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Abstract 
Background: Data sets from long-read sequencing platforms (Oxford 
Nanopore Technologies and Pacific Biosciences) allow for most 
prokaryote genomes to be completely assembled – one contig per 
chromosome or plasmid. However, the high per-read error rate of 
long-read sequencing necessitates different approaches to assembly 
than those used for short-read sequencing. Multiple assembly tools 
(assemblers) exist, which use a variety of algorithms for long-read 
assembly. 
Methods: We used 500 simulated read sets and 120 real read sets to 
assess the performance of eight long-read assemblers (Canu, Flye, 
Miniasm/Minipolish, NECAT, NextDenovo/NextPolish, Raven, Redbean 
and Shasta) across a wide variety of genomes and read parameters. 
Assemblies were assessed on their structural accuracy/completeness, 
sequence identity, contig circularisation and computational resources 
used. 
Results: Canu v2.1 produced reliable assemblies and was good with 
plasmids, but it performed poorly with circularisation and had the 
longest runtimes of all assemblers tested. Flye v2.8 was also reliable 
and made the smallest sequence errors, though it used the most RAM. 
Miniasm/Minipolish v0.3/v0.1.3 was the most likely to produce clean 
contig circularisation. NECAT v20200803 was reliable and good at 
circularisation but tended to make larger sequence errors. 
NextDenovo/NextPolish v2.3.1/v1.3.1 was reliable with chromosome 
assembly but bad with plasmid assembly. Raven v1.3.0 was reliable for 
chromosome assembly, though it did not perform well on small 
plasmids and had circularisation issues. Redbean v2.5 and Shasta 
v0.7.0 were computationally efficient but more likely to produce 
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incomplete assemblies. 
Conclusions: Of the assemblers tested, Flye, 
Miniasm/Minipolish, NextDenovo/NextPolish and Raven performed 
best overall. However, no single tool performed well on all metrics, 
highlighting the need for continued development on long-read 
assembly algorithms.
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Introduction
Genome assembly is the computational process of using  
shotgun whole-genome sequencing data (reads) to reconstruct 
an organism’s true genomic sequence to the greatest extent  
possible1. Software tools which carry out assembly (assem-
blers) take sequencing reads as input and produce reconstructed  
contiguous pieces of the genome (contigs) as output.

If a genome contains repetitive sequences (repeats) which are 
longer than the sequencing reads, then the underlying genome  
cannot be fully reconstructed without additional information; 
i.e. if no read spans a repeat in the genome, then that repeat  
cannot be resolved, limiting contig length2. Short-read sequenc-
ing platforms (e.g. those made by Illumina) produce reads  
hundreds of bases in length and tend to result in shorter contigs. In 
contrast, long-read platforms from Oxford Nanopore Technologies  
(ONT) and Pacific Biosciences (PacBio) can generate reads tens 
of thousands of bases in length which span more repeats and thus 
result in longer contigs3.

Prokaryote genomes are simpler than eukaryote genomes in 
a few aspects relevant to assembly. First, they are smaller, 
most being less than 10 Mbp in size4. Second, they contain less  
repetitive content and their longest repeat sequences are often 
less than 10 kbp in length5. Third, prokaryote genomes are 
haploid and thus avoid assembly-related complications from  
diploidy/polyploidy6. These facts make prokaryote genome  
assembly a more tractable problem than eukaryote genome  
assembly, and in most cases a long-read set of sufficient depth 
should contain enough information to generate a complete  
assembly – each replicon in the genome being fully assembled 
into a single contig7. Prokaryote genomes also have two other  
features relevant to assembly: they may contain plasmids that  
differ from the chromosome in copy number and therefore 
read depth, and most prokaryote replicons are circular with no  
defined start/end point.

In this study, we examine the performance of various long-read 
assemblers in the context of prokaryote whole genomes. We  
assessed each tool on its ability to generate complete assemblies 
using both simulated and real read sets. We also investigated 
prokaryote-specific aspects of assembly, such as performance on 
plasmids and the circularisation of contigs.

Methods
Simulated read sets
Simulated read sets (read sequences generated in silico from 
reference genomes) offer some advantages over real read sets  
when assessing assemblers. They allow for a confident ground  
truth – i.e. the true underlying genome is known with certainty. 
They allow for large sample sizes, in practice limited only by 
computational resources. Also, a variety of genomes and read 
set parameters can be used to examine assembler performance 
over a wide range of scenarios. For this study, we simulated  
500 read sets to test the assemblers, each using different param-
eters and a different prokaryote genome.

To select reference genomes for the simulated read sets, we  
first downloaded all bacterial and archaeal RefSeq genomes using 
ncbi-genome-download v0.2.10 (14333 genomes at the time 
of download)8. We then performed some quality control steps:  
excluding genomes with a >10 Mbp chromosome, a <500 kbp 
chromosome, any >300 kbp plasmid, any plasmid >25% of the  
chromosome size or more than 9 plasmids (Extended data,  
Figure S1)9. We then ran Assembly Dereplicator v0.1.0 with a 
threshold of 0.1, resulting in 3153 unique genomes10.

To produce a final set of 500 genomes with 500 plasmids, 
we randomly selected 250 genomes from those containing  
plasmids, repeating this selection until the genomes contained  
exactly 500 plasmids. We then added 250 genomes randomly 
selected from those without plasmids. Any ambiguous bases in 
the assemblies were replaced with ‘A’ to ensure that sequences  
contained only the four canonical DNA bases.

We then used Badread v0.1.5 to generate one read set for each  
input genome11. The parameters for each set (controlling read  
depth, length, identity and errors) were randomly chosen to  
ensure a large amount of variability (Extended data, Figure S2)9. 
Note that not all of these read sets were sufficient to reconstruct 
the original genome (due to low depth or short read length), so  
even an ideal assembler would be incapable of completing an 
assembly for all 500 test sets.

For genomes containing plasmids, the read depth of plasmids 
relative to the chromosome was also set randomly, with limits  
based on the plasmid size (Extended data, Figure S3)9. Large  
plasmids were simulated at depths close to that of the  
chromosome while small plasmids spanned a wider range of 
depth. This was done to model the observed pattern that small  
plasmids often have a high per-cell copy number (i.e. may be 
high read depth) but can be biased against in library prepara-
tions (i.e. may be low read depth)12. All replicons (chromosomes 
and plasmids) were treated as circular sequences in Badread, so 
the simulated read sets do not test assembler performance on  
linear sequences.

