Overlap Layout Consensus assembly

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Real-world assembly methods

OLC: Overlap-Layout-Consensus assembly

DBG: De Bruijn graph assembly

Both handle unresolvable repeats by essentially leaving them out
Unresolvable repeats break the assembly into fragments

Fragments are contigs (short for contiguous)

a_long long long time

/ \

Assemble substrings Assemble substrings
with Greedy-SCS with OLC or DBG

/ \

(a_long_long_time) (a_long) (long_time)

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: de Bruijn graph (DBG) assembly

|
[Overlap j [Error correction j
[La:/out j [de Bruij+n graph j
¥
[Con:ensus j [Refine j

v
[Scaffoldinvg j

Overlap Layout Consensus

!

[Overlap j Build overlap graph
v

[Layout j Bundle stretches of the overlap graph into contigs
\

[Consensus j Pick most likely nucleotide sequence for each contig

!

Finding overlaps

Can we be less naive than this?

Say /=3
Look for thisin Y,
going right-to-left
X: CTCTAGGCC X: CTCTAGGCC
Y: TAGGCCCTC Y: TAGGCCCTC
\°
Found it

We're doing this for every pair of input strings

Extend to left; in this case, we
confirm that a length-6 prefix
of Y matches a suffix of X

X: CTCTAGGCC
e —

Y: TAGGCCCTC
e

Finding overlaps

Can we use suffix trees for overlapping?

Problem: Given a collection of strings S, for each string xin S find all
overlaps involving a prefix of x and a suffix of another string y

Hint: Build a generalized suffix tree of the stringsin S

Finding overlaps with suffix tree

Generalized suffix tree for { “"GACATA"” “ATAGAC"} GACATASoATAGACS;

A $() C $1 GAC TA

$o /C [TA\GACS ATAS$(\$, ATAS\$ | $o \GACS

5 9 2 12 0 10 4 8

ATASo 1 o NSACST Say query = GACATA. From root, follow path

labeled with query.

1 11 3 7

Green edge implies length-3 suffix of second
ATAGAC string equals length-3 prefix of query

GACATA

Finding overlaps with suffix tree

Generalized suffix tree for { “"GACATA"” “ATAGAC"} GACATASoATAGACS;

A $0 C $1 GAC TA

6 13
$o /C [TA\GACS, ATAS$ \$ ATA\S | $o \GACS |
5 9 2 12 0 10 4 8
ATAS$, (8 50 \GACS| Sirategy:
| i 3 ; (1) Build tree

(2) For each string: Walk down from root and report
any outgoing edge labeled with a separator.
Each corresponds to a prefix/suffix match

involving prefix of query string and suffix of
string ending in the separator.

Finding overlaps with suffix tree

Generalized suffix tree for { “"GACATA"” “ATAGAC"} GACATASoATAGACS;

N

GACATA \\\\
| A $o9 /C \$1\\GAC TA

AIAGAC ﬁ 6 ‘ 13 ,’ ‘

A, /0 ItA\GACS, ATAS$(\$ | ATAS\S $o \GACS
' 2
'/ ‘ ‘a 9 2 12 0 10 4 8
ATASo 51 IS0 \GACS, ATAGAC
Al 3
; GACATA
GACATA

‘ ‘ Now let query be second string: ATAGAC
ATAGAC

Finding overlaps with suffix tree

o

O &
A

ATAS, $,

ATAS) \$;

9

2

12

ATAS\$ ¢

0

'v 0 GAC$ 1

10

Say there are d reads of length n, total length
N =dn, and a = # read pairs that overlap

Assume for given string pair we report only the longest suffix/prefix match

Time to build generalized suffix tree: O(N

)
... to walk down red paths: N)

.. to find & report overlaps (green):

Overall:

O
O

(
(
(
(

a

)

+ a)

d? doesn't appear explicitly,
but ais O(d?) in worst case

Finding overlaps

What if we want to allow mismatches and
gaps in the overlap? X: CTCGGCCCTAGG

l.e. How do we find the best alignment of a Y: GGCTCTAGGCCC
suffix of X to a prefix of Y?

