PA164 Natural Language Learning Lecture 04: Deep neural networks for NLP

Vít Nováček

Faculty of Informatics, Masaryk University

Autumn, 2023

MUNI

(Vít	N I		• •
	INOV	/ace	κı

Outline

Neural networks primer

- 2 The classic deep learning architectures
- 3 Architectures used in NLP
 - 4 Useful References
- 5 Sample Papers for Posters and Projects

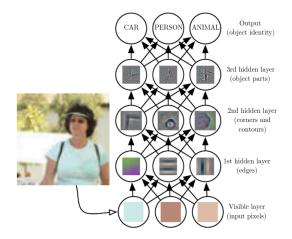
I ∃ →

History of neural networks

- Key motivating factors
 - The drawbacks of logics-based approach to AI
 - * Reliance on formal knowledge bases and rigid rules
 - ★ Lots of manual work necessary
 - * Some relevant problems can hardly ever be formalised
 - Drawing inspiration from nature
 - * Machines acquiring their own knowledge
 - * Extracting patterns from raw data
 - * Learning not only patterns but the very features describing the data
 - * Making use of neural architectures inspired by the human brain
- Selection of historical milestones
 - Single neural computation units: 1940s-1950s
 - Stochastic gradient descent for linear models: 1960s
 - Back-propagation: 1980s
 - Sequence modelling: 1990s
 - Deep learning boom: from 2010s on

・ 同 ト ・ ヨ ト ・ ヨ ト

The gist of DL: stacked representation learning



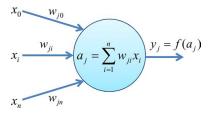
¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Chap. 1)

э

4 / 35

イロト 不得 トイヨト イヨト

Basic notions: perceptron



• Perceptron as a linear binary classifier:

$$\flat y_j = f(a_j) = f(\mathbf{w} \cdot \mathbf{x}) = 1 \text{ if } \mathbf{w} \cdot \mathbf{x} > 0$$

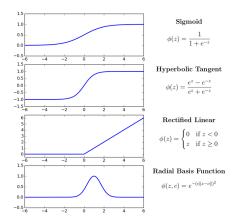
- otherwise $y_j = 0$
- Learning process:
 - Init the w vector to random values
 - In each learning "epoch", randomly select one training example x
 - ★ If the example x is positive and $\mathbf{w} \cdot \mathbf{x} < \mathbf{0}$, then $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}$
 - ★ If the example **x** is negative and $\mathbf{w} \cdot \mathbf{x} > 0$, then $\mathbf{w} \leftarrow \mathbf{w} \mathbf{x}$
 - Repeat until (approximate) convergence

² Coop, Robert Austin. "Mitigation of Catastrophic Interference in Neural Networks and Ensembles using a Fixed Expansion

Layer." (2013).

Basic notions: activation functions

• Alternatives of the f function from the perceptron example

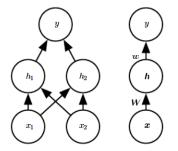


³ Hughes, Dana, and Nikolaus Correll. "Distributed machine learning in materials that couple sensing, actuation, computation and communication." arXiv preprint arXiv:1606.03508 (2016).

lováček

< □ > < □ > < □ > < □ > < □ > < □ >

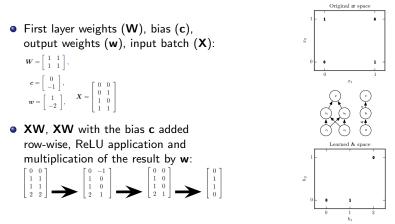
Basic notions: multi-layer perceptron



¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Chap. 6)

< (17) × <

Basic notions: why are activation functions essential (the XOR example)



¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 6.1)

