
RESEARCH ARTICLE

 Benchmarking of long-read assemblers for prokaryote

whole genome sequencing [version 4; peer review: 4

approved]

Ryan R. Wick 1, Kathryn E. Holt1,2

1Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
2Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK

First published: 23 Dec 2019, 8:2138
https://doi.org/10.12688/f1000research.21782.1
Second version: 22 Apr 2020, 8:2138
https://doi.org/10.12688/f1000research.21782.2
Third version: 17 Sep 2020, 8:2138
https://doi.org/10.12688/f1000research.21782.3
Latest published: 01 Feb 2021, 8:2138
https://doi.org/10.12688/f1000research.21782.4

v4

Abstract
Background: Data sets from long-read sequencing platforms (Oxford
Nanopore Technologies and Pacific Biosciences) allow for most
prokaryote genomes to be completely assembled – one contig per
chromosome or plasmid. However, the high per-read error rate of
long-read sequencing necessitates different approaches to assembly
than those used for short-read sequencing. Multiple assembly tools
(assemblers) exist, which use a variety of algorithms for long-read
assembly.
Methods: We used 500 simulated read sets and 120 real read sets to
assess the performance of eight long-read assemblers (Canu, Flye,
Miniasm/Minipolish, NECAT, NextDenovo/NextPolish, Raven, Redbean
and Shasta) across a wide variety of genomes and read parameters.
Assemblies were assessed on their structural accuracy/completeness,
sequence identity, contig circularisation and computational resources
used.
Results: Canu v2.1 produced reliable assemblies and was good with
plasmids, but it performed poorly with circularisation and had the
longest runtimes of all assemblers tested. Flye v2.8 was also reliable
and made the smallest sequence errors, though it used the most RAM.
Miniasm/Minipolish v0.3/v0.1.3 was the most likely to produce clean
contig circularisation. NECAT v20200803 was reliable and good at
circularisation but tended to make larger sequence errors.
NextDenovo/NextPolish v2.3.1/v1.3.1 was reliable with chromosome
assembly but bad with plasmid assembly. Raven v1.3.0 was reliable for
chromosome assembly, though it did not perform well on small
plasmids and had circularisation issues. Redbean v2.5 and Shasta
v0.7.0 were computationally efficient but more likely to produce

Open Peer Review

Approval Status

1 2 3 4

version 4

(update)
01 Feb 2021

version 3

(update)
17 Sep 2020

version 2

(update)
22 Apr 2020

version 1
23 Dec 2019 view view view view

Aleksey V. Zimin, Johns Hopkins University,

Baltimore, USA

Steven L. Salzberg , Johns Hopkins

University, Baltimore, USA

Whiting School of Engineering, Johns Hopkins

University, Baltimore, USA

Bloomberg School of Public Health, Johns

Hopkins University, Baltimore, USA

1.

Robert Vaser, University of Zagreb, Zagreb,

Croatia

2.

Page 1 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://f1000research.com/articles/8-2138/v4
https://f1000research.com/articles/8-2138/v4
https://orcid.org/0000-0001-8349-0778
https://doi.org/10.12688/f1000research.21782.1
https://doi.org/10.12688/f1000research.21782.2
https://doi.org/10.12688/f1000research.21782.3
https://doi.org/10.12688/f1000research.21782.4
https://f1000research.com/articles/8-2138/v4
https://f1000research.com/articles/8-2138/v3
https://f1000research.com/articles/8-2138/v2
https://f1000research.com/articles/8-2138/v1
https://f1000research.com/articles/8-2138/v4#referee-response-58115
https://f1000research.com/articles/8-2138/v4#referee-response-58113
https://f1000research.com/articles/8-2138/v4#referee-response-58301
https://f1000research.com/articles/8-2138/v4#referee-response-58116
https://orcid.org/0000-0002-8859-7432
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.21782.4&domain=pdf&date_stamp=2021-02-01

Corresponding author: Ryan R. Wick (rrwick@gmail.com)
Author roles: Wick RR: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Writing – Original
Draft Preparation; Holt KE: Conceptualization, Supervision, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported by the Bill & Melinda Gates Foundation, Seattle (grant number OPP1175797) and an
Australian Government Research Training Program Scholarship. KEH is supported by a Senior Medical Research Fellowship from the
Viertel Foundation of Victoria.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2021 Wick RR and Holt KE. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Wick RR and Holt KE. Benchmarking of long-read assemblers for prokaryote whole genome sequencing
[version 4; peer review: 4 approved] F1000Research 2021, 8:2138 https://doi.org/10.12688/f1000research.21782.4
First published: 23 Dec 2019, 8:2138 https://doi.org/10.12688/f1000research.21782.1

incomplete assemblies.
Conclusions: Of the assemblers tested, Flye,
Miniasm/Minipolish, NextDenovo/NextPolish and Raven performed
best overall. However, no single tool performed well on all metrics,
highlighting the need for continued development on long-read
assembly algorithms.

Keywords
Assembly, long-read sequencing, Oxford Nanopore Technologies,
Pacific Biosciences, microbial genomics, benchmarking

This article is included in the Bioinformatics

gateway.

Mile Šikić , University of Zagreb, Zagreb,

Croatia

Genome Institute of Singapore, A*STAR,

Singapore

Mikhail Kolmogorov, University of California

San Diego, La Jolla, USA

3.

Olin Silander, Massey University Auckland,

North Shore, New Zealand

4.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 2 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

mailto:rrwick@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.21782.4
https://doi.org/10.12688/f1000research.21782.1
https://f1000research.com/gateways/bioinformaticsgw
https://f1000research.com/gateways/bioinformaticsgw
https://orcid.org/0000-0002-8370-0891

Introduction
Genome assembly is the computational process of using
shotgun whole-genome sequencing data (reads) to reconstruct
an organism’s true genomic sequence to the greatest extent
possible1. Software tools which carry out assembly (assem-
blers) take sequencing reads as input and produce reconstructed
contiguous pieces of the genome (contigs) as output.

If a genome contains repetitive sequences (repeats) which are
longer than the sequencing reads, then the underlying genome
cannot be fully reconstructed without additional information;
i.e. if no read spans a repeat in the genome, then that repeat
cannot be resolved, limiting contig length2. Short-read sequenc-
ing platforms (e.g. those made by Illumina) produce reads
hundreds of bases in length and tend to result in shorter contigs. In
contrast, long-read platforms from Oxford Nanopore Technologies
(ONT) and Pacific Biosciences (PacBio) can generate reads tens
of thousands of bases in length which span more repeats and thus
result in longer contigs3.

Prokaryote genomes are simpler than eukaryote genomes in
a few aspects relevant to assembly. First, they are smaller,
most being less than 10 Mbp in size4. Second, they contain less
repetitive content and their longest repeat sequences are often
less than 10 kbp in length5. Third, prokaryote genomes are
haploid and thus avoid assembly-related complications from
diploidy/polyploidy6. These facts make prokaryote genome
assembly a more tractable problem than eukaryote genome
assembly, and in most cases a long-read set of sufficient depth
should contain enough information to generate a complete
assembly – each replicon in the genome being fully assembled
into a single contig7. Prokaryote genomes also have two other
features relevant to assembly: they may contain plasmids that
differ from the chromosome in copy number and therefore
read depth, and most prokaryote replicons are circular with no
defined start/end point.

In this study, we examine the performance of various long-read
assemblers in the context of prokaryote whole genomes. We
assessed each tool on its ability to generate complete assemblies
using both simulated and real read sets. We also investigated
prokaryote-specific aspects of assembly, such as performance on
plasmids and the circularisation of contigs.

Methods
Simulated read sets
Simulated read sets (read sequences generated in silico from
reference genomes) offer some advantages over real read sets
when assessing assemblers. They allow for a confident ground
truth – i.e. the true underlying genome is known with certainty.
They allow for large sample sizes, in practice limited only by
computational resources. Also, a variety of genomes and read
set parameters can be used to examine assembler performance
over a wide range of scenarios. For this study, we simulated
500 read sets to test the assemblers, each using different param-
eters and a different prokaryote genome.

To select reference genomes for the simulated read sets, we
first downloaded all bacterial and archaeal RefSeq genomes using
ncbi-genome-download v0.2.10 (14333 genomes at the time
of download)8. We then performed some quality control steps:
excluding genomes with a >10 Mbp chromosome, a <500 kbp
chromosome, any >300 kbp plasmid, any plasmid >25% of the
chromosome size or more than 9 plasmids (Extended data,
Figure S1)9. We then ran Assembly Dereplicator v0.1.0 with a
threshold of 0.1, resulting in 3153 unique genomes10.

