A Model Checking Approach to Dynamical Systems Analysis

David Šafránek

with Nikola Beneš, Luboš Brim, Martin Demko, Samuel Pastva

Masaryk University Czech Republic

Parameter Synthesis by Coloured Model Checking Case Study using Parameter Synthesis

3 Discrete Bifurcation Analysis

• Case Study using Discrete Bifurcation Analysis

Parameter Synthesis by Coloured Model Checking
 Case Study using Parameter Synthesis

Discrete Bifurcation Analysis
 Case Study using Discrete Bifurcation Analysis

Motivation: Complex Real-World Systems

Systems View of Processes Driving the Cell

Motivation: Complex Dynamics of a Cell

Motivation: Models of Complex Dynamical Systems Understanding Role of Parameters

• continuous-time models of dynamical systems:

f ... phase space (vector field), $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$

 $\dot{x} = f(x(t), p)$ x ... state vector (\mathbb{R}^n)

p ... parameter vector (\mathbb{R}^m)

LSV Seminar, Cachan, 24.1.2017

Model-Based Dynamical Systems Analysis Employing Constraints on Systems Dynamics

- *biophysics*: often use **parameterised** continuous-time models (ODEs), typically analysed by **local** methods (simulation)
- biology: observations in the form of time-series data
- literature provides further constraints on systems dynamics
- computer science: turn all known facts into formal specification and find admissible model parameters
- a suitable formal language is provided by temporal logics
- if the model is given as a state-transition system we can employ **model checking**

 \Rightarrow **exhaustive** – global view wrt parameters and initial conditions, different than simulation

Motivation: Dynamical Systems with Parameters

Motivation

Parameter Synthesis by Coloured Model Checking Case Study using Parameter Synthesis

Discrete Bifurcation Analysis
 Case Study using Discrete Bifurcation Analysis

Problem Formulation

Parameter Synthesis

Parameter Synthesis Problem

Assume \mathcal{P} is the admissible **parameter space**. Given a *behaviour* constraint φ , parameter constraint Φ_I , and a parameterised model \mathcal{M} , find the maximal set $P \subseteq \mathcal{P}$ of parameterisations such that $p \models \Phi_I$ and $\mathcal{M}(p) \models \varphi$ for all $p \in P$.

Work Chronology

Related Work

- Batt et al. 2007: RoverGene, BDD/Polytopes-based approach
- Batt et al. 2010: GNA, symbolic approach, piecewise affine
- Grosu et al. 2011: RoverGene revisited, approximation improved
- Bogomolov et al. 2015, SpaceEx, multi-affine hybrid automata

Our Contribution

- HIBI 2010, TCCB 2012: coloured LTL model checking, piecewise multi-affine, parallel algorithm
- CMSB 2015: coloured CTL model checking, piecewise multi-affine, parallel algorithm
 - parameters represented as intervals
 - limitation: independent parameters only
- ATVA 2016, CMSB 2016: parameters represented in first order logic, SMT solver employed, **interdependent parameters**
- HSB 2015, FM 2016: discrete bifurcation analysis by coloured CTL model checking

Step 1: Approximation Discretisable Continuous (ODE) Models

- a large class of molecular mechanisms modeled at activity-flow level (e.g., signalling pathways, gene regulatory circuits, ...)
- optimal approximation of sigmoid functions by piece-wise affine functions (ramps) [Grosu et al. CAV 2011]

