PA170 Digital Geometry Lecture 01 – Introduction + Grids and Adjacency

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

INTRODUCTION

About PA170

- Lectures (Monday 14:00-15:40, B204)
 - Introduction of the basic terms and necessary theory
- Exercises (Monday 16:00-16:50, B204)
 - Deeper understanding and application of the introduced terms and theory in practice
- Homeworks
 - Irregular and voluntary, assigned at exercises
 - Awarded by extra points (up to 10 points)
- Examination (one term before Christmas, other terms in January 2024)
 - Written (mandatory) and oral (voluntary) parts (up to 100 points)
 - Grading scheme
 - A: at least 91 points
 - B: 90-81 points
 - C: 80-71 points
 - D: 70-61 points
 - E: 60-51 points
 - F: less than 51 points
- Recommended literature
 - R. Klette & A. Rosenfeld, *Digital Geometry: Geometric Methods for Digital Picture Analysis*, Elsevier 2004 (V238 in the library at FI MU)

Digital Geometry in a Nutshell

- It emerged in the second half of the 20th century
- Its mathematical roots are in graph theory and discrete topology
- It focuses on geometric or topologic properties of discrete sets
- It often attempts to obtain quantitative information about objects by analyzing digitized image data in which the objects are represented by such sets

Digital Images

Digital images are obtained by digitizing continuous functions

 256×256 pixels

Sampling (domain discretization)

Quantization

(co-domain discretization) 32 levels 2 levels 256 levels 8 levels

 64×64 pixels

• A digital image I is a discrete function, defined on a finite, regular, orthogonal grid G, which assigns a value I(p) from a finite set of values \mathbb{V} to each image element $p \in \mathbb{G}$

 128×128 pixels

 32×32 pixels

Binary Images ($\mathbb{V} = \{0, 1\}$)

- The image elements with the assigned values of 1 are black and form foreground $\langle I \rangle$
- The image elements with the assigned values of 0 are white and form background $\overline{\langle I \rangle}$

Grayscale Images ($\mathbb{V} = \{0, \dots, G_{max}\}$)

- $\bullet\,$ The elements of $\mathbb V$ are called intensities
- The image elements with higher intensities correspond to lighter gray levels
- The image elements with zero intensity are black and form background

Floating-Point Images (e.g., Euclidean distance maps)

Color Images (e.g., RGB or HSV)

Multi-Channel Images (e.g., microscopy or satellite images)

Tensor Images (e.g., DT-MRI)

GRIDS AND ADJACENCY

Elements of a Grid

- \bullet A grid point is an element of \mathbb{Z}^2 or \mathbb{Z}^3
- A grid vertex (0-cell) is shifted by 0.5 in each direction from a grid point
- A grid edge (1-cell) joins two grid vertices at Euclidean distance of 1 from each other
- A grid square (2-cell) is defined by four grid edges that form a square
- A grid cube (3-cell) is defined by six grid squares that form a cube in 3D

Elements of a Grid

- \bullet A grid point is an element of \mathbb{Z}^2 or \mathbb{Z}^3
- A grid vertex (0-cell) is shifted by 0.5 in each direction from a grid point
- A grid edge (1-cell) joins two grid vertices at Euclidean distance of 1 from each other
- A grid square (2-cell) is defined by four grid edges that form a square
- A grid cube (3-cell) is defined by six grid squares that form a cube in 3D

Pixel (2D grids) = 2D grid point or 2-cell Voxel (3D grids) = 3D grid point or 3-cell

- Two 2-cells c₁ and c₂ are called α-adjacent iff c₁ ≠ c₂ and their intersection contains an α-cell (α ∈ {0, 1})
- Two 2D grid points p_1 and p_2 are called
 - 4-adjacent iff $\|p_2 p_1\|_1 = 1$
 - 8-adjacent iff $||p_2 p_1||_{\infty} = 1$
- The grid G_{m,n} defined by m×n 2-cells and A₀ or A₁ relation is isomorphic to the grid defined by m×n 2D grid points and A₈ or A₄ relation, respectively

- Two 3-cells c₁ and c₂ are called α-adjacent iff c₁ ≠ c₂ and their intersection contains an α-cell (α ∈ {0, 1, 2})
- Two 3D grid points p_1 and p_2 are called
 - 6-adjacent iff $0 < \|p_2 p_1\|_2 \le 1$
 - 18-adjacent iff $0 < \|p_2 p_1\|_2 \le \sqrt{2}$
 - 26-adjacent iff $0 < \|p_2 p_1\|_2 \le \sqrt{3}$
- The grid G_{I,m,n} defined by *I*×*m*×*n* 3-cells and *A*₂, *A*₁, or *A*₀ relation is isomorphic to the grid defined by *I*×*m*×*n* 3D grid points and *A*₆, *A*₁₈, or *A*₂₆ relation, respectively