To produce a final set of 500 genomes with 500 plasmids,
we randomly selected 250 genomes from those containing
plasmids, repeating this selection until the genomes contained
exactly 500 plasmids. We then added 250 genomes randomly
selected from those without plasmids. Any ambiguous bases in
the assemblies were replaced with ‘A’ to ensure that sequences
contained only the four canonical DNA bases.

We then used Badread v0.1.5 to generate one read set for each
input genome11. The parameters for each set (controlling read
depth, length, identity and errors) were randomly chosen to
ensure a large amount of variability (Extended data, Figure S2)9.
Note that not all of these read sets were sufficient to reconstruct
the original genome (due to low depth or short read length), so
even an ideal assembler would be incapable of completing an
assembly for all 500 test sets.

For genomes containing plasmids, the read depth of plasmids
relative to the chromosome was also set randomly, with limits
based on the plasmid size (Extended data, Figure S3)9. Large
plasmids were simulated at depths close to that of the
chromosome while small plasmids spanned a wider range of
depth. This was done to model the observed pattern that small
plasmids often have a high per-cell copy number (i.e. may be
high read depth) but can be biased against in library prepara-
tions (i.e. may be low read depth)12. All replicons (chromosomes
and plasmids) were treated as circular sequences in Badread, so
the simulated read sets do not test assembler performance on
linear sequences.

Real read sets
Despite the advantages of simulated read sets, they can be
unrealistic because read simulation tools (such as Badread) may
not accurately model all relevant features: error profiles, read

            Updates from Version 3
This version contains updated results for new versions of Canu
(v2.1), NECAT (v20200803), NextDenovo/NextPolish (v2.3.1/
v1.3.1), Raven (v1.3.0) and Shasta (v0.7.0).

Most notably, the current versions of NECAT and NextDenovo/
NextPolish were more reliable and robust than their previous
versions, and the current version of Raven used much less RAM
than its previous version.

Any further responses from the reviewers can be found at 
the end of the article

UPDATE

Page 3 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://github.com/kblin/ncbi-genome-download
https://github.com/rrwick/Assembly-Dereplicator
https://github.com/rrwick/Badread

lengths, quality scores, etc. Real read sets are therefore also
valuable when assessing assemblers. The challenge with real
read sets is obtaining a ground truth genome against which
assemblies can be checked. Since many reference genome
sequences are produced using long-read assemblies, there
is the risk of circular reasoning – if we use an assembly as our
ground truth reference, our results will be biased in favour of
whichever assembler produced the reference.

To avoid this issue, we used the datasets produced in a recent
study comparing ONT (MinION R9.4) and PacBio (RSII
CLR) data which also included Illumina reads for each
isolate13. For each of the 20 bacterial isolates in that study,
we conducted two hybrid assemblies using Unicycler v0.4.7:
Illumina+ONT and Illumina+PacBio14. Unicycler works by
first generating an assembly graph using the Illumina reads,
then using long-read alignments to scaffold the graph’s contigs
into a completed genome – a distinct approach from any
of the long-read assemblers tested in this study. We ran the
assemblies using Unicycler’s ––no_miniasm option so it
skipped its Miniasm-based step which could bias the results in
favour of Miniasm/Minipolish. We then excluded any isolate
where either hybrid assembly failed to reach completion or
where there were >50 nucleotide differences between the
two assemblies as determined by a Minimap2 alignment15.
I.e. the Illumina+ONT and Illumina+PacBio hybrid assem-
blies needed to be in near-perfect agreement with each other.
This left six isolates for inclusion. The above process may have
biased these isolates in favour of easier-to-assemble genomes,
as more complex genomes would be more likely to encounter
inconsistencies between the two Unicycler assemblies.

The ONT and PacBio read sets for these isolates were quite
deep (156× to 535×) so to increase the number of assembly
tests, we produced ten random read subsets of each, ranging
from 40× to 100× read depth. This resulted in 120 total read
sets for testing the assemblers (6 genomes × 2 platforms × 10 read
subsets). The Illumina+ONT hybrid assembly was used as
ground truth for each isolate.

All real and simulated read sets16 and reference genomes17 are
available as Underlying data.

Assemblers tested
We assembled each of the read sets using the current versions
of eight long-read assemblers: Canu v2.1, Flye v2.8, Miniasm/
Minipolish v0.3/v0.1.3, NECAT v20200803, NextDenovo/
NextPolish v2.3.1/v1.3.1, Raven v1.3.0, Redbean v2.5 and
Shasta v0.7.0. Default parameters were used except where stated,
and exact commands for each tool are given in the Extended
data, Figure S49. Assemblers that only work on PacBio reads
(i.e. not on ONT reads) were excluded (HGAP18, FALCON19,
HINGE20 and Dazzler21), as were hybrid assemblers which also
require short read input (Unicycler14 and MaSuRCA22).

Canu has the longest history of all the assemblers tested, with
its first release dating back to 2015. It performs assembly by
first correcting reads, then trimming reads (removing adapters

and breaking chimeras) and finally assembling reads into
contigs23. Its assembly strategy uses a modified version of
the string graph algorithm24, sometimes referred to as the
overlap-layout-consensus (OLC) approach.

Flye takes a different approach to assembly: first combining
reads into error-prone disjointigs, then collapsing repetitive
sequences to make a repeat graph and finally resolving the
graph’s repeats to make the final contigs25. Of particular note to
prokaryote assemblies, Flye has options for recovery of small
plasmids (--plasmids) and uneven depth of coverage
(--meta), both of which we used in this analysis.

Miniasm builds a string graph from a set of read overlaps
– i.e. it performs only the layout step of OLC. It does not
perform read overlapping which must be done separately with
Minimap2, and it does not have a consensus step, so its assem-
bly error rates are comparable to raw read error rates. A separate
polishing tool such as Racon is therefore required to achieve
high sequence identity26. For this study, we developed a tool
called Minipolish to simplify this process by conducting Racon
polishing (two rounds by default) on a Miniasm assembly
graph27. To ensure clean circularisation of prokaryote replicons,
circular contigs are ‘rotated’ (have their starting position
adjusted) between polishing rounds. Minipolish also comes with
a script (miniasm_and_minipolish.sh) which carries out
all assembly steps (Minimap2 overlapping, Miniasm assembly
and Minipolish consensus) in a single command, and subsequent
references to ‘Miniasm/Minipolish’ refer to this entire pipeline.

NECAT follows an approach similar to Canu: first correct-
ing the input reads, then building an assembly from the
corrected reads28. Both the correction and assembly steps are
progressive, using multiple processing steps to achieve better
accuracy/completeness.

NextDenovo is a performance-oriented assembler, which like
Canu and NECAT performs read-correction at the start of its
pipeline. It performs the first two steps of OLC (overlap and
layout), leaving the final step (consensus) to a separate tool:
NextPolish29. We used both tools in conjunction in this study,
referred to as ‘NextDenovo/NextPolish’.

Raven (previously known as Ra) is another tool which takes
an OLC approach to assembly30. Its overlapping step shares
algorithms with Minimap2, and its consensus step is based on
Racon, making it similar to Miniasm/Minipolish. It differs in its
layout step which includes novel approaches to remove spurious
overlaps from the graph, helping to improve assembly contiguity.

Redbean (previously known as Wtdbg2) uses an approach to
long-read assembly called a fuzzy Bruijn graph31. This is
modelled on the De Bruijn graph concept widely used for
short-read assembly32 but modified to work with the inexact
sequence matches present in noisy long reads.

Shasta is an assembler designed for computational efficiency33.
To achieve this, much of its assembly pipeline is performed not

Page 4 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://github.com/rrwick/Unicycler
https://github.com/marbl/canu
https://github.com/fenderglass/Flye
https://github.com/rrwick/Minipolish
https://github.com/rrwick/Minipolish
https://github.com/xiaochuanle/NECAT
https://github.com/Nextomics/NextDenovo
https://github.com/Nextomics/NextPolish
https://github.com/lbcb-sci/raven
https://github.com/ruanjue/wtdbg2
https://github.com/chanzuckerberg/shasta

directly on read sequences but rather on a reduced representation
of marker k-mers. These markers are used to find overlaps and
build an assembly graph from which a consensus sequence
is derived.

