIteration:

pass

def run(self) -> None:

for i in range(len(self.tasks)):

self.schedule(i)

while not self.queue.empty():

when, what = self.queue.get()

pause = when - time()

if pause > 0:

sleep(pause)

self.schedule(what)

K.8.r.2 [ioplex]

Task = Coroutine[object, object, object]

class IOPlex:

def __init__(self, factory: Any) -> None:

self.tasks: dict[int, Any] = {}

self.factory = factory

self.reply: Optional[str] = None

self.counter = 0

self.queue: Any = PriorityQueue()

class read:

def __await__(self):

x = yield (); return x

def schedule(self, i: int) -> None:

try:

task = self.tasks[i]

delay = next(task)

item = (time() + delay / 1000, i)

self.queue.put(item)

except StopIteration:

pass

def write(self, data: str) -> None:

self.reply = data

def connect(self) -> int:

ident = self.counter

self.counter += 1

self.tasks[ident] = \

self.factory(self.read, self.write).__await__()

next(self.tasks[ident])

return ident

def close(self, ident: int) -> None:

del self.tasks[ident]

def send(self, ident: int, data: str) -> Optional[str]:

if ident not in self.tasks:

return None

try:

self.tasks[ident].send(data)

except StopIteration:

return None

r, self.reply = self.reply, None

return r

K.8.r.3 [search]

class Tree(Generic[T]):

def __init__(self, key) -> None:

self.left : Optional[Tree] = None

self.right : Optional[Tree] = None

self.key = key

async def search(self, key, suspend) -> bool:

await suspend(self.key)

r = False

if key == self.key:

PV248 Python 65/68 November 2, 2022

r = True

if key < self.key and self.left is not None:

r = await self.left.search(key, suspend)

if key > self.key and self.right is not None:

r = await self.right.search(key, suspend)

return r

Part K.9: Week 9

K.9.r.1 [email]

def parse_rfc822(filename: str) -> dict[str, str]:

d = {}

with open(filename, "r") as f:

for line in f:

parts = line.split(": ", 1) # incl. the space

drop line endings

if parts[1][-1] == '\n':

parts[1] = parts[1][:-1]

d[parts[0]] = parts[1]

return d

K.9.r.2 [toml]

class ParseTOML:

def __init__(self, toml: str) -> None:

self.text = toml

self.idx = 0

self.sec : Section = {}

self.key = ''

self.parsed : TOML = {}

self.error = False

self.top()

def eof(self) -> bool:

return self.error or self.idx >= len(self.text)

def peek(self) -> str:

if self.eof():

return ''

else:

return self.text[self.idx]

def shift(self) -> str:

x = self.peek()

self.idx += 1

return x

def require(self, x: str) -> None:

if self.shift() != x:

self.error = True

def top(self) -> None:

while not self.eof():

self.line()

def line(self) -> None:

if self.peek() == '[':

self.header()

else:

self.kvpair()

self.require('\n')

def header(self) -> None:

self.parsed[self.key] = self.sec

self.sec = {}

self.require('[')

self.key = self.word()

self.require(']')

def kvpair(self) -> None:

k = self.word()

self.require('=')

v = self.word()

self.sec[k] = v

def word(self) -> str:

x = self.shift()

if not x.isalpha():

self.error = True

while self.peek().isalnum():

x += self.shift()

return x

def get(self) -> Optional[TOML]:

self.parsed[self.key] = self.sec

return None if self.error else self.parsed

def parse_toml(toml: str) -> Optional[TOML]:

return ParseTOML(toml).get()

K.9.r.3 [resolv]

class Validate:

def __init__(self, text: str) -> None:

self.text = text

self.idx = 0

self.error = False

self.top()

def eof(self) -> bool:

return self.error or self.idx >= len(self.text)

def peek(self) -> str:

if self.eof():

return ''

else:

return self.text[self.idx]

def shift(self) -> str:

x = self.peek()

self.idx += 1

return x

def require(self, x: str) -> None:

check = self.text[self.idx : self.idx + len(x)]

if check != x:

self.error = True

self.idx += len(x)

def top(self) -> None:

while not self.eof():

self.stmt()

def stmt(self) -> None:

if self.peek() == 'n':

self.server()

self.spaces()

if self.peek() == '\n':

self.shift()

else:

self.comment()

def comment(self) -> None:

self.spaces()

self.require('#')

while not self.eof() and self.peek() != '\n':

PV248 Python 66/68 November 2, 2022

self.shift()

self.require('\n')

def spaces(self, req: bool = False) -> bool:

if not self.peek().isspace():

if req:

self.error = True

return False

while self.peek().isspace() and self.peek() != '\n':

self.shift()

return True

def server(self) -> None:

self.require('nameserver')

self.spaces(True)

self.address()

def address(self) -> None:

self.num()

for i in range(3):

self.require('.')