Real read sets
Despite the advantages of simulated read sets, they can be  
unrealistic because read simulation tools (such as Badread) may 
not accurately model all relevant features: error profiles, read  

            Updates from Version 3
This version contains updated results for new versions of Canu 
(v2.1), NECAT (v20200803), NextDenovo/NextPolish (v2.3.1/
v1.3.1), Raven (v1.3.0) and Shasta (v0.7.0).

Most notably, the current versions of NECAT and NextDenovo/
NextPolish were more reliable and robust than their previous 
versions, and the current version of Raven used much less RAM 
than its previous version.

Any further responses from the reviewers can be found at 
the end of the article
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lengths, quality scores, etc. Real read sets are therefore also  
valuable when assessing assemblers. The challenge with real 
read sets is obtaining a ground truth genome against which  
assemblies can be checked. Since many reference genome  
sequences are produced using long-read assemblies, there 
is the risk of circular reasoning – if we use an assembly as our 
ground truth reference, our results will be biased in favour of  
whichever assembler produced the reference.

To avoid this issue, we used the datasets produced in a recent 
study comparing ONT (MinION R9.4)  and PacBio (RSII 
CLR) data which also included Illumina reads for each  
isolate13. For each of the 20 bacterial isolates in that study, 
we conducted two hybrid assemblies using Unicycler v0.4.7:  
Illumina+ONT and Illumina+PacBio14. Unicycler works by  
first generating an assembly graph using the Illumina reads, 
then using long-read alignments to scaffold the graph’s contigs  
into a completed genome – a distinct approach from any 
of the long-read assemblers tested in this study. We ran the  
assemblies using Unicycler’s ––no_miniasm option so it 
skipped its Miniasm-based step which could bias the results in 
favour of Miniasm/Minipolish. We then excluded any isolate  
where either hybrid assembly failed to reach completion or  
where there were >50 nucleotide differences between the 
two assemblies as determined by a Minimap2 alignment15. 
I.e. the Illumina+ONT and Illumina+PacBio hybrid assem-
blies needed to be in near-perfect agreement with each other. 
This left six isolates for inclusion. The above process may have 
biased these isolates in favour of easier-to-assemble genomes, 
as more complex genomes would be more likely to encounter  
inconsistencies between the two Unicycler assemblies.

The ONT and PacBio read sets for these isolates were quite  
deep (156× to 535×) so to increase the number of assembly  
tests, we produced ten random read subsets of each, ranging 
from 40× to 100× read depth. This resulted in 120 total read  
sets for testing the assemblers (6 genomes × 2 platforms × 10 read  
subsets). The Illumina+ONT hybrid assembly was used as  
ground truth for each isolate.

All real and simulated read sets16 and reference genomes17 are  
available as Underlying data.

Assemblers tested
We assembled each of the read sets using the current versions 
of eight long-read assemblers: Canu v2.1, Flye v2.8, Miniasm/ 
Minipolish v0.3/v0.1.3, NECAT v20200803, NextDenovo/ 
NextPolish v2.3.1/v1.3.1, Raven v1.3.0, Redbean v2.5 and 
Shasta v0.7.0. Default parameters were used except where stated, 
and exact commands for each tool are given in the Extended  
data, Figure S49. Assemblers that only work on PacBio reads 
(i.e. not on ONT reads) were excluded (HGAP18, FALCON19, 
HINGE20 and Dazzler21), as were hybrid assemblers which also  
require short read input (Unicycler14 and MaSuRCA22).

Canu has the longest history of all the assemblers tested, with 
its first release dating back to 2015. It performs assembly by 
first correcting reads, then trimming reads (removing adapters 

and breaking chimeras) and finally assembling reads into  
contigs23. Its assembly strategy uses a modified version of 
the string graph algorithm24, sometimes referred to as the  
overlap-layout-consensus (OLC) approach.

Flye takes a different approach to assembly: first combining  
reads into error-prone disjointigs, then collapsing repetitive 
sequences to make a repeat graph and finally resolving the 
graph’s repeats to make the final contigs25. Of particular note to  
prokaryote assemblies, Flye has options for recovery of small 
plasmids (--plasmids) and uneven depth of coverage  
(--meta), both of which we used in this analysis.

Miniasm builds a string graph from a set of read overlaps  
– i.e. it performs only the layout step of OLC. It does not  
perform read overlapping which must be done separately with 
Minimap2, and it does not have a consensus step, so its assem-
bly error rates are comparable to raw read error rates. A separate  
polishing tool such as Racon is therefore required to achieve 
high sequence identity26. For this study, we developed a tool 
called Minipolish to simplify this process by conducting Racon  
polishing (two rounds by default) on a Miniasm assembly  
graph27. To ensure clean circularisation of prokaryote replicons, 
circular contigs are ‘rotated’ (have their starting position  
adjusted) between polishing  rounds. Minipolish also comes with 
a script (miniasm_and_minipolish.sh) which carries out 
all assembly steps (Minimap2 overlapping, Miniasm assembly 
and Minipolish consensus) in a single command, and subsequent  
references to ‘Miniasm/Minipolish’ refer to this entire pipeline.

NECAT follows an approach similar to Canu: first correct-
ing the input reads, then building an assembly from the 
corrected reads28. Both the correction and assembly steps are 
progressive, using multiple processing steps to achieve better  
accuracy/completeness.

NextDenovo is a performance-oriented assembler, which like 
Canu and NECAT performs read-correction at the start of its 
pipeline. It performs the first two steps of OLC (overlap and  
layout), leaving the final step (consensus) to a separate tool:  
NextPolish29. We used both tools in conjunction in this study, 
referred to as ‘NextDenovo/NextPolish’.

Raven (previously known as Ra) is another tool which takes 
an OLC approach to assembly30. Its overlapping step shares  
algorithms with Minimap2, and its consensus step is based on 
Racon, making it similar to Miniasm/Minipolish. It differs in its 
layout step which includes novel approaches to remove spurious 
overlaps from the graph, helping to improve assembly contiguity.