Computational environment
All assemblies were run on Ubuntu 18.04 instances of Australia’s
Nectar Research Cloud which contained 32 vCPUs and 128 GB
of RAM (r3.xxlarge flavour). To guard against performance
variation caused by vCPU overcommit, the assemblers were
limited to 16 threads (half the number of available vCPUs) in
their options. Any assembly which exceeded 24 hours of runtime
or 128 GB of memory usage was terminated.

Assembly assessment
Our primary metric of assembly quality was contiguity, defined
here as the longest single Minimap2 alignment between the
assembly and the reference replicon, relative to the reference
replicon length. This provides a simpler picture of assembly
quality than is created by QUAST (which quantifies misassemblies
and other metrics such as NG50) but is appropriate for cases
where complete assembly is likely2. Contiguity of exactly 100%
indicates that the replicon was assembled completely with no
missing or extra sequence (Extended data, Figure S5A)9.
Contiguity of slightly less than 100% (e.g. 99.9%) indicates that
the assembly was complete, but some bases were lost at the
start/end of the contig (Extended data, Figure S5B)9. Contiguity
of more than 100% (e.g. 101%) indicates that the contig con-
tains duplicated sequence via start-end overlap (Extended data,
Figure S5C)9. Much lower contiguity (e.g. 70%) indicates that the
assembly was not complete due to fragmentation (Extended data,
Figure S5D)9, missing sequence (Extended data, Figure S5E)9 or
misassembly (Extended data, Figure S5F)9. Contiguity values
were determined by aligning the contigs to a tripled version
of the reference replicon, necessary to ensure that contigs
can fully align even with start-end overlap and regardless of
their starting position relative to that of the linearised refer-
ence sequence (Extended data, Figure S6)9. To encourage longer
alignments, Minimap2 was run with the asm20 preset, chain
elongation threshold of 10 kbp, banding threshold of 10 kbp,
Z-drop score of 1000 and inversion Z-drop score of 500. The script
for conducting this analysis (assess_assembly.py) is available in
Extended data.

Contiguity values were determined for each replicon in the
assemblies – e.g. if a genome contained two plasmids, then the
assemblies of that genome have three contiguity values: one
for the chromosome and one for each plasmid. A status of
‘fully complete’ was assigned to assemblies where all replicons
(the chromosome and any plasmids if present) achieved a
contiguity of ≥99%. If an assembly had a chromosome with
a contiguity of ≥99% but incomplete plasmids, it was given a
status of ‘complete chromosome’. If the chromosome had a
contiguity of <99%, the assembly was deemed ‘incomplete’. If
the assembly was empty or missing (possibly due to the assembler
prematurely terminating with an error), it was given a status
of ‘empty’. Computational metrics were also observed for each
assembly: time to complete and maximum RAM usage.

Results and discussion
Figure 1 and Figure 2 summarise the assembly results for the
simulated and real read sets, respectively. Full tabulated results
can be found in the Extended data9. The assemblies, times and
terminal outputs generated by each assembler are available as
Underlying data34.

Figure 1A/Figure 2A show the proportion of read sets with
each assembly status. For the real read sets, a higher proportion
of completed assemblies indicates a more reliable assembler –
one which is likely to make a completed assembly given a
typical set of input reads. For the simulated read sets, a higher
proportion of completed assemblies indicates a more robust
assembler – one which is able to tolerate a wide range of
input read parameters, including adverse conditions such as
low read accuracy and low read depth (conditions present in
some of the simulated read sets but not in the real read sets).
Extended data, Figure S79 plots assembly contiguity against
specific read set parameters to give a more detailed assessment
of robustness. Plasmid assembly status, plotted with plas-
mid length and read depth, is shown in Extended data,
Figure S8 and Figure S99 for the simulated and real read sets,
respectively.

Figure 1B/Figure 2B show the chromosome contiguity values
for each assembly, focusing on the range near 100%. These
plots show how well assemblers can circularise contigs
– i.e. whether sequence is duplicated or missing at the contig
start/end (Extended data, Figure S5)9. The closer contiguity
is to 100% the better, with exactly 100% indicating
perfect circularisation. Plasmid contiguity values are shown in
Figure 1C/ Figure 2C9.

Assembly identity (consensus identity) is a measure of the
base-level accuracy of an assembled contig relative to the
reference sequence (how few substitution and small indel errors
are present) and is shown in Figure 1D/Figure 2D. The identity of
assembled sequences is almost always higher than the identity
of individual reads because errors can be ‘averaged out’ using
read depth, producing more accurate consensus base calls.
However, systematic read errors (e.g. mistakes in homopolymer
length) can make perfect sequence identity difficult to achieve,
regardless of assembly strategy35. While most of the sequence
inaccuracies are small (e.g. a single base indel), some can
be much larger. Figure 1E/Figure 2E show the size of the
largest indel error found in each assembly’s chromosome, with
smaller values being better. E.g. a maximum indel error size of
10 indicates that no indel errors larger than 10 bp were found
in the chromosome.

Assembler resource usage is shown in terms of total runtime
(Figure 1F/Figure 2F) and the maximum RAM usage during
assembly (Figure 1G/Figure 2G).

Reliability
Reliability was assessed using each assembler’s performance
on the real read sets (Figure 2A). When considering only the
chromosome, NextDenovo/NextPolish was the most reliable

Page 5 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

Figure  1.  Assembly  results  for  the  simulated  read  sets,  which  cover  a  wide  variety  of  parameters  for  length,  depth  and 
quality.  ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline. (A) Proportion of each possible assembly outcome.
(B) Relative contiguity of the chromosome for each assembly, showing cleanliness of circularisation. (C) Relative contiguity of all plasmids
in the assemblies, showing cleanliness of circularisation. (D) Sequence identity of each assembly’s longest alignment to the chromosome.
(E) The maximum indel error size in each assembly’s longest alignment to the chromosome. (F) Total time taken (wall time) for each assembly.
(G) Maximum RAM usage for each assembly.

Page 6 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

Figure  2.  Assembly  results  for  the  real  read  sets,  half  containing  ONT  MinION  reads  (circles)  and  half  PacBio  RSII  reads  
(X shapes). ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline. (A) Proportion of each possible assembly outcome.
(B) Relative contiguity of the chromosome for each assembly, showing cleanliness of circularisation. (C) Relative contiguity of all plasmids
in the assemblies, showing cleanliness of circularisation. (D) Sequence identity of each assembly’s longest alignment to the chromosome.
(E) The maximum indel error size in each assembly’s longest alignment to the chromosome. (F) Total time taken (wall time) for each assembly.
(G) Maximum RAM usage for each assembly.

Page 7 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

assembler, followed by Raven, NECAT, Canu and Flye – all were
able to complete the chromosome in over three-quarters of their
assemblies. If plasmids are also considered, then Canu was the
most reliable assembler followed by Flye. Miniasm/Minipolish
and Shasta were moderately reliable, completing over
half of the chromosomes. Redbean was the least reliable and
completed less than half of the chromosomes.

Robustness
Robustness was assessed using each assembler’s performance
on the simulated read sets (Figure 1A) which contained a
large amount of variation on many metrics (Extended data,
Figure S7). NextDenovo/NextPolish and Raven were the most
robust assemblers, able to complete the chromosome in over
three-quarters of their assemblies. Flye, Redbean and Canu
performed best in cases of low read depth, able to complete
assemblies down to ∼10× depth (Extended data, Figure S7A)9.
Raven, NextDenovo/NextPolish and NECAT performed best
with low-identity read sets (Extended data, Figure S7B)9. The
assemblers performed similarly with regards to read length,
except for Shasta which required longer reads (Extended data,
Figure S7C)9. The assemblers were similarly unaffected by
random reads, junk reads, chimeric reads or adapter sequences
(Extended data, Figure S7D–F)9. Read glitches (local breaks in
continuity) were more likely to cause assembly problems for
Canu, NECAT and Shasta (Extended data, Figure S7G)9.

Identity
In our real read tests, Flye achieved the highest overall assembled
sequence identity (Figure 2D). Canu achieved high sequence
identity on PacBio reads. Miniasm/Minipolish, NextDenovo/
NextPolish and Raven did well on ONT reads. For each
assembler, real PacBio reads resulted in higher identities than
real ONT reads. For the simulated reads (which contain artificial
error profiles), results were more erratic, with Canu and Flye
performing best (Figure 1D).