Step 2: Rectangular Abstraction

- approach originates in [Batt, Belta, Habets, van Schuppen]
- continuous phase-space is partitioned into (hypher)rectangles
- no diagonal transitions, overapproximation

$$\frac{dA}{dt} = -k_1 \cdot A + k_2 \cdot B$$

$$\frac{dB}{dt} = k_1 \cdot A - k_2 \cdot B$$

$$k_2 = 0.8$$

$$k_1 = 0.6$$

$$B = 5$$

$$B = 5$$

$$B = 5$$

$$C =$$

$$\frac{dA}{dt} = -k_1 \cdot A + k_2 \cdot B$$

$$\frac{dB}{dt} = k_1 \cdot A - k_2 \cdot B$$

$$k_2 = 0.8$$

$$k_1 = 0.6$$

$$B = 5$$

$$B =$$

Phase Space Discretisation Leads to Parameter Space Discretisation

LSV Seminar, Cachan, 24.1.2017

Phase Space Discretisation Leads to Parameter Space Discretisation

 $\Phi_{\text{state00} \to \text{state10}} := -2.5 \cdot k_1 > 0 \lor -2.5 \cdot k_1 + 2.5 \cdot k_2 > 0$

The transition exists if and only if the formula is **satisfiable**. Local parameter constraints are **predicates over reals**.

Parameter Synthesis by Coloured Model Checking

parameterized Kripke structure of the model

16/44

Parameterised Kripke Structures

State Transition Systems with Parameters

Transitions with Parameters (coloured transitions)

- each parameter valuation represents one Kripke structure
- shared state space, different transition space

Parameterised Kripke Structures

State Transition Systems with Parameters

Transitions with Parameters (coloured transitions)

- each parameter valuation represents one Kripke structure
- shared state space, different transition space
- we assume symbolic representation of parameters
- symbolic PKS: every transition is associated with a formula

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

intersection of colour sets: state + transition
union of colour sets: inside state

LSV Seminar, Cachan, 24.1.2017

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

intersection of colour sets: state + transition
union of colour sets: inside state

LSV Seminar, Cachan, 24.1.2017

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- CTL formula: EF p
- intersection of colour sets: state + transition
 union of colour sets: inside state

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

intersection of colour sets: state + transition
union of colour sets: inside state

LSV Seminar, Cachan, 24.1.2017

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

- CTL formula: EF p
- intersection of colour sets: state + transition
 union of colour sets: inside state

- enumerative approach
- CTL model checking: dynamic programming, back propagation
- coloured CTL model checking: back propagation of colours

intersection of colour sets: state + transition
union of colour sets: inside state

LSV Seminar, Cachan, 24.1.2017

Parallelisation of Coloured CTL MC

Cluster or Multi-Core Based Computing

Kripke Fragments

- each worker owns a part of the whole state space
- extended with border states
- assumption-based approach, three-valued (*true/false/unknown*)
- after everything is computed locally, exchange border state

Idea based on: Brim, Yorav, Žídková 2005: parallel CTL model checking LSV Seminar, Cachan, 24.1.2017

Symbolic Representation of Parameters Using SMT to Deal With Parameter Sets

Encoding

- every set of parameters (on transitions, inside states) represented by a formula with free variables: satisfying assignments are set elements
- union is disjunction, intersection is conjunction
- call SMT solver to check whether a formula is satisifiable (i.e. whether the set is nonempty)
- call SMT solver to check whether two formulae are equivalent (i.e. whether the set has changed)
- optimisation: delay SMT solver calls, cache SMT results

This work: linear arithmetic over reals Generally: anything an SMT solver can handle

Performance Evaluation and Scalability

Enzymatic Chain Reaction Mass Action as a Benchmark

$$\begin{split} \underbrace{S+E \rightleftharpoons ES_1 \rightleftharpoons \cdots \rightleftharpoons ES_k \rightleftharpoons P+E}_{\dot{S} = 0.1 \cdot ES_1 - p_1 \cdot E \cdot S} \\ \vdots = 0.1 \cdot ES_1 - p_2 \cdot E \cdot S + 0.1 \cdot ES_k - p_2 \cdot E \cdot P \\ ES_1 = 0.01 \cdot E \cdot S - p_3 \cdot ES_1 + 0.05 \cdot ES_2 \\ \vdots \\ ES_k = 0.1 \cdot ES_{k-1} - p_k \cdot ES_k + 0.01 \cdot E \cdot P \\ \underline{\dot{P} = 0.1 \cdot ES_k - p_{k+1} \cdot E \cdot P - 0.1 \cdot P}_{p_1 = 0.01, p_2 = 0.01, p_3 = 0.2, \\ p_k = 0.15, p_{k+1} = 0.01 \end{split}$$