Redbean (previously known as Wtdbg2) uses an approach to  
long-read assembly called a fuzzy Bruijn graph31. This is  
modelled on the De Bruijn graph concept widely used for 
short-read assembly32 but modified to work with the inexact  
sequence matches present in noisy long reads.

Shasta is an assembler designed for computational efficiency33. 
To achieve this, much of its assembly pipeline is performed not 
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directly on read sequences but rather on a reduced representation 
of marker k-mers. These markers are used to find overlaps and 
build an assembly graph from which a consensus sequence  
is derived.

Computational environment
All assemblies were run on Ubuntu 18.04 instances of Australia’s 
Nectar Research Cloud which contained 32 vCPUs and 128 GB  
of RAM (r3.xxlarge flavour). To guard against performance  
variation caused by vCPU overcommit, the assemblers were  
limited to 16 threads (half the number of available vCPUs) in  
their options. Any assembly which exceeded 24 hours of runtime  
or 128 GB of memory usage was terminated.

Assembly assessment
Our primary metric of assembly quality was contiguity, defined 
here as the longest single Minimap2 alignment between the  
assembly and the reference replicon, relative to the reference  
replicon length. This provides a simpler picture of assembly  
quality than is created by QUAST (which quantifies misassemblies  
and other metrics such as NG50) but is appropriate for cases 
where complete assembly is likely2. Contiguity of exactly 100% 
indicates that the replicon was assembled completely with no  
missing or extra sequence (Extended data, Figure S5A)9.  
Contiguity of slightly less than 100% (e.g. 99.9%) indicates that  
the assembly was complete, but some bases were lost at the  
start/end of the contig (Extended data, Figure S5B)9. Contiguity  
of more than 100% (e.g. 101%) indicates that the contig con-
tains duplicated sequence via start-end overlap (Extended data,  
Figure S5C)9. Much lower contiguity (e.g. 70%) indicates that the 
assembly was not complete due to fragmentation (Extended data, 
Figure S5D)9, missing sequence (Extended data, Figure S5E)9 or  
misassembly (Extended data, Figure S5F)9. Contiguity values  
were determined by aligning the contigs to a tripled version  
of the reference replicon, necessary to ensure that contigs  
can fully align even with start-end overlap and regardless of 
their starting position relative to that of the linearised refer-
ence sequence (Extended data, Figure S6)9. To encourage longer 
alignments, Minimap2 was run with the asm20 preset, chain  
elongation threshold of 10 kbp, banding threshold of 10 kbp,  
Z-drop score of 1000 and inversion Z-drop score of 500. The script 
for conducting this analysis (assess_assembly.py) is available in  
Extended data.

Contiguity values were determined for each replicon in the 
assemblies – e.g. if a genome contained two plasmids, then the  
assemblies of that genome have three contiguity values: one 
for the chromosome and one for each plasmid. A status of  
‘fully complete’ was assigned to assemblies where all replicons 
(the chromosome and any plasmids if present) achieved a  
contiguity of ≥99%. If an assembly had a chromosome with 
a contiguity of ≥99% but incomplete plasmids, it was given a  
status of ‘complete chromosome’. If the chromosome had a  
contiguity of <99%, the assembly was deemed ‘incomplete’. If 
the assembly was empty or missing (possibly due to the assembler 
prematurely terminating with an error), it was given a status 
of ‘empty’. Computational metrics were also observed for each 
assembly: time to complete and maximum RAM usage.

Results and discussion
Figure 1 and Figure 2 summarise the assembly results for the 
simulated and real read sets, respectively. Full tabulated results  
can be found in the Extended data9. The assemblies, times and 
terminal outputs generated by each assembler are available as  
Underlying data34. 

Figure 1A/Figure 2A show the proportion of read sets with  
each assembly status. For the real read sets, a higher proportion 
of completed assemblies indicates a more reliable assembler – 
one which is likely to make a completed assembly given a  
typical set of input reads. For the simulated read sets, a higher 
proportion of completed assemblies indicates a more robust  
assembler – one which is able to tolerate a wide range of 
input read parameters, including adverse conditions such as 
low read accuracy and low read depth (conditions present in 
some of the simulated read sets but not in the real read sets).  
Extended data, Figure S79 plots assembly contiguity against 
specific read set parameters to give a more detailed assessment 
of robustness. Plasmid assembly status, plotted with plas-
mid length and read depth, is shown in Extended data,  
Figure S8 and Figure S99 for the simulated and real read sets,  
respectively.

Figure 1B/Figure 2B show the chromosome contiguity values 
for each assembly, focusing on the range near 100%. These 
plots show how well assemblers can circularise contigs 
– i.e. whether sequence is duplicated or missing at the contig  
start/end (Extended data, Figure S5)9. The closer contiguity 
is to 100% the better, with exactly 100% indicating  
perfect circularisation. Plasmid contiguity values are shown in  
Figure 1C/ Figure 2C9.

Assembly identity (consensus identity) is a measure of the 
base-level accuracy of an assembled contig relative to the  
reference sequence (how few substitution and small indel errors 
are present) and is shown in Figure 1D/Figure 2D. The identity of  
assembled sequences is almost always higher than the identity 
of individual reads because errors can be ‘averaged out’ using 
read depth, producing more accurate consensus base calls.  
However, systematic read errors (e.g. mistakes in homopolymer 
length) can make perfect sequence identity difficult to achieve,  
regardless of assembly strategy35. While most of the sequence 
inaccuracies are small (e.g. a single base indel), some can 
be much larger. Figure 1E/Figure 2E show the size of the  
largest indel error found in each assembly’s chromosome, with 
smaller values being better. E.g. a maximum indel error size of 
10 indicates that no indel errors larger than 10 bp were found  
in the chromosome.

Assembler resource usage is shown in terms of total runtime  
(Figure 1F/Figure 2F) and the maximum RAM usage during  
assembly (Figure 1G/Figure 2G).