Regarding the maximum indel error size in the assemblies, Flye
performed best, usually producing assemblies with errors no
larger than 10 bp (Figure 1E/Figure 2E). NECAT and Shasta
performed poorly, usually producing errors larger than 10 bp.
The other assemblers had a large variance in this metric, some-
times producing assemblies with small errors and sometimes
with large errors.

The nature of read errors depends on the sequencing platform
and basecalling software used, so these results may not hold
true for all read sets. Platform-specific post-assembly polishing
tools (including Nanopolish7, Medaka36 and Arrow37) are
routinely used to improve the accuracy of long-read
assemblies38, and these can often achieve assembly identities
of >99.9% for ONT read sets and >99.999% for PacBio read
sets (i.e. better than any of the assemblers were able to
achieve on their own). Identity can be further increased by
polishing with Illumina reads where available (e.g. with Pilon39).
Therefore, the sequence identity produced by the assembler
itself is potentially unimportant for many users. However,

large-scale indel errors may be less easily fixed using polishing
tools and therefore could be of greater relevance.

Resource usage
Canu was the slowest assembler tested on both real (Figure 2F)
and simulated (Figure 1F) read sets, sometimes taking hours to
complete. Its runtime was correlated with read accuracy and
read set size, with low-accuracy and large read sets being more
likely to result in a long runtime.

Flye was typically faster than Canu, taking less than 15 minutes
for the real read sets and usually less than an hour for the
simulated read sets. It sometimes took multiple hours to assemble
simulated read sets, and this was correlated with the amount
of junk (low-complexity) reads, suggesting that removal of such
reads via pre-assembly QC may be beneficial. Flye had the
highest RAM usage of the tested assemblers and its RAM usage
was correlated with read N50 and read set size, with long and
large read sets being more likely to result in high RAM usage.

Shasta, Redbean and Raven were the fastest assemblers, typically
completing assemblies in less than 5 minutes. While not tested
in this study, Racon (which is used in Minipolish) and Raven
can be run with GPU acceleration to further improve speed
performance. Raven and Shasta had the lowest memory usage,
typically requiring less than 4 GB of RAM.

Circularisation
Of all assemblers tested, Miniasm/Minipolish and NECAT most
regularly achieved exact circularisation (contiguity=100%)
(Figure 1B/Figure 2B). Flye often excluded a small amount of
sequence (tens of bases) from the start/end of circular contigs
(contiguity <100%), and Raven typically excluded moderate
amounts of sequence (hundreds of bases). Contiguities for Canu
and NextDenovo/NextPolish usually exceeded 100%, indicating
a large amount (thousands of bases) of start/end overlap.
The amount of overlap in a Canu or NextDenovo/NextPolish
assembly was correlated with the read N50 length (Extended
data, Figure S7C)9. Redbean and Shasta were both erratic in
their circularisation, often producing some sequence duplica-
tion (contiguity >100%) but occasionally dropping sequence
(contiguity <100%).

In addition to cleanly circularising contig sequences, it is
valuable for a prokaryote genome assembler to clearly
distinguish between circular and linear contigs. This can provide
users with a clue as to whether or not the genome was assem-
bled to completion. Flye, Miniasm/Minipolish, Raven and Shasta
produce graph files of their final assembly which can indicate
circularity. Canu indicates circularity via the ‘suggestCircular’
text in its contig headers. NECAT, NextDenovo/NextPolish and
Redbean do not signal to users whether a contig is circular.

Plasmids
Canu and Flye were the two assemblers most able to assemble
plasmids at a broad range of size and depth (Extended data,
Figures S8, S9)9. Miniasm/Minipolish also performed well,

Page 8 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

though it failed to assemble plasmids if they were very small
or had a very high read depth. Raven was able to assemble most
large plasmids but not small plasmids. NECAT, NextDenovo/
NextPolish, Redbean and Shasta were least successful at
plasmid assembly.

Circularisation of plasmids followed the same pattern as for
chromosomes, with Miniasm/Minipolish, Flye and NECAT
most consistently achieving clean circularisation (Figure 1C/
Figure 2C)9. For smaller plasmids, start/end overlap could
sometimes result in contiguities of ∼200% – i.e. the plasmid
sequence was duplicated in a single contig. This was most
common with Canu and NextDenovo/NextPolish, though it
occurred with other assemblers as well.

Ease of use
Most assemblers tested were relatively easy to use, either
running with a single command (Canu, Flye, Raven and Shasta)
or providing a convenience script to bundle the commands
together (Miniasm/Minipolish and Redbean). NECAT requires a
configuration file be prepared, making it somewhat cumbersome
to run. NextDenovo/NextPolish was the most difficult to run,
requiring multiple commands and multiple configuration files.
All were able to take long reads in FASTQ format as input
(Extended data, Figure S4)9. We encountered no difficulty
installing any of the tools by following the instructions provided.

Some of the assemblers needed a predicted genome size as
input (Canu, NECAT, NextDenovo/NextPolish and Redbean)
while others (Flye, Miniasm/Minipolish, Raven and Shasta)
did not. This requirement could be a nuisance when assembling
unknown isolates, as it may be hard to specify a genome
size before the species is known.

Configurability
While we ran our assemblies using default and/or recom-
mended commands (Extended data, Figure S4)9, some of the
assemblers have parameters which can be used to alter their
behaviour. Raven was the least configurable assembler tested,
with few options available to users. Flye offers some parameters,
including overlap and coverage thresholds. Miniasm/Minipolish,
NECAT, NextDenovo/NextPolish, Redbean and Shasta all
offer more options, and Canu is the most configurable with
hundreds of adjustable parameters. Many of the available param-
eters are arcane (e.g. Miniasm’s ‘max and min overlap drop
ratio’ or Shasta’s ‘pruneIterationCount’), and only experienced
power users are likely to adjust them – most will likely stick
with default settings or only adjust easier-to-understand options.
However, the presence of low-level parameters provides an
opportunity to experiment and gain greater control over assem-
blies and are therefore appreciated even when unlikely to be
used.

Another aspect worth noting is whether an assembler
produces useful files other than its final assembly. Canu and
NECAT stand out in this respect, as they create corrected and
trimmed reads in their pipelines which have low error rates
and are mostly free of adapters and chimeric sequences. Canu

and NECAT can therefore be considered not just assemblers
but also long-read correction tools suitable for use in other
analyses.

Assembler summaries
Canu v2.1 was the slowest assembler and suffered from large
circularisation problems. However, it was quite reliable and
did well with plasmids. Its main strength is in its configurabil-
ity, so power users who are willing to learn Canu’s nuances
may find that they can tune it to fit their needs. However, it
is probably not the best choice for users wanting a quick and
simple prokaryote genome assembly.

Flye v2.8 was a strong and well-balanced performer in our tests:
reliable, robust and good with plasmids. It also produced the
fewest large-scale indel errors in its assemblies. However, it often
deleted some sequence (usually on the order of tens of bases)
when circularising contigs and had the highest RAM usage of
assemblers tested.

Miniasm/Minipolish v0.3/v0.1.3 was not the most reliable
assembler but was fairly robust to read set parameters. Its main
strength is that it was the most likely to consistently achieve
perfect contig circularisation (as this is a specific goal of its
polishing step). It was also one of the better assemblers for
plasmids, especially regarding clean circularisation of plasmid
sequences.

NECAT v20200803 performed reliably with chromosome
assembly in the real read sets and was second only to
Miniasm/Minipolish for contig circularisation. However, it
failed to assemble many plasmids and was cumbersome to run.

NextDenovo/NextPolish v2.3.1/v1.3.1 was resource-efficient
and very good at completing chromosomes in both simulated
and real read sets, but it performed poorly on plasmid assembly.
It was also the most cumbersome assembler to run, requiring
multiple commands.

Raven v1.3.0 was reliable and robust for chromosome
assembly and used very little RAM. However, it suffered
from worse circularisation problems than Flye (often deleting
hundreds of bases) and wasn’t good with small plasmids.

Redbean v2.5 assemblies tended to have glitches in the
sequence which caused breaks in contiguity, making it perform
poorly in both reliability and robustness. This makes it a
less-than-ideal choice for long-read prokaryote read sets.

Shasta v0.7.0 was the fastest assembler tested and had low
RAM usage, but it had the worst robustness and second-worst
reliability. It is therefore more suited to assembly of large
genomes in resource-limited settings (the use case for which it
was designed) than it is for prokaryote genome assembly.