Basic notions: output units

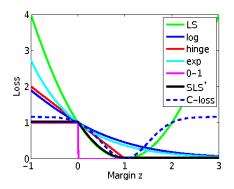
- Quite like activation functions of the hidden units
- They have a special purpose, though:
 - First, they produce a model output ŷ (usually a vector or a scalar, depending on the problem and the objective/loss function of choice)
 - The ŷ value is then compared with the corresponding desired output y (i.e., label of the training example x) via the loss function
 - The resulting error is back-propagated to update the model parameters
- Examples of often-used output units
 - Linear (simple final transformation): $\hat{\mathbf{y}} = \mathbf{W}^{\top} \mathbf{h} + \mathbf{b}$
 - ▶ Sigmoid (binary classification): First, use a linear layer to compute $z = \mathbf{w}^{\top}\mathbf{h} + b$, then convert z to a probability as $\hat{y} = \frac{1}{1-e^{-z}}$
 - ▶ Softmax (multiclass problems): First, a linear layer predicts unnormalised log probabilities $\mathbf{z} = \mathbf{W}^{\top}\mathbf{h} + \mathbf{b}$, where $z_i = \log \tilde{P}(y = i|\mathbf{x})$, which is then normalised to obtain the desired $\hat{\mathbf{y}}$ probabilities as $\operatorname{softmax}(\mathbf{z})_i = \frac{e^{z_i}}{\sum_i e^{z_j}}$

¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 6.2)

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Basic notions: loss/objective functions

• Examples of loss functions:

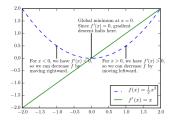


In deep learning, the cross-entropy loss is often used
Compares whole produced and desired distributions

⁴ Xu, Guibiao, Bao-Gang Hu, and Jose C. Principe. "An asymmetric stagewise least square loss function for imbalanced classification." 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014.

Basic notions: gradient-based learning

- The goal: minimise an objective (i.e., loss) function f with multiple inputs (i.e., find such vector **x** that $f(\mathbf{x})$ is the lowest possible number)
- The solution:
 - Pick a random x value
 - Find the direction from **x** in which *f* decreases the fastest
 - In other words, move to a new point $\mathbf{x}' = \mathbf{x} \epsilon \nabla_{\mathbf{x}} f(\mathbf{x})$, where:
 - ***** ϵ is the learning rate,
 - * $\nabla_{\mathbf{x}} f(\mathbf{x})$ is the vector of all partial derivatives $\frac{\delta}{\delta x_i} f(\mathbf{x})$ (i.e., the gradient)
- A simple example for a function of one variable $(\frac{1}{2}x^2)$:



1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 4.3) = 🛌 🛓 = 🖕

Basic notions: the gist of back-propagation

- An efficient method for computing the gradient in practice
- A differentiable loss function computes the error, i.e., the difference between the actual and the desired output y of the network based on the input vector **x**
- The error is then back-propagated through the network by means of the chain rule of calculus, as in the following simple example:

$$\begin{array}{c} \bullet & \frac{\delta z}{\delta w} = \\ \bullet & \frac{\delta z}{\delta y} \frac{\delta y}{\delta x} \frac{\delta x}{\delta w} = \\ \bullet & = f'(y)f'(x)f'(w) = \\ \bullet & = f'(f(f(w)))f'(f(w))f'(w) \end{array}$$

¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 6.5)

lováček

Outline

Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

5 Sample Papers for Posters and Projects

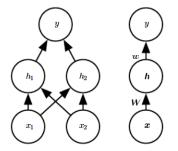
	váče	

4 E b

∃ >

< 4³ ► <

Feedforward neural networks: synonym for MLPs



¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Chap. 6)

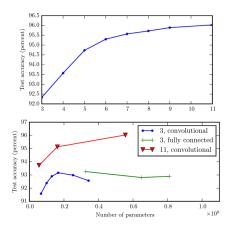
(Vít Nováč	

< (T) >

Feedforward neural networks: practical considerations

- Universal approximation
 - A feedforward network with a linear output layer and at least one hidden layer with any "squashing" activation (such as logistic sigmoid)...
 - ... can approximate virtually any practical function with any desired non-zero amount of error...
 - ... given enough hidden units.
- That doesn't necessarily mean the network can also efficiently learn the function, though
- In practice, depth often wins over breadth

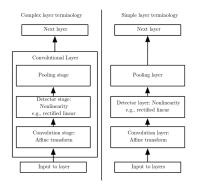
• Depth vs. number of parameters



< □ > < □ > < □ > < □ > < □ > < □ >

¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec 6.4)

Convolutional neural networks

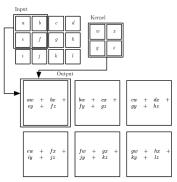


- Great for grid-like input (e.g., image tensors)
- Replacing (some) expensive matrix multiplications by convolutions
 - Affine linear transformation of the input via a much smaller kernel
- Non-linear "detection" stage on top of the linear convolution
- Pooling (e.g., maximum value within a rectangular region) then makes the representation approximately invariant to translations in the input