Reliability
Reliability was assessed using each assembler’s performance  
on the real read sets (Figure 2A). When considering only the  
chromosome, NextDenovo/NextPolish was the most reliable 
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Figure  1.  Assembly  results  for  the  simulated  read  sets,  which  cover  a  wide  variety  of  parameters  for  length,  depth  and 
quality.  ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline. (A) Proportion of each possible assembly outcome.  
(B) Relative contiguity of the chromosome for each assembly, showing cleanliness of circularisation. (C) Relative contiguity of all plasmids 
in the assemblies, showing cleanliness of circularisation. (D) Sequence identity of each assembly’s longest alignment to the chromosome.  
(E) The maximum indel error size in each assembly’s longest alignment to the chromosome. (F) Total time taken (wall time) for each assembly. 
(G) Maximum RAM usage for each assembly.
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Figure  2.  Assembly  results  for  the  real  read  sets,  half  containing  ONT  MinION  reads  (circles)  and  half  PacBio  RSII  reads  
(X shapes). ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline. (A) Proportion of each possible assembly outcome. 
(B) Relative contiguity of the chromosome for each assembly, showing cleanliness of circularisation. (C) Relative contiguity of all plasmids 
in the assemblies, showing cleanliness of circularisation. (D) Sequence identity of each assembly’s longest alignment to the chromosome.  
(E) The maximum indel error size in each assembly’s longest alignment to the chromosome. (F) Total time taken (wall time) for each assembly. 
(G) Maximum RAM usage for each assembly.
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assembler, followed by Raven, NECAT, Canu and Flye – all were 
able to complete the chromosome in over three-quarters of their 
assemblies. If plasmids are also considered, then Canu was the 
most reliable assembler followed by Flye. Miniasm/Minipolish  
and Shasta were moderately reliable, completing over  
half of the chromosomes. Redbean was the least reliable and  
completed less than half of the chromosomes.

Robustness
Robustness was assessed using each assembler’s performance  
on the simulated read sets (Figure 1A) which contained a 
large amount of variation on many metrics (Extended data,  
Figure S7). NextDenovo/NextPolish and Raven were the most 
robust assemblers, able to complete the chromosome in over  
three-quarters of their assemblies. Flye, Redbean and Canu 
performed best in cases of low read depth, able to complete  
assemblies down to ∼10× depth (Extended data, Figure S7A)9. 
Raven, NextDenovo/NextPolish and NECAT performed best 
with low-identity read sets (Extended data, Figure S7B)9. The  
assemblers performed similarly with regards to read length,  
except for Shasta which required longer reads (Extended data, 
Figure S7C)9. The assemblers were similarly unaffected by  
random reads, junk reads, chimeric reads or adapter sequences 
(Extended data, Figure S7D–F)9. Read glitches (local breaks in 
continuity) were more likely to cause assembly problems for  
Canu, NECAT and Shasta (Extended data, Figure S7G)9.

Identity
In our real read tests, Flye achieved the highest overall assembled  
sequence identity (Figure 2D). Canu achieved high sequence  
identity on PacBio reads. Miniasm/Minipolish, NextDenovo/ 
NextPolish and Raven did well on ONT reads. For each  
assembler, real PacBio reads resulted in higher identities than 
real ONT reads. For the simulated reads (which contain artificial  
error profiles), results were more erratic, with Canu and Flye  
performing best (Figure 1D).

Regarding the maximum indel error size in the assemblies, Flye 
performed best, usually producing assemblies with errors no 
larger than 10 bp (Figure 1E/Figure 2E). NECAT and Shasta  
performed poorly, usually producing errors larger than 10 bp. 
The other assemblers had a large variance in this metric, some-
times producing assemblies with small errors and sometimes  
with large errors.

The nature of read errors depends on the sequencing platform 
and basecalling software used, so these results may not hold 
true for all read sets. Platform-specific post-assembly polishing  
tools (including Nanopolish7, Medaka36 and Arrow37) are 
routinely used to improve the accuracy of long-read 
assemblies38, and these can often achieve assembly identities 
of >99.9% for ONT read sets and >99.999% for PacBio read 
sets (i.e. better than any of the assemblers were able to 
achieve on their own). Identity can be further increased by  
polishing with Illumina reads where available (e.g. with Pilon39). 
Therefore, the sequence identity produced by the assembler 
itself is potentially unimportant for many users. However,  

large-scale indel errors may be less easily fixed using polishing 
tools and therefore could be of greater relevance.

Resource usage
Canu was the slowest assembler tested on both real (Figure 2F) 
and simulated (Figure 1F) read sets, sometimes taking hours to  
complete. Its runtime was correlated with read accuracy and 
read set size, with low-accuracy and large read sets being more  
likely to result in a long runtime.

Flye was typically faster than Canu, taking less than 15 minutes 
for the real read sets and usually less than an hour for the  
simulated read sets. It sometimes took multiple hours to assemble  
simulated read sets, and this was correlated with the amount  
of junk (low-complexity) reads, suggesting that removal of such 
reads via pre-assembly QC may be beneficial. Flye had the  
highest RAM usage of the tested assemblers and its RAM usage 
was correlated with read N50 and read set size, with long and  
large read sets being more likely to result in high RAM usage.

Shasta, Redbean and Raven were the fastest assemblers, typically 
completing assemblies in less than 5 minutes. While not tested 
in this study, Racon (which is used in Minipolish) and Raven  
can be run with GPU acceleration to further improve speed  
performance. Raven and Shasta had the lowest memory usage,  
typically requiring less than 4 GB of RAM.

Circularisation
Of all assemblers tested, Miniasm/Minipolish and NECAT most 
regularly achieved exact circularisation (contiguity=100%)  
(Figure 1B/Figure 2B). Flye often excluded a small amount of 
sequence (tens of bases) from the start/end of circular contigs 
(contiguity <100%), and Raven typically excluded moderate 
amounts of sequence (hundreds of bases). Contiguities for Canu  
and NextDenovo/NextPolish usually exceeded 100%, indicating  
a large amount (thousands of bases) of start/end overlap. 
The amount of overlap in a Canu or NextDenovo/NextPolish 
assembly was correlated with the read N50 length (Extended 
data, Figure S7C)9. Redbean and Shasta were both erratic in 
their circularisation, often producing some sequence duplica-
tion (contiguity >100%) but occasionally dropping sequence  
(contiguity <100%).

