De Bruijn Graph assembly

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Real-world assembly methods

OLC: Overlap-Layout-Consensus assembly

DBG: De Bruijn graph assembly

Both handle unresolvable repeats by essentially leaving them out
Unresolvable repeats break the assembly into fragments

Fragments are contigs (short for contiguous)

a_long long long time

/ \

Assemble substrings Assemble substrings
with Greedy-SCS with OLC or DBG

/ \

(a_long_long_time) (a_long) (long_time)

De Bruijn graph assembly

A formulation conceptually similar to overlapping/SCS, but has some
potentially helpful properties not shared by SCS.

k-mer

“k-mer”is a substring of length k

50 GGCGATTCATCG

mer: from Greek meaning “part”

A 4-mer of S: ATTC
All 3-mers of S: GGC
GCG
CGA
GAT
ATT
TTC
TCA
CAT
ATC
TCG

I'll use “k-1-mer” to refer to a substring of length k - 1

De Bruijn graph

As usual, we start with a collection of reads, which are substrings of
the reference genome.

AAA, AAB, ABB, BBB, BBA

AAB is a k-mer (k = 3). AAis its left k-1-mer, and AB is its right k-1-mer.

AAB 3-mer

/ \

AA AB
L R

AAB’s left 2-mer AAB'’s right 2-mer

De Bruijn graph

Take each length-3 input string and split it into two overlapping substrings
of length 2. Call these the left and right 2-mers.

AAABBBA
take all 3-mers: AAA, AAB, ABB, BBB, BBA

7 /1 TN\

form L/R 2-mers: AA AA, AA, AB, AB, BB, BB, BB, BB, BA
L R L R L R L R L R

Let 2-mers be nodes in a new graph. Draw a directed edge from each left
2-mer to corresponding right 2-mer:

AB
Each edge in this graph

CYan /IE corresponds to a length-3
Input string
%

De Bruijn graph

AAB »AB
AAA (AN Aiv@
% BBA
BBB

An edge corresponds to an overlap (of length k-2) between two k-1 mers.
More precisely, it corresponds to a k-mer from the input.

De Bruijn graph

AAB 4AB
AAA MaA ABB [BA
BBl BBA
BBB

BBB

If we add one more B to our input string: AAABBBBA, and rebuild the
De Bruijn graph accordingly, we get a multiedge.

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and
multiset of directed edges, E

Otherwise, like a directed graph

Node's indegree = # incoming edges

Node’s outdegree = # outgoing edges

De Bruijn graph is a directed multigraph

O
C d
V=1{a b ¢ d}
E={(a, b),(a,b)(a,b),(ac),lcDb)}

———Repeated —

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1
Graph is connected if each node can be reached by some other node
Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

A directed, connected graph is Eulerian if AR

and only if it has at most 2 semi-balanced

nodes and all other nodes are balanced e AA 1 ‘BA
Jones and Pevzner section 8.8 BB

4

De Bruijn graph

Back to our De Bruijn graph

AS AAA, AAB, ABB, BBB, BBA

&Y /@ 7 /1 TN

AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
% L R L R L R L R L R
Is it Eulerian? Yes

Argument 1: AA—- AA—- AB - BB - BB — BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

De Bruijn graph
A procedure for making a De Bruijn graph

fora genome

Assume perfect sequencing where each length-k
substring is sequenced exactly once with no errors

Pick a substring length k: 5

Start with an input string: a_long_long_long_time

Take each k mer and split I‘L/on\g‘_
into left and right k-1 mers long ong

Add k-1 mers as nodes to De Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer

De Bruijn graph

Eany

First 8 k-mer additions, k=5
a_long long long time

De Bruijn graph

Last 5 k-mer additions, k=5
a_long long long time

De Bruijn graph

With perfect sequencing, this procedure always
yields an Eulerian graph. Why?

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced
with one more incoming than outgoing *

Other nodes are balanced since # times k-1-mer occurs
as a left k-1-mer = # times it occurs as a right k-1-mer

* Unless genome is circular

De Bruijn graph implementation

class DeBruijnGraph:
""" A De Bruijn multigraph built from a collection of strings.
User supplies strings and k-mer length k. Nodes of the De
Bruijn graph are k-1-mers and edges join a left k-1-mer to a
right k-1-mer. """

@staticmethod

def chop(st, k):
""" Chop a string up into k mers of given length """
for i in xrange(9, len(st)-(k-1)): yield st[i:i+k]

class Node:
""" Node in a De Bruijn graph, representing a k-1 mer
def __init_ (, kmlmer):
Jkmimer = kmlmer

def __hash__():
return hash(.kmlmer)

def _init_ (, strIter, k):
""" Build De Bruijn multigraph given strings and k-mer length k """