 1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 9.3) 😑 🥫 🚎

Convolution examples

• Sample kernel and its application



• Subtraction of neighbouring pixels for edge detection

< A > <

¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 9.2)

Outline

Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

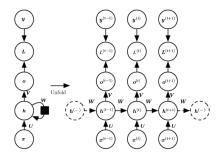
5 Sample Papers for Posters and Projects

(Vít	

- 4 回 ト 4 ヨ ト 4 ヨ ト

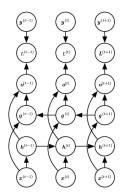
Recurrent neural networks

- Motivated by the need for sequence modelling (e.g., in NLP)
- Generalising the computational graphs for NN representation
 - Loops to represent influence of node values on their future values
 - Unfolding of the computational graph into a sequence of steps (corresponding to minibatches in which RNNs typically process inputs)
 - The information flow in such networks allows to learn patterns of relationships between sequence elements (very useful in NLP)



Bidirectional RNNs

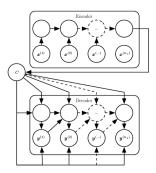
- Generalisation of recurrent neural networks that lets the information flow in both directions
- Allows for learning more complex relationships (both past and future influences between sequence elements)



1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 10.3) 🖕 🛓 🍵 🚊 🧠

Encoder-decoder models

- Sequence-to-sequence mapping, for instance in machine translation
 - One model (usually a RNN, sometimes also a CNN) converts the input sequence to an intermediate semantic representation (a context summary)
 - Another model (typically another RNN) then converts the semantic representation to an output sequence



1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 10.4) 🕫 💦 🧃 👘 🚊 🔊

The challenge of long-term dependencies

- Major practical limitation of RNNs
- Gradients propagated over long sequences tend to vanish (or, less often, explode):
 - Consider recurrence relation modelled as $\mathbf{h}^{(t)} = \mathbf{W}^{\top} \mathbf{h}^{(t-1)}$
 - This can be simplified to $\mathbf{h}^{(t)} = (\mathbf{W}^t)^\top \mathbf{h}^{(0)}$
 - If W can be eigen-decomposed to Q∧Q[⊤], then the recurrence can be further simplified to h^(t) = Q[⊤]∧^tQh⁽⁰⁾
- In the scalar case of weight w, this is analogous to vanishing/exploding w^t , depending on whether w < 1 or w > 1, respectively

¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 10.7)

Coping with the long-term dependencies

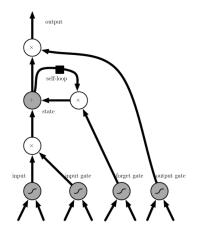
- Multiple time-scale models
 - Adding skip connections across multiple time steps to allow for more coarse-grained flow of information
 - Adding linear self-connections to nodes on critical paths and keeping the corresponding weights close to one (so called leaky units)
 - Removing fine-grained time connections

• Gated RNN architectures

- Similar to the leaky units idea
- Creating paths through time where gradients don't vanish/explode
- Two key innovations, though:
 - ★ The "safe" weights are not manually set but learned like any other parameter
 - ★ Information is not only accumulated, but also forgotten (i.e., set to zero) when not needed anymore
- Achieved by self-loops producing long gradient flow paths
- The self-loops conditioned based on context gating (weight controlled by another hidden unit)

¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 10.10)

The long short-term memory (LSTM) gated model schema



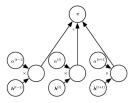
¹ Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 10.10)

	váček

< □ > < /□ >

Attention mechanism

- Originally proposed to improve performance of encoder-decoder architectures in machine translation (2015-2017)
- Became a basis of virtually every neural model for NLP since then, though
- The gist of the approach:

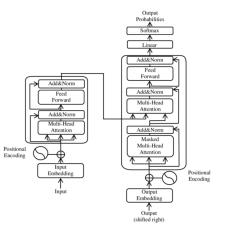


- The α weights produce a weighted average of the hidden feature vectors, forming the context representation of the input c
- The attention weights are usually computed as a softmax of relevance scores produced by a different portion of the model
- The mechanism can dynamically highlight portions of the sequence relevant for producing desired output
- This can often work better than arbitrarily complex RNN or CNN architecture

