PA170 Digital Geometry Lecture 02: Digitization

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Motivation: Transformation of a Continuous Set to a Discrete Set

Digital Geometric Figures

• A connected set of grid points is called a digital geometric figure (e.g., digital line, digital square, digital disk, or digital sphere), if there exists a (continuous) geometric figure of the same kind, which has that set as its digitization

Example: Convergence of Estimators

- A real disk *D* of unit diameter has the area $\mathcal{A}(D) = \frac{\pi}{4}$ and the perimeter $\mathcal{P}(D) = \pi$
- The area of a digitized disk converges toward the area of the real disk with an increasing grid resolution *h*:

$$\lim_{h\to\infty}\mathcal{A}(\textit{dig}_h(D))=\mathcal{A}(D)=\frac{\pi}{4}$$

• The perimeter of a digitized disk does not converge toward the perimeter of the real disk:

 $\lim_{h\to\infty}\mathcal{P}(\textit{dig}_h(D))=4$

DIGITIZATION MODELS

Gauss Digitization

- Gauss studied the measurement of the area of a planar set S ⊂ ℝ² by counting the grid points (*i*, *j*) ∈ ℤ² contained in S
- The Gauss digitization $G_h(S)$ of a planar set S on a 2D grid of resolution h is the union of the grid squares (2-cells) with center points in S

d = 1 grid unit

d = 5 grid units

d = 17 grid units

 8×8 grid squares

 16×16 grid squares

 32×32 grid squares

沅

512×512 grid squares

Gauss Digitization: Properties

- The Gauss digitization G_h(S) of any nonempty bounded set S ⊂ ℝ² is the union of a finite number of simple isothetic polygons
- Different sets can have identical Gauss digitizations
- The same sets after a rigid transformation can have different Gauss digitizations

- \bullet Originally defined for 3D grids only as Jordan used such grids to estimate the volumes of subsets of \mathbb{R}^3
- The inner Jordan digitization $J_h^-(S)$ of a planar set S on a 2D grid of resolution h is the union of the grid squares (2-cells) that are completely contained in S
- The outer Jordan digitization $J_h^+(S)$ of a planar set *S* on a 2D grid of resolution *h* is the union of the grid squares (2-cells) that have nonempty intersection with *S*

Inner (gray 2-cells) and outer (gray and green 2-cells) Jordan digitizations of a centered disk

Jordan Digitization: Examples

Jordan Digitization: Properties

- The inner and outer Jordan digitizations J[−]_h(S) and J⁺_h(S) of any nonempty bounded set S ⊂ ℝ² are the unions of finite numbers of simple isothetic polygons
- The outer Jordan digitization $J_h^+(S)$ of a connected set S is always a single connected isothetic polygon or polyhedron. However, it does not preserve simple connectedness because it can create holes

Relationships between Gauss and Jordan Digitizations

- Both digitization models are broadly used to digitize 2D and 3D sets
- They produce the same digitizations for:
 - Empty set: $J_h^-(\emptyset) = G_h(\emptyset) = J_h^+(\emptyset) = \emptyset$
 - Euclidean *n*-space \mathbb{R}^n $(n \in \{2,3\})$: $J_h^-(\mathbb{R}^n) = G_h(\mathbb{R}^n) = J_h^+(\mathbb{R}^n) = \mathbb{R}^n$
 - Finite unions of *n*-cells in *n*D ($n \in \{2,3\}$)

• The obtained digitizations are ordered by inclusion:

$$J_h^-(S)\subseteq G_h(S)\subseteq J_h^+(S)$$
 for any $S\subseteq \mathbb{R}^2$ $(S\subseteq \mathbb{R}^3)$

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization R(γ) of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization R(γ) of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization R(γ) of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to R(γ) or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization R(γ) of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to R(γ) or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization R(γ) of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to R(γ) or one of them is chosen based on a predefined rule