.G = {}
.hodes = {}
k =Kk
for st in strIter: T
for kmer in .chop(st, k):
kmiL, kmiR = kmer[:-1], kmer[1:]
nodeL, nodeR = R -
if kmlL in .hodes: T
nodelL = .nodes[kmilL]
else:
nodelL = .nodes[kmlL] = .Node (kmlL)
if kmlR in .hodes:
nodeR = .nodes[kmilR]
else:
nodeR = .nodes[kmiR] = .Node (km1R)
.G.setdefault(nodeL, []).append(nodeR)

Chop string into k-mers

For each k-mer, find left
and right k-1-mers

Create corresponding
nodes (if necessary) and

add edge

De Bruijn graph
For Eulerian graph, Eulerian walk can be found in O(| E |) time. | E | is # edges.

Convert graph into one with
Eulerian cycle (add an edge tour = []
to make all nodes balanced),
then use this recursive
procedure

src = g.iterkeys().next()

def visit(n):
while len(g[n]) > o:

dst = g[n].pop()
__visit(dst)

Insight: If Cis a cyclein an tour.append(n)

Eulerian graph, then after
removing edges of C,
remaining connected tour = tour[::-1][:-1]
components are also Eulerian

__visit(src)

http://www.algorithmist.com/index.php/Eulerian_tour

http://www.algorithmist.com/index.php/Eulerian_tour
http://www.algorithmist.com/index.php/Eulerian_tour

De Bruijn graph

Full illustrative De Bruijn graph and Eulerian walk:

http://nbviewer.ipython.orqg/7237207

Example where Eulerian walk gives correct answer for

small k whereas Greedy-SCS could spuriously collapse
repeat:

>>> G = DeBruijnGraph(["a _long long long time"], 5)
>>> print G.eulerianWalkOrCycle()

['a _lo', ' lon', 'long', 'ong ', 'ng 1', 'g lo',

' lon', "long', 'ong ', 'ng 1', 'g lo', ' _lon',
‘long', 'ong ', 'ng t', 'g ti', ' tim', 'time']

https://gist.github.com/BenLangmead/5298132
https://gist.github.com/BenLangmead/5298132

De Bruijn graph

Another example Eulerian walk:

>>> st = "to_every thing turn_turn_turn_there_is a season”

>>> G = DeBruijnGraph([st], 4)

>>> path = G.eulerianWalkOrCycle()

>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring

to_every thing turn_turn_turn_there is a season

Recall: This is not generally possible or tractable in the overlap/SCS
formulation

De Bruijn graph

Assuming perfect sequencing, procedure yields
graph with Eulerian walk that can be found
efficiently.

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?

De Bruijn graph

No: graph can have multiple Eulerian walks, only one of
which corresponds to original superstring

Right: graph for ZABCDABEFABY, k=3

Alternative Eulerian walks:

/A-AB-BE-EF-FA-AB-BC-CD-DA-AB-BY

/A-AB-BC-CD-DA-AB-BE—-EF-FA-AB-BY

These correspond to two edge-disjoint directed
cycles joined by node AB

AB is a repeat: ZABCDABEFABY

http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://en.wikipedia.org/wiki/Cycle_(graph_theory)

De Bruijn graph

Case where k = 4 works:

>>> st = "to_every thing turn_turn _turn_there is a season”

>>> G = DeBruijnGraph([st], 4)

>>> path = G.eulerianWalkOrCycle()

>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1l:]))

>>> print superstring
to _every thing turn_turn_turn_there_ is a season

But k= 3 does not:

>>> st = "to_every thing turn_turn _turn_there is a season”

>>> G = DeBruijnGraph([st], 3)

>>> path = G.eulerianWalkOrCycle()

>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))

>>> print superstring
to_every turn_turn_thing turn_there_is a season

Due to repeats that are unresolvable at k = 3

De Bruijn graph

This is the first sign that Eulerian walks can't solve
all our problems

Other signs emerge when we think about how actual
sequencing differs from our idealized construction

De Bruijn graph

Gaps in coverage can lead to disconnected graph

Graph fora_long long long time, k=5:

De Bruijn graph

Gaps in coverage can lead to disconnected graph

Graphfora long long long time, k=5 but omitting ong t:

Connected components are individually
Eulerian, overall graph is not

De Bruijn graph

Differences in coverage also lead to non-
Eulerian graph

Graph fora _long long long time,
k = 5 but with extra copy of ong_t:

Graph has 4 semi-balanced nodes,
isn't Eulerian

De Bruijn graph

Errors and differences between chromosomes
also lead to non-Eulerian graphs

Graph for a_long long long time, k=15 but with
error that turns a copy of long_into 1xng_

Graph is not connected; largest
component is not Eulerian

De Bruijn graph

Casting assembly as Eulerian walk is appealing, but not practical

Uneven coverage, sequencing errors, etc make graph non-Eulerian

Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) is an improved formulation where
we seek a walk over the De Bruijn graph, where walk contains each
read as a subwalk

Proven NP-hard!