- Let A be a symmetric and irreflexive adjacency relation on a set S
- $A(p) = \{q : q \in S \land qAp\}$ is called the adjacency set of $p \in S$
- N(p) = A(p) ∪ {p} is called the (smallest nontrivial) neighborhood of p ∈ S defined by the adjacency relation A
- N defines a symmetric and reflexive relation on S

Connectedness, Paths, and Components

- The reflexive and transitive closure of an adjacency relation on a set *S* defines a connectedness relation on *S*
- A path that joins $p \in S$ and $q \in S$ is a sequence p_0, \ldots, p_n of elements in S such that $p_0 = p$, $p_n = q$, and p_i is adjacent to p_{i-1} ($1 \le i \le n$)
- A set $M \subseteq S$ is called connected iff all $p, q \in M$ are joined by a path in M
- Maximal connected subsets of S are called (connected) components of S

Examples of two 4-paths and one 8-path

Connectedness, Paths, and Components

- The reflexive and transitive closure of an adjacency relation on a set *S* defines a connectedness relation on *S*
- A path that joins $p \in S$ and $q \in S$ is a sequence p_0, \ldots, p_n of elements in S such that $p_0 = p$, $p_n = q$, and p_i is adjacent to p_{i-1} ($1 \le i \le n$)
- A set $M \subseteq S$ is called connected iff all $p, q \in M$ are joined by a path in M
- Maximal connected subsets of S are called (connected) components of S

Examples of two 4-paths and one 8-path

What is the number of 4-connected and 8-connected components?

Adjacency on Images

- The number of image elements α-adjacent to an image element is (almost) always constant over the whole grid
- That number can vary for adjacency relations defined on images because not only locations but also values of image elements are taken into consideration

(I, α) -Adjacency

- Two image elements p and q of an image I are called I-equivalent iff I(p) = I(q)
- Two image elements *p* and *q* of an image *l* are called (*l*, *α*)-adjacent iff they are *l*-equivalent and *α*-adjacent
- (*I*, α)-adjacency may lead to crossing difficulties (topological conflicts)

Connected components for (I, 8)-adjacency or (I, 0)-adjacency

- "Uncertainties" in image values can be modeled by a similarity relation σ on \mathbb{V} , which is reflexive and symmetric
- Two image elements p and q of an image l are called (σ, α) -adjacent iff $pA_{\alpha}q$ and $l(p)\sigma l(q)$
- (σ, α) -adjacency generalizes (I, α) -adjacency and may lead to crossing difficulties

Connected components for (σ , 8)-adjacency or (σ , 0)-adjacency ($p\sigma q \Leftrightarrow |I(p) - I(q)| \leq 2$)

(α_1, α_2) -Adjacency

- (α_1, α_2) -adjacency avoids topological conflicts in binary images
- It considers (I, α_1) -adjacency for foreground and (I, α_2) -adjacency for background
- $\bullet\,$ Commonly used, topologically compatible $\alpha\text{-adjacency pairs:}\,$
 - A_8 and A_4 (or A_0 and A_1) in 2D
 - A_{26} and A_6 (or A_0 and A_2), and A_{18} and A_6 (or A_1 and A_2) in 3D

Switch Adjacency (A_s , *s*-Adjacency)

- Switch adjacency avoids topological conflicts in 2D images
- A relation A_s on a set of 2D grid points is called switch adjacency iff it contains 4-adjacency (i.e., A_s ⊇ A₄) and exactly one of the two diagonally adjacent pixels in each 2×2 block of pixels:

• The states of the switches can be driven by locations and/or pixel values

Regular switching

Regular switching

- Two sets are called incident iff one of them contains the other (i.e., any set is incident with itself)
- A 3D grid vertex (0-cell) is incident with six grid edges (1-cells); a grid square (2-cell) is incident with four grid edges; and a grid cube (3-cell) is incident with 12 grid edges
- The incidence relation between all the cells defines grid cell incidence model (incidence grid)

Paths in Incidence Grids

• A subset *M* of an incidence grid is called complete iff, for any cell *c* such that all cells incident with *c* and of higher dimensions than *c* are in *M*, we also have $c \in M$

Add the minimum number of cells to make the given subset of an incidence grid complete

A subset *M* of an incidence grid is called complete iff, for any cell *c* such that all cells incident with *c* and of higher dimensions than *c* are in *M*, we also have *c* ∈ *M*

Add the minimum number of cells to make the given subset of an incidence grid complete

Summary: Commonly Used Models in Digital Geometry