In addition to cleanly circularising contig sequences, it is  
valuable for a prokaryote genome assembler to clearly  
distinguish between circular and linear contigs. This can provide 
users with a clue as to whether or not the genome was assem-
bled to completion. Flye, Miniasm/Minipolish, Raven and Shasta  
produce graph files of their final assembly which can indicate  
circularity. Canu indicates circularity via the ‘suggestCircular’  
text in its contig headers. NECAT, NextDenovo/NextPolish and 
Redbean do not signal to users whether a contig is circular.

Plasmids
Canu and Flye were the two assemblers most able to assemble 
plasmids at a broad range of size and depth (Extended data,  
Figures S8, S9)9. Miniasm/Minipolish also performed well,  
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though it failed to assemble plasmids if they were very small  
or had a very high read depth. Raven was able to assemble most  
large plasmids but not small plasmids. NECAT, NextDenovo/ 
NextPolish, Redbean and Shasta were least successful at  
plasmid assembly.

Circularisation of plasmids followed the same pattern as for  
chromosomes, with Miniasm/Minipolish, Flye and NECAT 
most consistently achieving clean circularisation (Figure 1C/ 
Figure 2C)9. For smaller plasmids, start/end overlap could 
sometimes result in contiguities of ∼200% – i.e. the plasmid  
sequence was duplicated in a single contig. This was most  
common with Canu and NextDenovo/NextPolish, though it  
occurred with other assemblers as well.

Ease of use
Most assemblers tested were relatively easy to use, either  
running with a single command (Canu, Flye, Raven and Shasta) 
or providing a convenience script to bundle the commands  
together (Miniasm/Minipolish and Redbean). NECAT requires a 
configuration file be prepared, making it somewhat cumbersome  
to run. NextDenovo/NextPolish was the most difficult to run,  
requiring multiple commands and multiple configuration files. 
All were able to take long reads in FASTQ format as input  
(Extended data, Figure S4)9. We encountered no difficulty  
installing any of the tools by following the instructions provided.

Some of the assemblers needed a predicted genome size as 
input (Canu, NECAT, NextDenovo/NextPolish and Redbean)  
while others (Flye, Miniasm/Minipolish, Raven and Shasta) 
did not. This requirement could be a nuisance when assembling  
unknown isolates, as it may be hard to specify a genome  
size before the species is known.

Configurability
While we ran our assemblies using default and/or recom-
mended commands (Extended data, Figure S4)9, some of the  
assemblers have parameters which can be used to alter their 
behaviour. Raven was the least configurable assembler tested, 
with few options available to users. Flye offers some parameters, 
including overlap and coverage thresholds. Miniasm/Minipolish,  
NECAT, NextDenovo/NextPolish, Redbean and Shasta all 
offer more options, and Canu is the most configurable with  
hundreds of adjustable parameters. Many of the available param-
eters are arcane (e.g. Miniasm’s ‘max and min overlap drop 
ratio’ or Shasta’s ‘pruneIterationCount’), and only experienced  
power users are likely to adjust them – most will likely stick 
with default settings or only adjust easier-to-understand options.  
However, the presence of low-level parameters provides an 
opportunity to experiment and gain greater control over assem-
blies and are therefore appreciated even when unlikely to be  
used.

Another aspect worth noting is whether an assembler  
produces useful files other than its final assembly. Canu and 
NECAT stand out in this respect, as they create corrected and  
trimmed reads in their pipelines which have low error rates 
and are mostly free of adapters and chimeric sequences. Canu  

and NECAT can therefore be considered not just assemblers 
but also long-read correction tools suitable for use in other  
analyses.

Assembler summaries
Canu v2.1 was the slowest assembler and suffered from large 
circularisation problems. However, it was quite reliable and  
did well with plasmids. Its main strength is in its configurabil-
ity, so power users who are willing to learn Canu’s nuances 
may find that they can tune it to fit their needs. However, it 
is probably not the best choice for users wanting a quick and  
simple prokaryote genome assembly.

Flye v2.8 was a strong and well-balanced performer in our tests: 
reliable, robust and good with plasmids. It also produced the 
fewest large-scale indel errors in its assemblies. However, it often 
deleted some sequence (usually on the order of tens of bases) 
when circularising contigs and had the highest RAM usage of  
assemblers tested.

Miniasm/Minipolish v0.3/v0.1.3 was not the most reliable 
assembler but was fairly robust to read set parameters. Its main 
strength is that it was the most likely to consistently achieve  
perfect contig circularisation (as this is a specific goal of its 
polishing step). It was also one of the better assemblers for  
plasmids, especially regarding clean circularisation of plasmid  
sequences.

NECAT v20200803 performed reliably with chromosome  
assembly in the real read sets and was second only to  
Miniasm/Minipolish for contig circularisation. However, it  
failed to assemble many plasmids and was cumbersome to run.

NextDenovo/NextPolish v2.3.1/v1.3.1 was resource-efficient 
and very good at completing chromosomes in both simulated 
and real read sets, but it performed poorly on plasmid assembly. 
It was also the most cumbersome assembler to run, requiring  
multiple commands.

Raven v1.3.0 was reliable and robust for chromosome  
assembly and used very little RAM. However, it suffered 
from worse circularisation problems than Flye (often deleting  
hundreds of bases) and wasn’t good with small plasmids.

Redbean v2.5 assemblies tended to have glitches in the  
sequence which caused breaks in contiguity, making it perform  
poorly in both reliability and robustness. This makes it a  
less-than-ideal choice for long-read prokaryote read sets.

Shasta v0.7.0 was the fastest assembler tested and had low  
RAM usage, but it had the worst robustness and second-worst  
reliability. It is therefore more suited to assembly of large  
genomes in resource-limited settings (the use case for which it  
was designed) than it is for prokaryote genome assembly.

Conclusions
Each of the different assemblers has pros and cons, and while 
no single assembler emerged as an ideal choice for prokaryote  
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genome long-read assembly, the overall best performers were  
Flye, Miniasm/Minipolish, NextDenovo/NextPolish and Raven. 
Flye was reliable, especially for plasmid assembly, was the 
best performing assembler at low read depths and made the  
fewest large-scale sequence errors. Miniasm/Minipolish was the 
only assembler to consistently achieve clean contig circularisa-
tion. NextDenovo/NextPolish was best at generating complete  
chromosomal contigs. Raven was reliable for chromosome  
assembly, tolerant of low-identity read sets and computationally 
efficient.