Medvedeyv, Paul, et al. "Computability of models for sequence assembly.”
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

De Bruijn graph

In practice, De Bruijn graph-based tools give up on unresolvable
repeats and yield fragmented assembilies, just like OLC tools.

But first we note that using the De Bruijn graph representation has
other advantages...

De Bruijn graph

Say a sequencer produces =6 x 109 reads |
reads of lengthnfroma n =100 nt

genome of length m m=3x10°nt= hijman

> = 1 sequencing run

To build a De Bruijn graph in practice:

Pick k. Assume k < shortest read length (k=30 to 50 is common).

For each read:

For each k-mer:

Add k-mer’s left and right k-1-mers to graph if not there
already. Draw an edge from left to right k-1-mer.

De Bruijn graph

Pickk=8 Genome: a _long long long time
Reads: a _long long long, ng long 1, g long time

k-mers: a_long 1 ng long g long t
_long lo g long 1 _long ti
long lon long tim

ong long ong time

- long 1
N ~long-Ton
CONINET ongTong
!

Given n (# reads), N (total length of all reads) and k,

“ -0 @ and assuming k < length of shortest read:
Exact number of k-mers: N-n(k-1) O(N)
>
\ This is also the number of edges, | E |

ng. long @ Number of nodes | V| isatmost 2 - | E|, but
typically much smaller due to repeated k-1-mers

De Bruijn graph

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Assume hash map encodes nodes & edges

Assume k-1-mers fit in O(1) machine words,
and hashing O(1) machine words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall

De Bruijn graph

Timed De Bruijn graph construction applied to progressively longer
prefixes of lambda phage genome, k= 14

O(N) expectation
appears to work in
practice, at least for this
small example

0.10 0.15 0.20
| | I
o

Seconds required to build

0.05
|

0.00
I

I [[[[I
0 10000 20000 30000 40000 50000

Length of genome

De Bruijn graph

In typical assembly projects,
average coverageis ~ 30-50

De Bruijn graph
Recall average coverage: average # reads covering a genome position

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTT
TATCTCGACTCTAGGCCCTCA 177 nucleotides
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT 35 nucleotides

Average coverage =177 /35=7X

De Bruijn graph

In typical assembly projects, average coverage is ~ 30 - 50

Same edge might appear in
dozens of copies; let’s use
edge weights instead

N/

Weight = # times
k-mer occurs

[L=4)
Wiy

Using weights, there’s
one weighted edge for
each distinct k-mer

Before: one
edge per k-mer

edge per distinct k-mer

5
After: one weighted @

De Bruijn graph

of nodes and edges both O(N); N is total length of all reads

Say (a) reads are error-free, (b) we have one weighted edge for
each distinct k-mer, and (c) length of genome is G

There’s one node for each distinct k-1-mer, one edge for
each distinct k-mer

Can’t be more distinct k-mers than there are k-mers in the
genome; likewise for k-1-mers

So # of nodes and edges are also both O(G)

Combine with the O(N) bound and the # of nhodes and
edges are both O(min(N, G))

De Bruijn graph

With high average coverage, O(G) size bound is advantageous

Genome = lambda phage (~ 48.5 K nt)

Draw random k-mers until target
average coverage is reached (x axis)

Build De Bruijn graph and total the #
of nodes and edges (y axis)

de Bruijn graph nodes + edges

40000 60000 80000

20000

Size of De Bruijn graph grows
sublinearly when average
coverage is high

| | | | |
10 20 30 40 50

Average coverage

De Bruijn graph

What De Bruijn graph advantages have we discovered?

Can be built in O(N) expected time, N = total length of reads
With perfect data, graph is O(min(N, G)) space; G = genome length

Note: when average coverage is high, G « N

Compares favorably with overlap graph
Space is O(N + a).
Fast overlap graph construction (suffix tree) is O(N + a) time

ais O(n?)

De Bruijn graph

What did we give up?

Reads are immediately split into shorter k-mers; can't resolve
repeats as well as overlap graph

Only a very specific type of “overlap”is considered, which makes
dealing with errors more complicated, as we'll see

Read coherence is lost. Some paths through De Bruijn graph are
inconsistent with respect to input reads.

This is the OLC <« DBG tradeoff

Single most important benefit of De Bruijn graph is the O(min(G, N))
space bound, though we'll see this comes with large caveats