Conclusions
Each of the different assemblers has pros and cons, and while
no single assembler emerged as an ideal choice for prokaryote

Page 9 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

genome long-read assembly, the overall best performers were
Flye, Miniasm/Minipolish, NextDenovo/NextPolish and Raven.
Flye was reliable, especially for plasmid assembly, was the
best performing assembler at low read depths and made the
fewest large-scale sequence errors. Miniasm/Minipolish was the
only assembler to consistently achieve clean contig circularisa-
tion. NextDenovo/NextPolish was best at generating complete
chromosomal contigs. Raven was reliable for chromosome
assembly, tolerant of low-identity read sets and computationally
efficient.

For users looking to achieve an optimal assembly, we recommend
trying multiple different tools and comparing the results. This
will provide the opportunity for validation – confidence in an
assembly is greater when it is in agreement with other independ-
ent assemblies. It also offers a chance to detect and repair
circularisation issues, as different assemblers are likely to
give different contig start/end positions for a circular replicon.

An ideal prokaryotic long-read assembler would reliably com-
plete assemblies, be robust against read set problems, produce
no large-scale errors, be easy to use, have low computational
requirements, cleanly circularise contigs and assemble plasmids
of any size. The importance of long-read assembly will
continue to grow as long-read sequencing becomes more
commonplace in microbial genomics, and so development of
assemblers towards this ideal is crucial.

Data availability
Underlying data
Figshare: Read sets. https://doi.org/10.26180/5df6f5d06cf0416.

These files contain the input read sets (both simulated and real)
for assembly.

Figshare: Reference genomes. https://doi.org/10.26180/
5df6e99ff3eed17.

This file contains the reference genomes against which the
long-read assemblies were compared. For the simulated read sets,
these genomes were the source sequence from which the reads
were generated.

Figshare: Assemblies. https://doi.org/10.26180/5df6e2864a65834.

These files contain assemblies (in FASTA format), times and
terminal outputs for each of the assemblers.

Extended data
Zenodo: Long-read-assembler-comparison. https://doi.org/10.5281/
zenodo.27024429.

This project contains the following extended data:
• Results (tables of results data, (including information on

each reference genome, read set parameters and metrics
foreach assembly).

• Scripts (scripts used to assess assemblies and generate
plots).

• Figure S1. Distributions of chromosome sizes (A), plasmid
sizes (B) and per-genome plasmid counts (C) for the
reference genomes used to make the simulated read sets.

• Figure S2. Badread parameter histograms for the simulated
read sets. (A) Mean read depths were sampled from a
uniform distribution ranging from 5× to 200×. (B) mean
read lengths were sampled from a uniform distribution
ranging from 100 to 20000 bp. C: read length stand-
ard deviations were sampled from a uniform distribution
ranging from 100 to twice that set’s mean length (up to
40000 bp). D: mean read identities were sampled from a
uniform distribution ranging from 80% to 99%. (E) Max
read identities were sampled from a uniform distribution
ranging from that set’s mean identity plus 1% to 100%.
(F) Read identity standard deviations were sampled from
a uniform distribution ranging from 1% to the max iden-
tity minus the mean identity. (G, H and I) Junk, random
and chimera rates were all sampled from an exponential
distribution with a mean of 2%. (J) Glitch sizes/skips
were sampled from a uniform distribution ranging
from 0 to 100. (K) Glitch rates for each set were
calculated from the size/skip according to this formula:
100000/1.6986s/10. (L) Adapter lengths were sampled
from an exponential distribution with a mean of 50.

• Figure S3. Top: the target simulated depth of each replicon
relative to the chromosome. The smaller the plasmid, the
wider the range of possible depths. Bottom: the absolute
read set of each replicon after read simulation.

• Figure S4. Commands used for each of the eight
assemblers tested.

• Figure S5. Possible states for the assembly of a circular
replicon. Reference sequences are shown in the inner
circles in black and aligned contig sequences are shown
in the outer circles in colour (red at the contig start to
violet at the contig end). (A) Complete assembly with
perfect circularisation. (B) Complete assembly but
with missing bases leading to a gapped circularisation.
(C) Complete assembly but with duplicated bases leading
to overlapping circularisation. (D) Incomplete assembly
due to fragmentation (multiple contigs per replicon).
(E) Incomplete assembly due to missing sequence.
(F) Incomplete assembly due to misassembly (noncontigu-
ous sequence in the contig).

• Figure S6. Reference triplication for assembly assessment.
(A) Due to the ambiguous starting position of a circular
replicon, a completely-assembled contig will typically
not align to the reference in a single unbroken alignment.
(B) Doubling the reference sequence will allow for
a single alignment, regardless of starting position.
(C) However, if the contig contains start/end overlap
(i.e. contiguity >100%) then even a doubled reference
may not be sufficient to achieve a single alignment,
depending on the starting position. (D) A tripled
reference allows for an unbroken alignment, regard-
less of starting position, even in cases of >100%
contiguity.

Page 10 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://doi.org/10.26180/5df6f5d06cf04
https://doi.org/10.26180/5df6e99ff3eed
https://doi.org/10.26180/5df6e99ff3eed
https://doi.org/10.26180/5df6e2864a658
https://doi.org/10.5281/zenodo.2702442
https://doi.org/10.5281/zenodo.2702442

References

• Figure S7. Contiguity of the simulated read set assemblies
plotted against Badread parameters for each of the tested
assemblers. These plots show how well the assemblers
tolerate different problems in the read sets. (A) Mean read
depth (higher is better). (B) Max read identity (higher
is better). (C) N50 read length (higher is better). (D) The
sum of random read rate and junk read rate (lower is
better). (E) Chimeric read rate (lower is better). (F) Adapter
sequence length (lower is better). (G) Glitch size/skip
(lower is better).

• Figure S8. Plasmid completion for the simulated read set
assemblies for each of the tested assemblers,
plotted with plasmid length and read depth. Solid
dots indicate completely assembled plasmids (contiguity
≥99%) while open dots indicate incomplete plasmids
(contiguity <99%). Percentages in the plot titles give
the proportion of plasmids which were completely
assembled.

• Figure S9. Plasmid completion for the real read set
assemblies for each of the tested assemblers, plotted
with plasmid length and read depth. Solid dots indicate
completely assembled plasmids (contiguity ≥99%) while
open dots indicate incomplete plasmids (contiguity <99%).
Percentages in the plot titles give the proportion of
plasmids which were completely assembled.

Extended data are also available on GitHub.

Data are available under the terms of the Creative Commons
Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements
This research was supported by use of the Nectar Research
Cloud, a collaborative Australian research platform supported
by the National Collaborative Research Infrastructure Strategy
(NCRIS).

1. Myers EW: A history of DNA sequence assembly. IT - Information Technology.
2016; 58(3): 126–132.
Publisher Full Text 

2. Gurevich A, Saveliev V, Vyahhi N, et al.: QUAST: quality assessment tool for 
genome assemblies. Bioinformatics. 2013; 29(8): 1072–1075.
PubMed Abstract | Publisher Full Text | Free Full Text 

3. Goodwin S, McPherson JD, McCombie WR: Coming of age: ten years of next-
generation sequencing technologies. Nat Rev Genet. 2016; 17(6): 333–351.
PubMed Abstract | Publisher Full Text 

4. Land M, Hauser L, Jun SR, et al.: Insights from 20 years of bacterial genome 
sequencing. Funct Integr Genomics. 2015; 15(2): 141–161.
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Haubold B, Wiehe T: How repetitive are genomes? BMC Bioinformatics. 2006;
7: 541.
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Kyriakidou M, Tai HH, Anglin NL, et al.: Current Strategies of Polyploid Plant 
Genome Sequence Assembly. Front Plant Sci. 2018; 9: 1660.
PubMed Abstract | Publisher Full Text | Free Full Text 

7. Loman NJ, Quick J, Simpson JT: A complete bacterial genome assembled 
de novo using only nanopore sequencing data. Nat Methods. 2015; 12(8):
733–735.
PubMed Abstract | Publisher Full Text 

8. Blin K: Ncbi genome downloading scripts. 2019.
Reference Source

9. Wick R: rrwick/Long-read-assembler-comparison: Add supplementary 
figures. 2019.
http://www.doi.org/10.5281/zenodo.3581590

10. Wick RR, Holt KE: rrwick/Assembly-Dereplicator: Assembly Dereplicator 
v0.1.0. 2019.
Publisher Full Text 

11. Wick RR: Badread: simulation of error-prone long reads. J Open Source Softw.
2019; 4(36): 1316.
Publisher Full Text 

12. Wick RR, Judd LM, Gorrie CL, et al.: Completing bacterial genome assemblies 
with multiplex MinION sequencing. Microb Genom. 2017; 3(10): e000132.
PubMed Abstract | Publisher Full Text | Free Full Text 