For users looking to achieve an optimal assembly, we recommend  
trying multiple different tools and comparing the results. This 
will provide the opportunity for validation – confidence in an  
assembly is greater when it is in agreement with other independ-
ent assemblies. It also offers a chance to detect and repair 
circularisation issues, as different assemblers are likely to  
give different contig start/end positions for a circular replicon.

An ideal prokaryotic long-read assembler would reliably com-
plete assemblies, be robust against read set problems, produce 
no large-scale errors, be easy to use, have low computational  
requirements, cleanly circularise contigs and assemble plasmids  
of any size. The importance of long-read assembly will 
continue to grow as long-read sequencing becomes more  
commonplace in microbial genomics, and so development of 
assemblers towards this ideal is  crucial.

Data availability
Underlying data
Figshare: Read sets. https://doi.org/10.26180/5df6f5d06cf0416. 

These files contain the input read sets (both simulated and real)  
for assembly.

Figshare: Reference genomes. https://doi.org/10.26180/
5df6e99ff3eed17. 

This file contains the reference genomes against which the  
long-read assemblies were compared. For the simulated read sets, 
these genomes were the source sequence from which the reads  
were generated.

Figshare: Assemblies. https://doi.org/10.26180/5df6e2864a65834. 

These files contain assemblies (in FASTA format), times and  
terminal outputs for each of the assemblers.

Extended data
Zenodo: Long-read-assembler-comparison. https://doi.org/10.5281/
zenodo.27024429.

This project contains the following extended data:
•     Results (tables of results data, (including information on 

each reference genome, read set parameters and metrics 
foreach assembly).

•     Scripts (scripts used to assess assemblies and generate 
plots).

•     Figure S1. Distributions of chromosome sizes (A), plasmid 
sizes (B) and per-genome plasmid counts (C) for the  
reference genomes used to make the simulated read sets.

•     Figure S2. Badread parameter histograms for the simulated  
read sets. (A) Mean read depths were sampled from a 
uniform distribution ranging from 5× to 200×. (B) mean 
read lengths were sampled from a uniform distribution  
ranging from 100 to 20000 bp. C: read length stand-
ard deviations were sampled from a uniform distribution 
ranging from 100 to twice that set’s mean length (up to  
40000 bp). D: mean read identities were sampled from a 
uniform distribution ranging from 80% to 99%. (E) Max 
read identities were sampled from a uniform distribution 
ranging from that set’s mean identity plus 1% to 100%. 
(F) Read identity standard deviations were sampled from 
a uniform distribution ranging from 1% to the max iden-
tity minus the mean identity. (G, H and I) Junk, random 
and chimera rates were all sampled from an exponential  
distribution with a mean of 2%. (J) Glitch sizes/skips 
were sampled from a uniform distribution ranging  
from 0 to 100. (K) Glitch rates for each set were  
calculated from the size/skip according to this formula: 
100000/1.6986s/10. (L) Adapter lengths were sampled  
from an exponential distribution with a mean of 50.

•     Figure S3. Top: the target simulated depth of each replicon 
relative to the chromosome. The smaller the plasmid, the 
wider the range of possible depths. Bottom: the absolute 
read set of each replicon after read simulation.

•     Figure S4. Commands used for each of the eight  
assemblers tested.

•     Figure S5. Possible states for the assembly of a circular  
replicon. Reference sequences are shown in the inner  
circles in black and aligned contig sequences are shown  
in the outer circles in colour (red at the contig start to  
violet at the contig end). (A) Complete assembly with  
perfect circularisation. (B) Complete assembly but 
with missing bases leading to a gapped circularisation.  
(C) Complete assembly but with duplicated bases leading 
to overlapping circularisation. (D) Incomplete assembly 
due to fragmentation (multiple contigs per replicon). 
(E) Incomplete assembly due to missing sequence.  
(F) Incomplete assembly due to misassembly (noncontigu-
ous sequence in the contig).

•     Figure S6. Reference triplication for assembly assessment. 
(A) Due to the ambiguous starting position of a circular 
replicon, a completely-assembled contig will typically 
not align to the reference in a single unbroken alignment.  
(B) Doubling the reference sequence will allow for 
a single alignment, regardless of starting position.  
(C) However, if the contig contains start/end overlap  
(i.e. contiguity >100%) then even a doubled reference  
may not be sufficient to achieve a single alignment,  
depending on the starting position. (D) A tripled  
reference allows for an unbroken alignment, regard-
less of starting position, even in cases of >100%  
contiguity.
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•     Figure S7. Contiguity of the simulated read set assemblies  
plotted against Badread parameters for each of the tested 
assemblers. These plots show how well the assemblers  
tolerate different problems in the read sets. (A) Mean read 
depth (higher is better). (B) Max read identity (higher 
is better). (C) N50 read length (higher is better). (D) The 
sum of random read rate and junk read rate (lower is  
better). (E) Chimeric read rate (lower is better). (F) Adapter 
sequence length (lower is better). (G) Glitch size/skip  
(lower is better).

•     Figure S8. Plasmid completion for the simulated read set  
assemblies for each of the tested assemblers,  
plotted with plasmid length and read depth. Solid  
dots indicate completely assembled plasmids (contiguity 
≥99%) while open dots indicate incomplete plasmids  
(contiguity <99%). Percentages in the plot titles give 
the proportion of plasmids which were completely  
assembled.

•     Figure S9. Plasmid completion for the real read set 
assemblies for each of the tested assemblers, plotted 
with plasmid length and read depth. Solid dots indicate  
completely assembled plasmids (contiguity ≥99%) while 
open dots indicate incomplete plasmids (contiguity <99%). 
Percentages in the plot titles give the proportion of  
plasmids which were completely assembled.

Extended data are also available on GitHub.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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The authors compare six long read genome assemblers using simulated and real data (PacBio and 
Nanopore). They find that there is no single best method, and that each offers distinct advantages 
and disadvantages. 
I enjoyed reading this paper. It was well written and clearly presented. As I understand, the 
authors plan to continually update the benchmarking is a fantastic step forward and considerably 
improves the utility of such a publication. This should be noted more explicitly in the manuscript. 
 