self.num()

def num(self) -> None:

x = self.shift()

if x == '0':

return

if not x.isdecimal():

self.error = True

while self.peek().isdecimal():

self.shift()

def ok(self) -> bool:

return not self.error

def resolv_valid(text: str) -> bool:

return Validate(text).ok()

K.9.r.4 [fstab]

def read_fs(line: str) -> FS:

items = line.split()

dev = items[0]

path = items[1]

fstype = items[2]

opts = items[3].split(',')

freq = int(items[4]) if len(items) > 4 else 0

fsck = int(items[5]) if len(items) > 5 else 0

return dev, path, fstype, opts, freq, fsck

def read_fstab(path: str) -> list[FS]:

comment = re.compile('#.*')

ws = re.compile('\s*')

res : list[FS] = []

with open(path, 'r') as f:

for line in f:

line = comment.sub('', line)

if ws.fullmatch(line):

continue

res.append(read_fs(line))

return res

K.9.r.6 [cpp]

def cpp(path: str) -> str:

defined = set()

out = ''

emit : list[bool] = []

def process(line: str) -> None:

if line.startswith('#ifdef'):

cmd, macro = line.split()

emit.append(macro in defined)

if line.startswith('#endif'):

emit.pop()

if not emit or emit[-1]:

if line.startswith('#define'):

cmd, macro = line.split()

defined.add(macro)

if line.startswith('#undef'):

cmd, macro = line.split()

defined.remove(macro)

if line.startswith('#include'):

cmd, path = line.split()

read(path[1: -1])

def read(path: str) -> None:

nonlocal out

with open(path, 'r') as f:

for line in f:

if line[0] == '#':

process(line)

else:

if not emit or emit[-1]:

out += line

read(path)

return out

Part K.10: Week 10

K.10.r.1 [schema]

def create_tables(schema: str, db: Connection) -> None:

tabs = json.load(open(schema))

for name, cols in tabs.items():

cdesc = ', '.join(f'{c} {t}' for c, t in cols.items())

db.execute(f'create table {name} ({cdesc})')

K.10.r.2 [upgrade]

def upgrade_tables(schema: str, db: Connection) -> None:

tabs = json.load(open(schema))

for tab, cols in tabs.items():

cdesc = ', '.join(f'{c} {t}' for c, t in cols.items())

cmd = f'create table if not exists {tab} ({cdesc})'

db.execute(cmd)

for c, t in cols.items():

cmd = f'alter table {tab} add column {c} {t}'

try:

db.execute(cmd)

except OperationalError as e:

if not str(e).startswith('duplicate column'):

raise

K.10.r.3 [pkgs]

def list_packages(db: Connection) -> Cursor:

return db.execute('select name, count(number) from ' + \

'package left join version ' + \

'on package_id = package.id group by name')

def list_leaves(db: Connection) -> Cursor:

return db.execute('select name, number from ' + \

'package join version ' + \

'on package_id = package.id ' + \

'where version.id not in ' + \

'(select depends_on from depends)')

PV248 Python 67/68 November 2, 2022

def sum_depends(db: Connection) -> Cursor:

return db.execute('select name, number, ' + \

'(select count(*) from depends where ' + \

' depends_on = version.id) from ' + \

'package join version ' + \

'on package_id = package.id')

Part K.11: Week 11

K.11.r.1 [sleep]

async def cor1() -> None:

for i in range(5):

await asyncio.sleep(0.7)

print("cor1")

async def cor2() -> None:

for i in range(5):

await asyncio.sleep(1)

print("cor2")

async def sleepy() -> None:

await asyncio.gather(cor1(),

cor2())

K.11.r.2 [counter]

async def counters(queue: asyncio.Queue[list[int]],

sleeps: list[float], iterations: int) ->

None:

ctr = [0 for _ in sleeps]

proc = [await asyncio.create_subprocess_shell(f"while true; do echo .; sleep {i}; done",

stdin=PIPE,

stdout=PIPE)

for i in sleeps

]

async def monitor(idx : int) -> None:

out = proc[idx].stdout

assert out is not None

async for l in out:

assert l == b".\n"

ctr[idx] += 1

async def printer() -> None:

await asyncio.sleep(1)

for i in range(iterations):

await queue.put(ctr)

await asyncio.sleep(1)

for p in proc:

p.kill()

await p.wait()

await asyncio.gather(printer(), *[monitor(i) for i in

range(len(sleeps))])