13. De Maio N, Shaw LP, Hubbard A, et al.: Comparison of long-read sequencing 
technologies in the hybrid assembly of complex bacterial genomes. Microb
Genom. 2019; 5(9): e000294.
PubMed Abstract | Publisher Full Text | Free Full Text 

14. Wick RR, Judd LM, Gorrie CL, et al.: Unicycler: Resolving bacterial genome 
assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;
13(6): e1005595.
PubMed Abstract | Publisher Full Text | Free Full Text 

15. Li H: Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics. 2018; 34(18): 3094–3100.
PubMed Abstract | Publisher Full Text | Free Full Text 

16. Wick R: Read sets. 2019.
http://www.doi.org/10.26180/5df6f5d06cf04

17. Wick R: Reference genomes. 2019.
http://www.doi.org/10.26180/5df6e99ff3eed

18. Chin CS, Alexander DH, Marks P, et al.: Nonhybrid, finished microbial genome
assemblies from long-read SMRT sequencing data. Nat Methods. 2013; 10(6):
563–569.
PubMed Abstract | Publisher Full Text 

19. Chin CS, Peluso P, Sedlazeck FJ, et al.: Phased diploid genome assembly with 
single-molecule real-time sequencing. Nat Methods. 2016; 13(12): 1050–1054.
PubMed Abstract | Publisher Full Text | Free Full Text 

20. Kamath GM, Shomorony I, Xia F, et al.: HINGE: long-read assembly achieves 
optimal repeat resolution. Genome Res. 2017; 27(5): 747–756.
PubMed Abstract | Publisher Full Text | Free Full Text 

21. Myers EW: Efficient local alignment discovery amongst noisy long reads.
Lecture Notes in Computer Science. LNBI, 2014; 8701: 52–67.
Publisher Full Text 

22. Zimin AV, Marçais G, Puiu D, et al.: The MaSuRCA genome assembler.
Bioinformatics. 2013; 29(21): 2669–2677.
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Koren S, Walenz BP, Berlin K, et al.: Canu: scalable and accurate long-read 
assembly via adaptive k-mer weighting and repeat separation. Genome Res.
2017; 27(5): 722–736.
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Myers EW: The fragment assembly string graph. Bioinformatics. 2005; 21 
Suppl 2: ii79–85.
PubMed Abstract | Publisher Full Text 

25. Kolmogorov M, Yuan J, Lin Y, et al.: Assembly of long, error-prone reads using 
repeat graphs. Nat Biotechnol. 2019; 37(5): 540–546.
PubMed Abstract | Publisher Full Text 

26. Vaser R, Sović I, Nagarajan N, et al.: Fast and accurate de novo genome 
assembly from long uncorrected reads. Genome Res. 2017; 27(5):
737–746.
PubMed Abstract | Publisher Full Text | Free Full Text 

27. Wick RR, Holt Ke: rrwick/Minipolish: Minipolish v0.1.3. 2020.
Publisher Full Text 

28. Ying C, Fan N, Shang-Qian X, et al.: Fast and accurate assembly of Nanopore 
reads via progressive error correction and adaptive read selection. bioRxiv.
2020.
Publisher Full Text 

29. Hu J, Fan J, Sun Z, et al.: NextPolish: A fast and efficient genome polishing

Page 11 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://github.com/rrwick/Long-read-assembler-comparison
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
http://dx.doi.org/10.1515/itit-2015-0047
http://www.ncbi.nlm.nih.gov/pubmed/23422339
http://dx.doi.org/10.1093/bioinformatics/btt086
http://www.ncbi.nlm.nih.gov/pmc/articles/3624806
http://www.ncbi.nlm.nih.gov/pubmed/27184599
http://dx.doi.org/10.1038/nrg.2016.49
http://www.ncbi.nlm.nih.gov/pubmed/25722247
http://dx.doi.org/10.1007/s10142-015-0433-4
http://www.ncbi.nlm.nih.gov/pmc/articles/4361730
http://www.ncbi.nlm.nih.gov/pubmed/17187668
http://dx.doi.org/10.1186/1471-2105-7-541
http://www.ncbi.nlm.nih.gov/pmc/articles/1769404
http://www.ncbi.nlm.nih.gov/pubmed/30519250
http://dx.doi.org/10.3389/fpls.2018.01660
http://www.ncbi.nlm.nih.gov/pmc/articles/6258962
http://www.ncbi.nlm.nih.gov/pubmed/26076426
http://dx.doi.org/10.1038/nmeth.3444
https://github.com/kblin/ncbi-genome-download
http://www.doi.org/10.5281/zenodo.3581590
http://dx.doi.org/10.5281/zenodo.3365572
http://dx.doi.org/10.21105/joss.01316
http://www.ncbi.nlm.nih.gov/pubmed/29177090
http://dx.doi.org/10.1099/mgen.0.000132
http://www.ncbi.nlm.nih.gov/pmc/articles/5695209
http://www.ncbi.nlm.nih.gov/pubmed/31483244
http://dx.doi.org/10.1099/mgen.0.000294
http://www.ncbi.nlm.nih.gov/pmc/articles/6807382
http://www.ncbi.nlm.nih.gov/pubmed/28594827
http://dx.doi.org/10.1371/journal.pcbi.1005595
http://www.ncbi.nlm.nih.gov/pmc/articles/5481147
http://www.ncbi.nlm.nih.gov/pubmed/29750242
http://dx.doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pmc/articles/6137996
http://www.doi.org/10.26180/5df6f5d06cf04
http://www.doi.org/10.26180/5df6e99ff3eed
http://www.ncbi.nlm.nih.gov/pubmed/23644548
http://dx.doi.org/10.1038/nmeth.2474
http://www.ncbi.nlm.nih.gov/pubmed/27749838
http://dx.doi.org/10.1038/nmeth.4035
http://www.ncbi.nlm.nih.gov/pmc/articles/5503144
http://www.ncbi.nlm.nih.gov/pubmed/28320918
http://dx.doi.org/10.1101/gr.216465.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5411769
http://dx.doi.org/10.1007/978-3-662-44753-6_5
http://www.ncbi.nlm.nih.gov/pubmed/23990416
http://dx.doi.org/10.1093/bioinformatics/btt476
http://www.ncbi.nlm.nih.gov/pmc/articles/3799473
http://www.ncbi.nlm.nih.gov/pubmed/28298431
http://dx.doi.org/10.1101/gr.215087.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5411767
http://www.ncbi.nlm.nih.gov/pubmed/16204131
http://dx.doi.org/10.1093/bioinformatics/bti1114
http://www.ncbi.nlm.nih.gov/pubmed/30936562
http://dx.doi.org/10.1038/s41587-019-0072-8
http://www.ncbi.nlm.nih.gov/pubmed/28100585
http://dx.doi.org/10.1101/gr.214270.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5411768
http://dx.doi.org/10.5281/zenodo.3752203
http://dx.doi.org/10.1101/2020.02.01.930107

tool for long-read assembly. Bioinformatics. 2020; 36(7): 2253–2255.
PubMed Abstract | Publisher Full Text | Free Full Text 

30. Vaser R, Šikić M: Yet another de novo genome assembler. 11th International
Symposium on Image and Signal Processing and Analysis (ISPA). 2019.
Publisher Full Text 

31. Ruan J, Li H: Fast and accurate long-read assembly with wtdbg2. Nat
Methods. 2020; 17(2): 155–158.
PubMed Abstract | Publisher Full Text | Free Full Text 

32. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly 
using de Bruijn graphs. Genome Res. 2008; 18(5): 821–829.
PubMed Abstract | Publisher Full Text | Free Full Text 

33. Shafin K, Pesout T, Lorig-Roach R, et al.: Efficient de novo assembly of eleven 
human genomes using PromethION sequencing and a novel nanopore 
toolkit. bioRxiv. 2019.
Publisher Full Text 

34. Wick R: Assemblies. 2019.
http://www.doi.org/10.26180/5df6e2864a658

35. Wick RR, Judd LM, Holt KE: Performance of neural network basecalling tools 
for Oxford Nanopore sequencing. Genome Biol. 2019; 20(1): 129.
PubMed Abstract | Publisher Full Text | Free Full Text 