Major comments:

P.3 “Real Read Sets”. Could the authors note which fraction of the PacBio reads were CCS / 
HiFi reads? 
 

○

p.4 para.1: We then excluded any isolate where either hybrid assembly failed to reach 
completion or where there were structural differences between the two assemblies as 
determined by a Minimap2 alignment. 
I wonder if this biases the genomes that were used such that they were easier to assemble 
than the genomes that were left out. I do not have a big problem with this, but it could be 
mentioned. It would also be good to provide slightly more detail on what precisely 
“structural differences between the two assemblies” means - e.g. does this include large 
indels (size range), inversions, etc. 
 

○

P.5 para.4: Figure 1B/Figure 2B shows the chromosome contiguity values for each assembly. ○
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There are some interesting patterns in 1B and 2B. First is the large number of Shasta 
assemblies have precisely 100.005% contiguity (looks to be mostly ONT assemblies). I am 
also surprised by the sort of bimodality in 1C/2C flye assemblies (and somewhat the 
miniasm assemblies). I would expect an even spread, but instead it looks like some 
assemblies have similar to 99% identity, whereas others have ~ 2-fold lower error rate 
(99.5% identity, my guesstimate). Is there an explanation for either of these patterns? 
 
P.5 Discussion of Identity. The authors could note the level generally achieved by polishing, 
which for ONT I think is around 99.98% (I am sure the authors are more aware than I am).

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbial genomics and evolution, transcription, metagenomics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick 

We thank the reviewer for their feedback, and changes to the article will be incorporated in 
its next version (along with updated results for newer assemblers/versions). 
 
Regarding point number 1: 
None of the PacBio read sets were CCS – all were CLR. We have clarified this in the main text 
of the paper, noting that they are CLR reads when first introduced. 
 
Regarding point number 2: 
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We have clarified both of these points in the text. The relevant section now reads: ‘We then 
excluded any isolate where either hybrid assembly failed to reach completion or where 
there were >50 nucleotide differences between the two assemblies as determined by a 
Minimap2 alignment. I.e. the Illumina+ONT and Illumina+PacBio hybrid assemblies needed 
to be in near-perfect agreement with each other. This left six isolates for inclusion. The 
above process may have biased these isolates in favour of easier-to-assemble genomes, as 
more complex genomes would be more likely to encounter inconsistencies between the two 
Unicycler assemblies.’ 
 
Regarding point number 3: 
These are indeed interesting patterns, but I can only speculate as to what the explanations 
are. Shasta is prone to producing ~10-15 bp of overlap in its assemblies. This may be related 
to the fact that Shasta operates on a reduced representation of the read sequences that is 
based on 10-mers. The bimodality of the Flye ONT assembly identity distribution is not as 
pronounced for the newer version of Flye (v2.7) but it is still there. The identity is relatively 
consistent within each genome (e.g. two read sets for a given genome tend to yield similar 
assembly identity), so I would speculate that the cause has something to do with the 
genome itself. E.g. perhaps the lower identity genomes have some type of DNA 
modification motif that is more likely to cause errors in the consensus sequence. 
 
Regarding point number 4: 
We have added to the text to elaborate on polished assembly identity: ‘Platform-specific 
post-assembly polishing tools (including Nanopolish, Medaka and Arrow) are routinely used 
to improve the accuracy of long-read assemblies, and these can often achieve assembly 
identities of >99.9% for ONT read sets and >99.999% for PacBio read sets (i.e. better than 
any of the assemblers were able to achieve on their own).’  
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The article presents the benchmarking of the current popular long-read assemblers (Canu, Flye, 
Miniasm/Minipolish, Raven, Redbean and Shasta) on various prokaryotic genomes. Wick & Holt 
have simulated 500 long-read datasets to reflect various genomic features (such as repeat length 
and complexity) as well as different sequencing parameters (depth, read length, sequencing 
artifacts etc). In addition, the authors test the assemblers on 160 real PacBio and Oxford 
Nanopore datasets. For each benchmarked algorithm, Wick & Holt summarize the important 
assembly metrics, such as contiguity or base-level accuracy (measured against the corresponding 
references), as well as overall user experience. 
 
The manuscript is well-written, and the study design is sound. The presented benchmarks will be a 
valuable resource for the long-read genomics community, both for developers and users. 
Importantly, the authors have made all data sets and benchmarking pipelines freely available. I 
only have the following minor suggestions:

In my view, the evaluation pipeline designed by the authors could be highlighted more in 
the main text. E.g. how can a developer test a different assembler using the described 
benchmarks? Is it quick to reproduce? What would be the resource requirements? 
 

1. 

It would be useful to compare the pros and cons of this work with the other assembly 
evaluation methods (such as QUAST) in a short discussion. 
 

2. 

On Figure 2, triangles and circles are somewhat difficult to distinguish. Is there a way to 
better visually separate PacBio and ONT data points (maybe color tones or background 
pattern)? 
 

3. 

For the sake of completeness, it is worth mentioning the minimap2 alignment identity 
threshold that is used for contiguity evaluation. 
 

4. 

DOI links to read sets and generated assemblies seem to have an unneeded space that 
break the URLs.

5. 

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes
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Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: M.K. is a developer of Flye, which is benchmarked in this study among the 
other assemblers.

Reviewer Expertise: Bioinformatics, genomics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick 

We thank the reviewer for their feedback, and changes to the article will be incorporated in 
its next version (along with updated results for newer assemblers/versions). 
 
Regarding point number 1: 
We have refined the script used to assess assemblies to make it more generalisable and 
usable: command line help text and usage information at the top of the script. We have also 
added a mention of the script and where it can be found to the main text of the paper: ‘The 
script for conducting this analysis (assess_assembly.py) is available in Extended data.’ 
 
Regarding point number 2: 
We have added a brief comparison between our evaluation metric (contiguity) and QUAST 
to the main text: ‘This provides a simpler picture of assembly quality than is created by 
QUAST (which quantifies misassemblies and other metrics such as NG50) but is appropriate 
for cases where complete assembly is likely.’ 
 