Scalability all for 6 dimensions per 13 thresholds 7000 6000 5000 1 param time (s) 2 param 4000 3 param 4 param 3000 5 param 6 param 2000 1000 -4.4 ٥ 3 5 6 7 10 12 LSV Seminar, Cachan, 24.1.2017 4 8 9 11 Nodes

21/44

Motivation

Parameter Synthesis by Coloured Model Checking Case Study using Parameter Synthesis

Discrete Bifurcation Analysis
 Case Study using Discrete Bifurcation Analysis

Case study: Biodegradation of Trichloropropane in E. coli

- biodegradation of toxic substrate and intermediates
- synthetic pathway utilising enzymes from two other bacteria *Rhodococcus rhodochrous* NCIMB 13064; *Agrobacterium radiobacter* AD1
- find optimal enzymes concentration balancing *metabolic burden* and *toxicity*

LSV Seminar, Cachan, 24.1.2017

Desired behaviour:

"TCP is finally completely degraded and the concentration of intermediates does not exceed given bounds"

Formally:

$$\varphi_1 = (\mathbf{A}([TCP] > x)\mathbf{U}(\mathbf{AF}(\mathbf{AG} [TCP] < y))),$$

$$\varphi_2 = (\mathbf{A}([GLY] < y)\mathbf{U}(\mathbf{AF}(\mathbf{AG} [GLY] > x))),$$

$$\varphi_3 = (\mathbf{AG} [DCP] < v) \land (\mathbf{AG} [GDL] < w),$$

$$\varphi = (\varphi_1 \land \varphi_2 \land \varphi_3),$$

where x, y, v and w are estimated values making an instance of this property:

- x = 1.9 (according to authors¹ using the value 2 mM),
- y = 0.01 (obviously, cannot be zero),
- $v \in \{0.5, 0.3, 0.1\}$ (variations based on experimental data observation)
- $w \in \{0.5, 0.25, 0.1\}$ (variations based on experimental data observation)

¹Kurumbang et al., ACS Synthetic Biology, 2013

Case study: Biodegradation of Trichloropropane in E. coli

A sample of the resulting parameter space for a particular initial state: TCP \in [1.9, 1.9586], DCP \in [0.448898, 0.5], GDL \in [0.0, 0.0669138], GLY \in [0.0, 0.01]

Dotted area corresponds to φ (v = 0.5, w = 0.25).

LSV Seminar, Cachan, 24.1.2017

25/44

Case study: Biodegradation of Trichloropropane in *E. coli* Preliminary Biological Validation

Motivation

Parameter Synthesis by Coloured Model Checking
 Case Study using Parameter Synthesis

3 Discrete Bifurcation Analysis

• Case Study using Discrete Bifurcation Analysis

Motivation: How Parameters Influence Systems Dynamics?

Example: decision making in living cells

- to divide or not to divide?

decisions implemented by circuits of positive and negative interactions modelling of cell cycle since 1970 [Goldbetter et al.]

Motivation: How Parameters Influence Systems Dynamics? Bifurcation Analysis of Dynamical Systems

typical phase portraits around equilibria:

• bifurcation is defined as a topological change in phase space

- ullet small change in parameter \implies qualitative change in dynamics
- the goal of bifurcation analysis is to identify bifurcation points

Motivation: How Parameters Influence Systems Dynamics?

Bifurcation Analysis in Systems Theory

LSV Seminar, Cachan, 24.1.2017

Motivation: How Parameters Influence Systems Dynamics?