36. Wright CJ: Medaka. 2019.
Reference Source

37. Alexander DH: GenomicConsensus. 2019.
Reference Source

38. Wick RR, Judd LM, Holt KE: August 2019 consensus accuracy update. 2019.
Reference Source

39. Walker BJ, Abeel T, Shea T, et al.: Pilon: an integrated tool for comprehensive 
microbial variant detection and genome assembly improvement. PLoS One.
2014; 9(11): e112963.
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 12 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

http://www.ncbi.nlm.nih.gov/pubmed/31778144
http://dx.doi.org/10.1093/bioinformatics/btz891
http://www.ncbi.nlm.nih.gov/pmc/articles/7004874
http://dx.doi.org/10.1109/ISPA.2019.8868909
http://www.ncbi.nlm.nih.gov/pubmed/31819265
http://dx.doi.org/10.1038/s41592-019-0669-3
http://www.ncbi.nlm.nih.gov/pmc/articles/7004874
http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://dx.doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pmc/articles/2336801
http://dx.doi.org/10.1101/715722
http://www.doi.org/10.26180/5df6e2864a658
http://www.ncbi.nlm.nih.gov/pubmed/31234903
http://dx.doi.org/10.1186/s13059-019-1727-y
http://www.ncbi.nlm.nih.gov/pmc/articles/6591954
https://github.com/nanoporetech/medaka
https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/rrwick/August-2019-consensus-accuracy-update
http://www.ncbi.nlm.nih.gov/pubmed/25409509
http://dx.doi.org/10.1371/journal.pone.0112963
http://www.ncbi.nlm.nih.gov/pmc/articles/4237348

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 30 January 2020

https://doi.org/10.5256/f1000research.24010.r58116

© 2020 Silander O. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Olin Silander
1 School of Natural and Computational Sciences, Massey University Auckland, North Shore, New
Zealand
2 School of Natural and Computational Sciences, Massey University Auckland, North Shore, New
Zealand
3 School of Natural and Computational Sciences, Massey University Auckland, North Shore, New
Zealand
4 School of Natural and Computational Sciences, Massey University Auckland, North Shore, New
Zealand

The authors compare six long read genome assemblers using simulated and real data (PacBio and
Nanopore). They find that there is no single best method, and that each offers distinct advantages
and disadvantages.
I enjoyed reading this paper. It was well written and clearly presented. As I understand, the
authors plan to continually update the benchmarking is a fantastic step forward and considerably
improves the utility of such a publication. This should be noted more explicitly in the manuscript.

Major comments:

P.3 “Real Read Sets”. Could the authors note which fraction of the PacBio reads were CCS /
HiFi reads?

○

p.4 para.1: We then excluded any isolate where either hybrid assembly failed to reach
completion or where there were structural differences between the two assemblies as
determined by a Minimap2 alignment.
I wonder if this biases the genomes that were used such that they were easier to assemble
than the genomes that were left out. I do not have a big problem with this, but it could be
mentioned. It would also be good to provide slightly more detail on what precisely
“structural differences between the two assemblies” means - e.g. does this include large
indels (size range), inversions, etc.

○

P.5 para.4: Figure 1B/Figure 2B shows the chromosome contiguity values for each assembly. ○

Page 13 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://doi.org/10.5256/f1000research.24010.r58116
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

There are some interesting patterns in 1B and 2B. First is the large number of Shasta
assemblies have precisely 100.005% contiguity (looks to be mostly ONT assemblies). I am
also surprised by the sort of bimodality in 1C/2C flye assemblies (and somewhat the
miniasm assemblies). I would expect an even spread, but instead it looks like some
assemblies have similar to 99% identity, whereas others have ~ 2-fold lower error rate
(99.5% identity, my guesstimate). Is there an explanation for either of these patterns?

P.5 Discussion of Identity. The authors could note the level generally achieved by polishing,
which for ONT I think is around 99.98% (I am sure the authors are more aware than I am).

○

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbial genomics and evolution, transcription, metagenomics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick

We thank the reviewer for their feedback, and changes to the article will be incorporated in
its next version (along with updated results for newer assemblers/versions).

Regarding point number 1:
None of the PacBio read sets were CCS – all were CLR. We have clarified this in the main text
of the paper, noting that they are CLR reads when first introduced.

Regarding point number 2:

Page 14 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

We have clarified both of these points in the text. The relevant section now reads: ‘We then
excluded any isolate where either hybrid assembly failed to reach completion or where
there were >50 nucleotide differences between the two assemblies as determined by a
Minimap2 alignment. I.e. the Illumina+ONT and Illumina+PacBio hybrid assemblies needed
to be in near-perfect agreement with each other. This left six isolates for inclusion. The
above process may have biased these isolates in favour of easier-to-assemble genomes, as
more complex genomes would be more likely to encounter inconsistencies between the two
Unicycler assemblies.’

Regarding point number 3:
These are indeed interesting patterns, but I can only speculate as to what the explanations
are. Shasta is prone to producing ~10-15 bp of overlap in its assemblies. This may be related
to the fact that Shasta operates on a reduced representation of the read sequences that is
based on 10-mers. The bimodality of the Flye ONT assembly identity distribution is not as
pronounced for the newer version of Flye (v2.7) but it is still there. The identity is relatively
consistent within each genome (e.g. two read sets for a given genome tend to yield similar
assembly identity), so I would speculate that the cause has something to do with the
genome itself. E.g. perhaps the lower identity genomes have some type of DNA
modification motif that is more likely to cause errors in the consensus sequence.

Regarding point number 4:
We have added to the text to elaborate on polished assembly identity: ‘Platform-specific
post-assembly polishing tools (including Nanopolish, Medaka and Arrow) are routinely used
to improve the accuracy of long-read assemblies, and these can often achieve assembly
identities of >99.9% for ONT read sets and >99.999% for PacBio read sets (i.e. better than
any of the assemblers were able to achieve on their own).’

Competing Interests: No competing interests were disclosed.

Reviewer Report 22 January 2020

https://doi.org/10.5256/f1000research.24010.r58301

© 2020 Kolmogorov M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Mikhail Kolmogorov
1 Department of Computer Science and Engineering, University of California San Diego, La Jolla,
USA
2 Department of Computer Science and Engineering, University of California San Diego, La Jolla,
USA
3 Department of Computer Science and Engineering, University of California San Diego, La Jolla,
USA

Page 15 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://doi.org/10.5256/f1000research.24010.r58301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

4 Department of Computer Science and Engineering, University of California San Diego, La Jolla,
USA

The article presents the benchmarking of the current popular long-read assemblers (Canu, Flye,
Miniasm/Minipolish, Raven, Redbean and Shasta) on various prokaryotic genomes. Wick & Holt
have simulated 500 long-read datasets to reflect various genomic features (such as repeat length
and complexity) as well as different sequencing parameters (depth, read length, sequencing
artifacts etc). In addition, the authors test the assemblers on 160 real PacBio and Oxford
Nanopore datasets. For each benchmarked algorithm, Wick & Holt summarize the important
assembly metrics, such as contiguity or base-level accuracy (measured against the corresponding
references), as well as overall user experience.

The manuscript is well-written, and the study design is sound. The presented benchmarks will be a
valuable resource for the long-read genomics community, both for developers and users.
Importantly, the authors have made all data sets and benchmarking pipelines freely available. I
only have the following minor suggestions:

In my view, the evaluation pipeline designed by the authors could be highlighted more in
the main text. E.g. how can a developer test a different assembler using the described
benchmarks? Is it quick to reproduce? What would be the resource requirements?

1.

It would be useful to compare the pros and cons of this work with the other assembly
evaluation methods (such as QUAST) in a short discussion.

2.

On Figure 2, triangles and circles are somewhat difficult to distinguish. Is there a way to
better visually separate PacBio and ONT data points (maybe color tones or background
pattern)?

3.

For the sake of completeness, it is worth mentioning the minimap2 alignment identity
threshold that is used for contiguity evaluation.

4.

DOI links to read sets and generated assemblies seem to have an unneeded space that
break the URLs.

5.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Page 16 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: M.K. is a developer of Flye, which is benchmarked in this study among the
other assemblers.

Reviewer Expertise: Bioinformatics, genomics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick

We thank the reviewer for their feedback, and changes to the article will be incorporated in
its next version (along with updated results for newer assemblers/versions).

Regarding point number 1:
We have refined the script used to assess assemblies to make it more generalisable and
usable: command line help text and usage information at the top of the script. We have also
added a mention of the script and where it can be found to the main text of the paper: ‘The
script for conducting this analysis (assess_assembly.py) is available in Extended data.’