1 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016. (Sec. 12.4.5.1)

Transformers

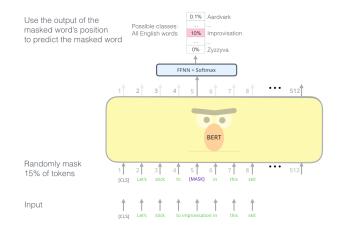
- The state-of-the-art neural NLP models of today
- Encoder-decoder overall design (decoder-only possible as well)
- Example of a transformer architecture schema:



⁵ Original image (DOI:10.1088/1742-6596/1314/1/012186) created by Yuening Jia, available under the CC BY=SA 3.0 license of the second second

(Vít Nováček)	PA164	Autumn, 2023	26 / 35
---------------	-------	--------------	---------

Modern language models: the gist



⁶ Jay Alammar. "The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning)."

http://jalammar.github.io/ blog (2018-2021).

(Vít Nováček

Autumn, 2023 27 / 35

< □ > < □ > < □ > < □ > < □ > < □ >

Selected language models

- BERT
 - A Google model based on the original attention-enabled encoder-decoder paper
 - Widely used and "forked" (many bespoke variants of pretrained BERT)
- GPT*
 - A series of large OpenAl models
- BLOOM
 - A large and free model initiated by a co-founder of Hugging Face
- OPT, LLaMA, LLaMA 2
 - Large, open language models released by Meta AI to the scientific community
- DALL-E and CLIP
 - Multimodal OpenAI models for creating images from prompts, and vice versa
- Hugging Face a company and a portal making many SoA language models available to the public

3

Outline

Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

5 Sample Papers for Posters and Projects

(日) (四) (日) (日) (日)

Further readings on deep learning in general

• Deep learning overview

- Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016.
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444.
- Selected historical works
 - Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and organization in the brain." Psychological review 65.6 (1958): 386.
 - Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning representations by back-propagating errors." nature 323.6088 (1986): 533-536.

Further readings on specific architectures

- The classical architectures
 - LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural computation 1.4 (1989): 541-551.
 - Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010.
 - Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Communications of the ACM 60.6 (2017): 84-90.
- The modern architectures
 - Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
 - Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
 - Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

Further readings on language models

- Textual models
 - Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).
 - Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).
 - Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
 - Petroni, Fabio, et al. "Language Models as Knowledge Bases?." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
- Multimodal models
 - Kiros, Ryan, Ruslan Salakhutdinov, and Rich Zemel. "Multimodal neural language models." International conference on machine learning. PMLR, 2014.
 - Kiros, Ryan, Ruslan Salakhutdinov, and Richard S. Zemel. "Unifying visual-semantic embeddings with multimodal neural language models." arXiv preprint arXiv:1411.2539 (2014).

Outline

Neural networks primer

2 The classic deep learning architectures

3 Architectures used in NLP

4 Useful References

5 Sample Papers for Posters and Projects

- 4 回 ト - 4 三 ト

Examples of Deep Learning Approaches

- Bengio, Yoshua, Réjean Ducharme, and Pascal Vincent. "A neural probabilistic language model." Advances in neural information processing systems 13 (2000).
 - One of the first neural language models
- Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems 26 (2013).
 - The second "word2vec paper" with sufficient details on the optimisations
- Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." Advances in neural information processing systems 27 (2014).
 - Machine translation using LSTMs
- Socher, Richard, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." Proceedings of the 2013 conference on empirical methods in natural language processing. 2013.
 - An interesting use of the recursive networks for "deep compositionality" in sentiment analysis

(Vít Nováček)

PA164

Examples of "Traditional" Learning Approaches

- Ritter, Alan, Sam Clark, and Oren Etzioni. "Named entity recognition in tweets: an experimental study." Proceedings of the 2011 conference on empirical methods in natural language processing. 2011.
 - ► A whole NLP pipeline for mining tweets via lots of ML techniques available in libraries like *scikit-learn*
- Drucker, Harris, Donghui Wu, and Vladimir N. Vapnik. "Support vector machines for spam categorization." IEEE Transactions on Neural networks 10.5 (1999): 1048-1054.
 - A landmark paper on spam categorisation using SVM

イヨト イモト イモト