Bifurcation Analysis in Systems Theory

LSV Seminar, Cachan, 24.1.2017

Motivation: Models of Complex Dynamical Systems Understanding Role of Parameters

- in the vector field the equilbria have certain patterns
- the patterns change with parameters (appear, disappear, change shape)

Phase Portrait Specification Elementary Patterns

Phase Portrait Specification

- elementary patterns describe temporal behaviour in states
 - (in)stability, stabilisation, flow direction, ...
 - in non-deterministic system: possibility or inevitability
- employ temporal logics to formalise the patterns
- need to express branching over labeled transitions, future and past, state variables
 - stability (sink) there is a state with no outgoing transition (only a self-loop)
 - instability (source) there is a state with no incoming transition (only a self-loop)
 - increasing flow only transitions in particular direction
- some work done UCTL [ter Beek et al.], hybrid logics [Arellano et al. 2011], ...

we combine all of these – introduce $HUCTL_P$

Phase Portrait Specification: HUCTLP

- $HUCTL_P$ hybrid UCTL with past
- in addition to AP there are **direction formulae**:

$$\chi ::= true \mid d \mid \neg \chi \mid \chi \land \chi$$
 where $d \in Dir$

• state formulae

$$\begin{split} \varphi &::= true \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{E} \psi \mid \mathbf{A} \psi \mid \\ & \hat{\mathbf{E}} \psi \mid \hat{\mathbf{A}} \psi \mid x \mid \downarrow x.\varphi \mid @x.\varphi \mid \exists x.\varphi \end{split}$$

path formulae

$$\psi ::= \mathbf{X}_{\chi} \varphi \mid \varphi_{\chi} \mathbf{U} \varphi \mid \varphi_{\chi} \mathbf{U}_{\chi} \varphi \mid \varphi_{\chi} \mathbf{W} \varphi \mid \varphi_{\chi} \mathbf{W}_{\chi} \varphi$$

Phase Portrait Specification: HUCTL_P

Single-state patterns

- sink (stable steady state): $\downarrow s$. **AX** s
- source (only self-loops, no other incoming): $\downarrow s$. ÂX s
- 2d-saddle (nort-south outgoing, west-east incoming):

 $\begin{array}{l} \textbf{AX}_{N \lor S} \textit{ true } \land \textbf{EX}_N \textit{ true } \land \textbf{EX}_S \textit{ true } \land \\ \textbf{\hat{AX}}_{E \lor W} \textit{ true } \land \textbf{\hat{EX}}_E \textit{ true } \land \textbf{\hat{EX}}_W \textit{ true } \end{array}$

Multi-state patterns

- state in a nontrivial SCC: $\downarrow s$. **EX EF** s
- state in a final SCC (generalised sink): $\downarrow s$. AG EF s

Relations among patterns

• at least two sinks in the whole system: $\exists s. \exists t. (@s. \neg t \land AX s) \land (@t. AX t)$

Phase Portrait Specification

From Phase Portrait Specification to Parametric Phase Portrait

phase portrait specification $\phi = \{\varphi_1, \varphi_2\}$ phase portrait pattern $X_{\phi} = \{\varphi_1 \land \varphi_2, \varphi_1 \land \neg \varphi_2, \neg \varphi_1 \land \varphi_2, \neg \varphi_1 \land \neg \varphi_2\}$

subpatterns, e.g., $X' = \{ \neg \varphi_1 \land \varphi_2, \neg \varphi_1 \land \neg \varphi_2 \} \subset X_{\phi}$

Phase Portrait Specification

From Phase Portrait Specification to Parametric Phase Portrait

phase portrait specification $\phi = \{\varphi_1, \varphi_2\}$ phase portrait pattern $X_{\phi} = \{\varphi_1 \land \varphi_2, \varphi_1 \land \neg \varphi_2, \neg \varphi_1 \land \varphi_2, \neg \varphi_1 \land \neg \varphi_2\}$

subpatterns, e.g., $X' = \{ \neg \varphi_1 \land \varphi_2, \neg \varphi_1 \land \neg \varphi_2 \} \subset X_\phi$