K.11.r.3 [pipeline]

def chunker(limit: int) -> Any:

async def process(q_in: asyncio.Queue[Any],

q_out: asyncio.Queue[Any]) -> None:

s = ''

while True:

item = await q_in.get()

print("{}, retrieved {}".format(limit, item))

if item is None:

while s:

if len(s) <= limit:

await q_out.put(str(s))

s = ''

else:

await q_out.put(str(s[:limit]))

s = s[limit :]

break

s += item

if len(s) < limit:

continue

if len(s) <= limit:

await q_out.put(str(s))

s = ''

continue

else:

await q_out.put(str(s[:limit]))

s = s[limit :]

continue

await q_out.put(s)

await q_out.put(None)

return process

K.11.r.5 [minilisp]

async def minilisp(reader: asyncio.StreamReader) -> Any:

stack : list[Any] = []

token = b''

def shift() -> None:

nonlocal token

if token:

stack[-1].append(token.decode())

token = b''

while True:

byte = await reader.readexactly(1)

if byte == b'(':

shift()

stack.append([])

elif byte == b')':

shift()

x = stack.pop()

if stack:

stack[-1].append(x)

else:

return x

elif byte.isspace():

shift()

else:

token += byte

K.11.r.6 [rot13]

def rotate_13(s: str) -> str:

ss = ''

def f(c: str) -> str:

return chr((ord(c) + 13 - 97) % 26 + 97)

for c in s:

ss += f(c)

return ss

async def handle_client(reader: StreamReader,

writer: StreamWriter) -> None:

while True:

data = await reader.read(10)

if not data:

break

response = data.decode('utf8')

print('server received', response)

msg = rotate_13(response)

PV248 Python 68/68 November 2, 2022

print('server sending', msg)

writer.write(msg.encode('utf8'))

await writer.drain()

print('closing connection to server')

writer.close()

async def client(msg: str, path: str) -> str:

reader, writer = await asyncio.open_unix_connection(path)

print("client sending", msg)

writer.write(msg.encode())

if msg == 'world':

await asyncio.sleep(1)

data_ = await reader.read(10)

data = data_.decode()

print("client received", data)

print("closing")

writer.close()

return data

async def unix_rot(path: str) -> list[str]:

server = await asyncio.start_unix_server(handle_client, path)

data = await asyncio.gather(client('hello', path), client(

'world', path))

server.close()

await server.wait_closed()

os.unlink(path)

return list(data)

Part K.12: Week 12

K.12.r.1 [hist]

def normalize(n: int, max_ : int) -> int:

return round((n / max_) * 25)

def histogram(bins: List[int]) -> str:

count = Counter(bins)

m = max(count.values())

for b in count:

count[b] = normalize(count[b], m)

i = 1

height = 25

s = ""

while height > 0:

i = 0

for j in sorted(count.keys()):

while i < j:

i += 1

s += ' '

if i == j and count[j] >= height:

s += '*'

else:

s += ' '

i += 1

s += '\n'

height -= 1

return s

K.12.r.2 [dft]

def dft(a: List[float]) -> List[float]:

return [i for i, v in enumerate(np.abs(np.fft.rfft(a)))

if not np.isclose(v, 0)]

K.12.r.3 [null]

def null(A: NDArray[np.float64]) -> NDArray[np.float64]:

A = np.atleast_2d(A)

u, s, vh = np.linalg.svd(A)

tol = max(1e-13, 0)

nnz = (s >= tol).sum()

return vh[nnz:].conj()

K.12.r.4 [frames]

def max_at(data: pd.DataFrame, col: str) -> pd.DataFrame:

return data[data[col] == data[col].max()]

def best(data: pd.DataFrame) -> pd.DataFrame:

d = max_at(data, 'weekly')

e = max_at(data, 'assignments')

f = max_at(data, 'reviews')

return cast(pd.DataFrame, d.combine_first(e).combine_first(f

))

def get_total(data: pd.DataFrame):

weekly_min = data['weekly'].apply(lambda x: min(x, 9))

return weekly_min + data['assignments'] + data['reviews']

def add_total(data: pd.DataFrame) -> pd.DataFrame:

return data.assign(total = get_total)

def compute_total(data: pd.DataFrame) -> pd.DataFrame:

tot = add_total(data)

return tot[['student', 'total']]

def compute_averages(data: pd.DataFrame) -> Dict[str, float]:

data = add_total(data)

cols = data[['weekly', 'assignments', 'reviews']]

return dict(cols.mean())

K.12.r.5 [regress]

Data = List[Tuple[float, float]]

def drop_outliers(data: Data, cutoff: float) -> Data:

x_ = [x for x,_ in data]

y_ = [y for _,y in data]

p = np.polyfit(x_, y_, 1)

idx_max = 0

max_dist = 0

sum_dist = 0

for i in range(len(y_)):

dist = (y_[i] - (p[0] * x_[i] + p[1])) ** 2

if dist > max_dist:

idx_max = i

max_dist = dist

sum_dist += dist

if max_dist > (sum_dist * cutoff):

x_.pop(idx_max)

y_.pop(idx_max)

return drop_outliers(list(zip(x_, y_)), cutoff)

return list(zip(x_, y_))

def regress(data: Data, cutoff: float) -> Tuple[float, float]:

data = drop_outliers(data, cutoff)

x_ = [x for x,_ in data]

y_ = [y for _,y in data]

p = np.polyfit(x_, y_, 1)

return (p[0], p[1])