Dynamic programming

But we must frame the problem such that only backtraces
involving a suffix of X and a prefix of Y are allowed

Finding overlaps with dynamic programming

Find the best alignment of a suffix of Xto a X: CTCGGCCCTAGG

prefix of ¥ [T T
Y: GGCTCTAGGCCC

We'll use global alignment recurrence and score function

s(a,b)
N | D;z:—.l,j] ——S(x[i—.l]a_) A /3 SL (25 zTL 3
Dlij) = min{ Dl = 1)+ s(~.ylj - 1) ST
Dl—l,]—1]+5(x[z_1]7y[]_1]) r,4,214/018

8 [8[8]s

But how do we force it to find prefix / suffix matches?

Finding overlaps with dynamic programming

Find the best alignment of a suffix of X to a prefix of Y

y

D, j] = min «

How to initialize first row & column
so suffix of X aligns to prefix of Y?

First column gets 0Os
(any suffix of X is possible)

slele

First row gets o0s

(must be a prefix of Y)

Backtrace from last row

i — 1,4+ s(ali — 1],)
Za] o 1] + S(_ay[j o 1])

i = 1,7 =1 +s(zli = 1], 37 = 1])

s(a, b)

e 0 >

(o B E g (VR E- g | S 2 ()

(oo B (Co R B | (O B E

00 |00 |00 |00 |1

OI®O|®| !

INEYEYRES LD

L5

yA)

N — 0N

CCC

52

18

26

44

52

16

22

36

44

10

18

34

36

10

36

36

10

34

40

16

10

26

34

OO0 0000 401
OIOIOIO|IO|IO|I®O|I0|®

olo|v|n|pp|p|e

22

18

26

Finding overlaps with dynamic programming

Find the best alignment of a suffix of X to a prefix of Y

(D[i—1,j]+s(zfi — 1], —) 2 Lo [a R

D[Za.]]:mln< Dz,]—l]—l—s(—,y[]—l]) g Z2l Z g 421 :

|\ Dii—1,j — 1] +s(zli — 1],y — 1]) lalalelols
- GGCTCTAGGT CTCOC
Problem: very short matches - [@ {00000 |00 0010090190 00>]
high v ch C [e]4]12]20]28]36]44]|52]60]68]76]84]92
got high scores by chance... T[e| 4] 8][14]20]28]36]44]52]60]|68]76]84
cle]a]s]s][16]20]28]36]a4][52]60]68]76
..which might obscure the more Glojo|4[12]/12|20124130/36]24]52|60]68
| h G|lo|e|e]|s]16]16]24]26[30]36]44]52]60
relevant matc X clela[a|e]8|16]18]26[30]34|36]44[52
cle|a]|s|a]2]8]16]22]30]34[34]36]a4
Say we want to enforce cle|a]|s]8]e6]2]10]18]26]34]34]34]36
- a0 lenath 7 = 5 Tle|a]|s[1e] 8] 8]2]10]18]26[34]36]36
minimum overiap 1€hg B Ale|2]|6|12|14[12|10(2 |10|18|26|34|40
G|le|e]|2]10]16]18[16]10] 0 [10]18]26]34
G|e[e]e]e|14[20[22]18]10] 2] 10[18]26

Finding overlaps with dynamic programming

Find the best alignment of a suffix of X to a prefix of Y

(D[i —1,j] + s(z[i — 1], —) alolalolals

D[i,j] =minq Dl[i,j — 1]+ s(—,y[j — 1)) Tl To T

| Dli—1,5 = 1]+ s(z[t = 1}, y[j — 1]) RS e

Y

- G 66 CTCTAGGT CTCC
Solve by initializing certain - [@ [00]| 00|00 c0[o0|00]| 00|00 [00|00]|00| 0
additional cells to oo Cle|4a]|12|20]|28[36|44|52|60|68(76|84]92
T|(o|4a|8|14]|20[28|36(44|52]|60|68|76|84
Clo|a]|s|8]|16]20]|28]36|44|52|60]68]76
Cells whose values changed G|lo|e]|a]12]12]|20]24]|30]|36]|44]|52|60]|68
highlighted in red G(o|e]|o|8]|16(16|24]|26[30]|36]44|52]60
X Clo|a|a|o|8]|16(18|26|30(34(36]|44|52
Cle|a|s|a]|2]8]|16(22|30]|34[34|36[44
Now the relevant match is the Clo|a|8]|8|6]|2]10][18(26]|34]|34(34(36
best candidate T|o|a|8|10]8]8]2]10]|18|26[34]|36]36
A|co|12] 6 [12|14]12|10] 2 [10]|18]26(34|40
G [co|20]12[10]|16[18|16]|10[0 |10]18|26(34
G [oo|oo|oo|co]|oo|20]22]18|10] 2 |210]18]26

Finding overlaps with dynamic programming

Say there are d reads of length n, total length N=dn, and a is total
number of pairs with an overlap

Number of overlaps to try: O(d?)
Size of each dynamic programming matrix: O(n?)
Overall: O(d?n?) = O(N?)