Regarding point number 2:
We have added a brief comparison between our evaluation metric (contiguity) and QUAST
to the main text: ‘This provides a simpler picture of assembly quality than is created by
QUAST (which quantifies misassemblies and other metrics such as NG50) but is appropriate
for cases where complete assembly is likely.’

Regarding point number 3:
We have changed the triangles for PacBio data points to X shapes, which are easier to
distinguish from the circles used for ONT data points.

Regarding point number 4:
We have added the exact minimap2 options used to the main text of the article: ‘To
encourage longer alignments, Minimap2 was run with the asm20 preset and chain
elongation and banding thresholds of 10 kbp.’

Regarding point number 5:
We have removed the space to fix the links for these URLs.

Competing Interests: No competing interests were disclosed.

Reviewer Report 16 January 2020

https://doi.org/10.5256/f1000research.24010.r58113

Page 17 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://github.com/rrwick/Long-read-assembler-comparison/blob/master/scripts/assess_assembly.py
https://doi.org/10.5256/f1000research.24010.r58113

© 2020 Šikić M et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Robert Vaser
1 Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering
and Computing, University of Zagreb, Zagreb, Croatia
2 Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering
and Computing, University of Zagreb, Zagreb, Croatia
3 Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering
and Computing, University of Zagreb, Zagreb, Croatia
4 Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering
and Computing, University of Zagreb, Zagreb, Croatia

Mile Šikić
1 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
2 Genome Institute of Singapore, A*STAR, Singapore
3 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
4 Genome Institute of Singapore, A*STAR, Singapore
5 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
6 Genome Institute of Singapore, A*STAR, Singapore
7 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
8 Genome Institute of Singapore, A*STAR, Singapore

The authors present a benchmark regarding prokaryotic organisms for several state-of-the-art
long-read assemblers. The comparison includes both third generation sequencing technologies
with real and simulated data, assessing various assembly traits with the conclusion that no
assembler is perfect. The manuscript is well written, the figures look neat and all the data is freely
available online.

Minor comments:

Generating the assembly with a hybrid approach which is different from all benchmarked
assemblers is a good approach, but is there a possibility to analyse in details datasets which
have reference genomes assembled with Sanger sequencing (such as CFT073 and
MGH78578 datasets used in De Maio N, Shaw LP, Hubbard A, et al.1)?

1.

As minipolish is a new pipeline introduced in this paper, I would suggest describing it a bit
more in detail.

2.

Ra assembler has been published as a conference proceedings here.3.

References
1. De Maio N, Shaw LP, Hubbard A, George S, et al.: Comparison of long-read sequencing
technologies in the hybrid assembly of complex bacterial genomes.Microb Genom. 2019; 5 (9).

Page 18 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8370-0891
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-58113-1
https://ieeexplore.ieee.org/document/8868909

PubMed Abstract | Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Sequence alignment, de novo assembly, algorithms, machine learning

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick

We thank the reviewer for their feedback, and changes to the article will be incorporated in
its next version (along with updated results for newer assemblers/versions).

Regarding point number 1:
We were reluctant to use Sanger-finished genomes as references for this study due to the
dynamic nature of bacterial genomes. I.e. when a strain is sequenced multiple times from
separate colonies and DNA extractions, there can be discrepancies between the underlying
genomes. We encountered this problem when benchmarking Unicycler using public
datasets for the E. coli K-12 MG1655 genome (10.1371/journal.pcbi.1005595). In that case,
an insertion sequence had shifted in the genome relative to the Sanger-finished reference,
causing false positive misassemblies. Scenarios such as this would be detrimental in our
current study where even a single such discrepancy could seriously impact the contiguity
metric we used (which requires zero misassemblies to achieve a contiguity of 100%).
Instead, we opted to produce our own reference sequences (as described in the article)
using De Maio et al’s single DNA extraction per isolate.

Page 19 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

http://www.ncbi.nlm.nih.gov/pubmed/31483244
https://doi.org/10.1099/mgen.0.000294
https://doi.org/10.1371/journal.pcbi.1005595

Regarding point number 2:
Further information on the Minipolish process is available on its GitHub page. We have now
created a DOI for this repository to make a permanent digital record (
10.5281/zenodo.3752203) and added it to the article’s references.

Regarding point number 3:
We have updated the article’s reference for Ra to the provided conference proceedings.

Competing Interests: No competing interests were disclosed.

Reviewer Report 09 January 2020

https://doi.org/10.5256/f1000research.24010.r58115

© 2020 Salzberg S et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Aleksey V. Zimin
1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
2 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
4 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

Steven L. Salzberg
1 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
2 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University,
Baltimore, Maryland, USA
3 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland, USA
4 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
5 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University,
Baltimore, Maryland, USA
6 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland, USA
7 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
8 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University,
Baltimore, Maryland, USA
9 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland, USA
10 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
11 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University,

Page 20 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://doi.org/10.5281/zenodo.3752203
https://doi.org/10.5256/f1000research.24010.r58115
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8859-7432

Baltimore, Maryland, USA
12 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University,
Baltimore, Maryland, USA

The report is clear and concise, easy to read, and the authors' conclusions are well supported by
their experimental results. The authors are to be commended for their unusual attention to
reproducibility, and for making all data easily available.

We just have a couple of minor suggestions:

Reliability vs. robustness: the authors summarized their findings using the terms "reliability"
for performance on real data sets, and "robustness" on simulated data sets. These terms
might be a bit misleading to some readers. Reliability can be defined as consistent
performance with good results, and robustness (in contrast) might be the ability to perform
well under adverse conditions. The real data sets do vary in quality and coverage, although
not as much as the simulated data. But it seems that both reliability and robustness can be
evaluated on both types of data. If they want to use the term "robustness," perhaps they
could also plot the number of successful assemblies (or contiguity) vs the read error rate for
each assembler. In this respect, a high error rate might be considered an adverse condition.

1.

Figure 1 is excellent, and provides a really nice summary of the performance on simulated
data. However, only 1 of the programs, Flye, failed due to running out of memory, which
was limited to 64 GB of RAM. Flye was otherwise one of the best performers. RAM is fairly
inexpensive today, and it's not hard to find a server with >64 GB. The Figure doesn't show
how much more memory Flye would need, and it would be really helpful to know that.
Would 128GB allow it to complete in all cases? We suggest they run those failed assemblies
on a larger-memory server and report what was needed.
Another consideration here, though, is that depending on overcommit ratio and swap
parameters, processes may be killed or slowed down long before they reach the 64GB
physical memory limit. The impact of swap space on performance is an unknown here as
well. For a clean evaluation, they should be sure (and maybe they did this, we can't tell)
that swap was disabled and that the overcommit ratio was set to 97% to allow a process to
use essentially all avaliable RAM. (There's more information about memory overcommit
settings here) If swapping came into play on any of these jobs, then it would drastically
increase runtime.

2.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

Page 21 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

http://engineering.pivotal.io/post/virtual_memory_settings_in_linux_-_the_problem_with_overcommit/

Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, computational biology

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick

We thank the reviewer for their feedback, and changes to the article will be incorporated in
its next version (along with updated results for newer assemblers/versions).

Regarding point number 1:
Supplementary figure S7 (available here) plots assembly contiguity against many different
parameters used to generate the simulated reads, including maximum read identity. This
gives a more detailed look at assembler ‘robustness’ towards a number of adverse
conditions. Also, in the main text where the terms ‘reliability’ and ‘robustness’ are
introduced, we have clarified that the simulated read sets contain adverse conditions which
are not present in the real read sets.

Regarding point number 2:
We have created a new virtual machine on the Nectar Research Cloud with 128 GB of RAM
(the most available in that service) and all new results (including those for Flye v2.7) were
run on this VM. This has prevented assemblies from failing due to lack of memory. Since the
larger VM allowed all assemblies to complete, we have opted to not alter the Linux memory
settings and instead use the defaults. We checked memory statistics (as reported by
/usr/bin/env time -v) and saw that major page fault counts were low (usually zero,
sometimes in the tens and occasionally a few hundred for Canu), so we don’t believe that
memory swapping has significantly impacted performance.

Competing Interests: No competing interests were disclosed.

Page 22 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

https://github.com/rrwick/Long-read-assembler-comparison

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 23 of 23

F1000Research 2021, 8:2138 Last updated: 07 AUG 2023

mailto:research@f1000.com