Digitized Grid=Intersection Sequence

- An ordered sequence of grid points in R(γ) is called a digitized grid-intersection sequence ρ(γ) of γ
- Such a sequence can be represented by a chain code
- Remark: Chain codes can also represent object borders (typically obtained by a border tracing algorithm)

P776770770070101232334444457700002220007654467000

DOMAIN DIGITIZATIONS

Preliminaries

• We want to define a framework for a general class of digitization models in nD

• Let
$$\Pi_{cube} = \left\{ (x_1, \dots, x_n) : \max_{1 \le i \le n} |x_i| \le \frac{1}{2} \right\}$$
 be a *n*-cell centered at $o = (0, \dots, 0)$:

Let Ø ≠ Π_σ ⊆ Π_{cube}, and consider its translates Π_σ(q) = {q + p : p ∈ Π_σ} centered at grid points q ∈ Zⁿ as the domains of influence:

• Obviously, $\Pi_{cube}(q)$ is the *n*-cell c_q centered at q

The inner σ-digitization dig_σ⁻(S) of a set S ⊆ ℝⁿ is the union of all c_q such that Π_σ(q) is contained in S:

 $\mathit{c}_q \subseteq \mathit{dig}^-_\sigma(\mathcal{S})$ iff ${\sf \Pi}_\sigma(q) \subseteq \mathcal{S}$

The outer σ-digitization dig⁺_σ(S) of a set S ⊆ ℝⁿ is the union of all c_q such that Π_σ(q) intersects S:

 $\mathit{c}_{\mathit{q}} \subseteq \mathit{dig}_{\sigma}^+(\mathcal{S}) ext{ iff } \mathsf{\Pi}_{\sigma}(\mathit{q}) \cap \mathcal{S}
eq \emptyset$

f
$$\Pi_{\sigma} = \Pi_{cube}, \ dig_{cube}^{-} = J^{-}$$
 (inner Jordan digitization) and $dig_{cube}^{+} = J^{+}$ (outer Jordan digitization)

f
$$\Pi_{\sigma} = \{o\}, dig_{\sigma}^+ = dig_{\sigma}^- = G$$
 (Gauss digitization)

(

$$\begin{array}{l} \mbox{f} \ \Pi_{\sigma} = \{(x_1, \ldots, x_n) : \exists i. (1 \leq i \leq n \land x_i = 0) \land \max_{1 \leq i \leq n} |x_i| \leq \frac{1}{2})\}, \\ \mbox{dig}_{\sigma}^+ = R \ (\mbox{grid-intersection digitization}) \end{array}$$

DIGITIZATION OF STRAIGHT LINES

Bresenham's Algorithm for Line Digitization

• A standard routine in computer graphics, which builds on top of the grid-intersection digitization model

Check out a demo at http://bert.stuy.edu/pbrooks/graphics/demos/BresenhamDemo.htm

Bresenham's Algorithm (First Octant, Nonnegative Slope)

Task: Draw a digital line with a nonnegative slope between two points, (x_s, y_s) and (x_e, y_e) , in the first octant

Pseudocode of the algorithm

```
Initialize constants: dx = x_e - x_s, dy = y_e - y_s, b0 = 2 * dy, b1 = 2 * (dy - dx)
```

2 Initialize variables: $x = x_s$, $y = y_s$, err = 2 * dy - dx

```
③ while x ≤ X<sub>e</sub>
Draw (x, y) as a digital line element
x = x + 1
if err < 0
err = err + b0
else
y = y + 1
err = err + b1
```

Complexity: The algorithm runs in $O(x_e - x_s)$ and involves basic assignment, arithmetic, and conditional operations only

- Digital geometric figures (shapes) are sets of grid points obtained by digitizing their continuous counterparts
- 1D sets (curves) are digitized using the grid-intersection digitization model
- 2D and 3D sets are digitized using the Gauss or Jordan digitization models
- Domain digitization defines a general digitization model
- The Bresenham algorithm digitizes lines using the grid-intersection digitization model