Contrast O(N?2) with suffix tree: O(N + a), but where a is worst-case O(d?)

But dynamic programming is more flexible, allowing mismatches and gaps

Real-world overlappers mix the two, using indexes to filter out vast majority of
non-overlapping pairs, then using dynamic programming for remaining pairs

Finding overlaps

Overlapping is typically the slowest part of assembly

Consider a second-generation sequencing dataset with
hundreds of millions or billions of reads!

Approaches from alignment unit can be adapted to finding overlaps

We saw adaptations of naive exact matching, suffix-tree-
assisted exact matching, and dynamic programming

Could also have adapted efficient exact matching,
approximate string matching, co-traversal, ...

Finding overlaps

Celera Assembler’s overlapper is probably the best documented:

Inverted substring indexes built on batches of reads

Only look for overlaps between reads that share one or more
substrings of some length

http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA#Overlapper

http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA#Overlapper
http://wgs-assembler.sourceforge.net/wiki/index.php/RunCA#Overlapper

Overlap Layout Consensus

!

[Overlap Build overlap graph
v

[Layout j Bundle stretches of the overlap graph into contigs
v

[Consensus j Pick most likely nucleotide sequence for each contig

!

Layout

Overlap graph is big and messy. Contigs don’t “pop out” at us.

Below: part of the overlap graph for

to _every thing turn_turn_turn there is a season
[=4,k=7

Layout

Anything redundant about this part of the
overlap graph?

Some edges can be inferred (transitively) from
other edges

E.g. green edge can be inferred from blue

Layout

Remove transitively-inferrible edges, starting with edges that skip one

node

Before:
S
%1£E%§i

Layout

Remove transitively-inferrible edges, starting with edges that skip one

node: %

After:

<t
\O
©
<
o = -
- |
£ |
S | =t
7
=
O
|
No)
2

Layout

Remove transitively-inferrible edges, starting with edges that skip one

or two nodes: :

After:

o o o o o o o
- ©
© o =
—
o o o o o o o o BI
© ©
<
| =
= g
=
= = S | = =
2 g
‘ ' = 2

Even simpler

Layout

Emit contigs corresponding to the non-branching stretches

O-0-0-0-0-0-0-0-0-0-0-0-C

Contig 1 Contig 2
to _every thing turn_ turn_there is a season

Unresolvable repeat

Layout

In practice, layout step also has to deal with spurious subgraphs, e.qg.
because of sequencing error

Possible repeat
boundary

prune

Mismatch a

Mismatch could be due to sequencing error or repeat. Since the path
through b ends abruptly we might conclude it’s an error and prune b.

Overlap Layout Consensus

[Overlap Build overlap graph
v

[Layout Bundle stretches of the overlap graph into contigs
v

[Consensus j Pick most likely nucleotide sequence for each contig

!

Consensus

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

l Vol

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Take reads that make
up a contig and line
them up

Take consensus, i.e.
majority vote

At each position, ask: what nucleotide (and/or gap) is here?

Complications: (a) sequencing error, (b) ploidy

Say the true genotype is AG, but we have a high sequencing error rate

and only about 6 reads covering the position.

Overlap Layout Consensus

!

[Overlap Build overlap graph
4

[Layout Bundle stretches of the overlap graph into contigs
v

[Consensu

!

OLC drawbacks

J Pick most likely nucleotide sequence for each contig

Building overlap graph is slow. We saw O(N + a) and O(N2) approaches.

Overlap graph is big; one node per read, and in practice # edges
grows superlinearly with # reads

2nd-generation sequencing datasets are ~ 100s of millions or billions
of reads, hundreds of billions of nucleotides total

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: de Bruijn graph (DBG) assembly

! |
[Overlapﬁ [Error correction j
[La:/out 4 [de Bruij+n graph j
v ¥

[ConsensM [Refine j
|

l v v
[Scaffolding j