Regarding point number 3: 
We have changed the triangles for PacBio data points to X shapes, which are easier to 
distinguish from the circles used for ONT data points. 
 
Regarding point number 4: 
We have added the exact minimap2 options used to the main text of the article: ‘To 
encourage longer alignments, Minimap2 was run with the asm20 preset and chain 
elongation and banding thresholds of 10 kbp.’ 
 
Regarding point number 5: 
We have removed the space to fix the links for these URLs.  

Competing Interests: No competing interests were disclosed.
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The authors present a benchmark regarding prokaryotic organisms for several state-of-the-art 
long-read assemblers. The comparison includes both third generation sequencing technologies 
with real and simulated data, assessing various assembly traits with the conclusion that no 
assembler is perfect. The manuscript is well written, the figures look neat and all the data is freely 
available online. 
 
Minor comments:

Generating the assembly with a hybrid approach which is different from all benchmarked 
assemblers is a good approach, but is there a possibility to analyse in details datasets which 
have reference genomes assembled with Sanger sequencing (such as CFT073 and 
MGH78578 datasets used in De Maio N, Shaw LP, Hubbard A, et al.1)? 
 

1. 

As minipolish is a new pipeline introduced in this paper, I would suggest describing it a bit 
more in detail. 
 

2. 

Ra assembler has been published as a conference proceedings here.3. 
 
 
References 
1. De Maio N, Shaw LP, Hubbard A, George S, et al.: Comparison of long-read sequencing 
technologies in the hybrid assembly of complex bacterial genomes.Microb Genom. 2019; 5 (9). 
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Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Sequence alignment, de novo assembly, algorithms, machine learning

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick 

We thank the reviewer for their feedback, and changes to the article will be incorporated in 
its next version (along with updated results for newer assemblers/versions). 
 
Regarding point number 1: 
We were reluctant to use Sanger-finished genomes as references for this study due to the 
dynamic nature of bacterial genomes. I.e. when a strain is sequenced multiple times from 
separate colonies and DNA extractions, there can be discrepancies between the underlying 
genomes. We encountered this problem when benchmarking Unicycler using public 
datasets for the E. coli K-12 MG1655 genome (10.1371/journal.pcbi.1005595). In that case, 
an insertion sequence had shifted in the genome relative to the Sanger-finished reference, 
causing false positive misassemblies. Scenarios such as this would be detrimental in our 
current study where even a single such discrepancy could seriously impact the contiguity 
metric we used (which requires zero misassemblies to achieve a contiguity of 100%). 
Instead, we opted to produce our own reference sequences (as described in the article) 
using De Maio et al’s single DNA extraction per isolate. 
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Regarding point number 2: 
Further information on the Minipolish process is available on its GitHub page. We have now 
created a DOI for this repository to make a permanent digital record (
10.5281/zenodo.3752203) and added it to the article’s references. 
 
Regarding point number 3: 
We have updated the article’s reference for Ra to the provided conference proceedings.  

Competing Interests: No competing interests were disclosed.
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The report is clear and concise, easy to read, and the authors' conclusions are well supported by 
their experimental results. The authors are to be commended for their unusual attention to 
reproducibility, and for making all data easily available. 
 
We just have a couple of minor suggestions:

Reliability vs. robustness: the authors summarized their findings using the terms "reliability" 
for performance on real data sets, and "robustness" on simulated data sets. These terms 
might be a bit misleading to some readers. Reliability can be defined as consistent 
performance with good results, and robustness (in contrast) might be the ability to perform 
well under adverse conditions. The real data sets do vary in quality and coverage, although 
not as much as the simulated data. But it seems that both reliability and robustness can be 
evaluated on both types of data. If they want to use the term "robustness," perhaps they 
could also plot the number of successful assemblies (or contiguity) vs the read error rate for 
each assembler. In this respect, a high error rate might be considered an adverse condition. 
 

1. 

Figure 1 is excellent, and provides a really nice summary of the performance on simulated 
data. However, only 1 of the programs, Flye, failed due to running out of memory, which 
was limited to 64 GB of RAM. Flye was otherwise one of the best performers. RAM is fairly 
inexpensive today, and it's not hard to find a server with >64 GB. The Figure doesn't show 
how much more memory Flye would need, and it would be really helpful to know that. 
Would 128GB allow it to complete in all cases? We suggest they run those failed assemblies 
on a larger-memory server and report what was needed. 
Another consideration here, though, is that depending on overcommit ratio and swap 
parameters, processes may be killed or slowed down long before they reach the 64GB 
physical memory limit. The impact of swap space on performance is an unknown here as 
well. For a clean evaluation, they should be sure (and maybe they did this, we can't tell) 
that swap was disabled and that the overcommit ratio was set to 97% to allow a process to 
use essentially all avaliable RAM.  (There's more information about memory overcommit 
settings here) If swapping came into play on any of these jobs, then it would drastically 
increase runtime.

2. 
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Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, computational biology

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 15 Apr 2020
Ryan Wick 

We thank the reviewer for their feedback, and changes to the article will be incorporated in 
its next version (along with updated results for newer assemblers/versions). 
 
Regarding point number 1: 
Supplementary figure S7 (available here) plots assembly contiguity against many different 
parameters used to generate the simulated reads, including maximum read identity. This 
gives a more detailed look at assembler ‘robustness’ towards a number of adverse 
conditions. Also, in the main text where the terms ‘reliability’ and ‘robustness’ are 
introduced, we have clarified that the simulated read sets contain adverse conditions which 
are not present in the real read sets. 
 
Regarding point number 2: 
We have created a new virtual machine on the Nectar Research Cloud with 128 GB of RAM 
(the most available in that service) and all new results (including those for Flye v2.7) were 
run on this VM. This has prevented assemblies from failing due to lack of memory. Since the 
larger VM allowed all assemblies to complete, we have opted to not alter the Linux memory 
settings and instead use the defaults. We checked memory statistics (as reported by 
/usr/bin/env time -v) and saw that major page fault counts were low (usually zero, 
sometimes in the tens and occasionally a few hundred for Canu), so we don’t believe that 
memory swapping has significantly impacted performance.  
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