Parametric Phase Portrait

- parameter space \mathcal{P}
- $\mathcal{P}(\varphi) \subseteq \mathcal{P}$ all parameters for which there is a state satisfying φ
- stratum: $\Gamma_{X_{\phi}} = \bigcap_{\varphi \in X_{\phi}} \mathcal{P}(\varphi), \ \Gamma_{X'} = \bigcap_{\varphi \in X'} \mathcal{P}(\varphi), \ \dots$
- $p \in \mathcal{P}$ is a bifurcation point if it is a boundary point of some stratum

Problem Definition

Assume \mathcal{P} is a finite partially ordered domain representing the *m*-dimensional **parameter space**. Given a *parameterised model* \mathcal{M} and a *phase portrait specification* ϕ , **compute the parametric portrait** of \mathcal{M} wrt ϕ and **identify all bifurcation points** in \mathcal{P} wrt \mathcal{M} and ϕ .

Motivation

Parameter Synthesis by Coloured Model Checking
 Case Study using Parameter Synthesis

3 Discrete Bifurcation Analysis

• Case Study using Discrete Bifurcation Analysis

Case Study: Regulation of G_1/S Cell Cycle Transition

Analysed phase portrait pattern:

• $\varphi_1 := \exists s. \exists t. (@s. AG EF s) \land (@t. \neg EF s \land AG EF t) \land E_{\neg N}F s \land E_{\neg S}F t$

•
$$\varphi_2 := \neg \varphi_1 \land \downarrow s$$
. **AG EF** $s \land E2F1 < 4$

• $\varphi_3 := \neg \varphi_1 \land \downarrow s$. AG EF $s \land E2F1 > 4$

LSV Seminar, Cachan, 24.1.2017

INPUT: phase portrait specification $\{\varphi_1, \varphi_2, \varphi_3\}$ ODE model

- **(**) approximate the ODE model by a piece-wise multi-affine model
- ${\it @}\,$ construct ${\cal M}$ by discretisation of the approximate model
- In the second second

OUTPUT: parametric phase portrait bifurcation points

Case Study: Results

results agree with numerical methods up-to precision of approximation/discretisation

Coming Soon

- exploiting dynamical systems under parameter uncertainty by model checking
- scalability achieved for number of parameters
- remaining challenges:
 - approximation: explore errors, what can be guaranteed?
 - abstraction: narrow the extent of overapproximation can Darboux polynomials or barrier certificates help?
 - improve scalability w.r.t. systems dimensionality
 - is it possible to combine model checking with simulation? [TCSB XIV, 2012]

• specific for deterministic models:

• STL* – value-freezing logic, monitoring, parameter exploration and robustness analysis

L. Brim, P. Dluhoš, D. Šafránek, T. Vejpustek. STL*: Extending signal temporal logic with signal-value freezing operator. Information and Computation, Volume 236, pp. 52-67, 2014

• specific for stochastic models:

• parametric uniformisation for CTMC and CSL

L Brim, M Ceska, S Drazan, and D.Safranek. Exploring parameter space of stochastic biochemical systems using quantitative model checking. In CAV 2013. Lecture Notes in Computer Science, Volume 8044, 2013, pp 107-123.

M. Ceska, D. Safranek, S. Drazan, L. Brim: Robustness Analysis of Stochastic Biochemical Systems, (2014) Robustness Analysis of Stochastic Biochemical Systems. PLoS ONE 9(4): e94553.

- universally applicable methods:
 - formal language for biochemical space [SASB 2014, 2015]
 - parameter synthesis by coloured model checking

 \rightarrow applied to boolean networks [CMSB 2012, 2013]

 \rightarrow applied to qualitative abstractions of ODE models [HSB 2015, CMSB 2015, this talk]