PA170 Digital Geometry Lecture 02: Digitization

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Motivation: Transformation of a Continuous Set to a Discrete Set

Digital Geometric Figures

• A connected set of grid points is called a digital geometric figure (e.g., digital line, digital square, digital disk, or digital sphere), if there exists a (continuous) geometric figure of the same kind, which has that set as its digitization

Example: Convergence of Estimators

- A real disk D of unit diameter has the area $\mathcal{A}(D)=\frac{\pi}{4}$ and the perimeter $\mathcal{P}(D)=\pi$
- The area of a digitized disk converges toward the area of the real disk with an increasing grid resolution *h*:

$$
\lim_{h\to\infty} \mathcal{A}(dig_h(D)) = \mathcal{A}(D) = \frac{\pi}{4}
$$

• The perimeter of a digitized disk does not converge toward the perimeter of the real disk:

lim *h*→∞ P(*digh*(*D*)) = 4

DIGITIZATION MODELS

Gauss Digitization

- Gauss studied the measurement of the area of a planar set $\mathcal{S}\subset\mathbb{R}^2$ by counting the grid points $(i,j) \in \mathbb{Z}^2$ contained in S
- The Gauss digitization *Gh*(*S*) of a planar set *S* on a 2D grid of resolution *h* is the union of the grid squares (2-cells) with center points in *S*

8×8 grid squares 16×16 grid squares 32×32 grid squares 512×512 grid squares

Gauss Digitization: Properties

- The Gauss digitization $G_h(S)$ of any nonempty bounded set $S \subset \mathbb{R}^2$ is the union of a finite number of simple isothetic polygons
- Different sets can have identical Gauss digitizations
- The same sets after a rigid transformation can have different Gauss digitizations

- Originally defined for 3D grids only as Jordan used such grids to estimate the volumes of subsets of \mathbb{R}^3
- The inner Jordan digitization *J* − *h* (*S*) of a planar set *S* on a 2D grid of resolution *h* is the union of the grid squares (2-cells) that are completely contained in *S*
- The outer Jordan digitization J_h^+ *h* (*S*) of a planar set *S* on a 2D grid of resolution *h* is the union of the grid squares (2-cells) that have nonempty intersection with *S*

Inner (gray 2-cells) and outer (gray and green 2-cells) Jordan digitizations of a centered disk

Jordan Digitization: Examples

Jordan Digitization: Properties

- The inner and outer Jordan digitizations $J_h^-(S)$ and $J_h^+(S)$ of any nonempty bounded $h \in S \subset \mathbb{R}^2$ are the unions of finite numbers of simple isothetic polygons
- The outer Jordan digitization J_h^+ *h* (*S*) of a connected set *S* is always a single connected isothetic polygon or polyhedron. However, it does not preserve simple connectedness because it can create holes

Relationships between Gauss and Jordan Digitizations

- Both digitization models are broadly used to digitize 2D and 3D sets
- They produce the same digitizations for:
	- Empty set: $J_h^-(\emptyset) = G_h(\emptyset) = J_h^+(\emptyset) = \emptyset$
	- Euclidean *n*-space \mathbb{R}^n $(n \in \{2, 3\})$: $J_n(\mathbb{R}^n) = G_n(\mathbb{R}^n) = J_n^+(\mathbb{R}^n) = \mathbb{R}^n$
	- Finite unions of *n*-cells in *n*D ($n \in \{2, 3\}$)

The obtained digitizations are ordered by inclusion:

$$
J_h^-(S) \subseteq G_h(S) \subseteq J_h^+(S) \text{ for any } S \subseteq \mathbb{R}^2 \text{ } (S \subseteq \mathbb{R}^3)
$$

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization $R(\gamma)$ of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization $R(\gamma)$ of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization $R(\gamma)$ of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization $R(\gamma)$ of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

- Neither Gauss nor inner Jordan digitization is appropriate for the digitization of 1D sets (curves). Outer Jordan digitization is appropriate but grid-intersection digitization is the preferred choice for curves
- The grid-intersection digitization $R(\gamma)$ of a planar curve γ is the set of all grid points with closest Euclidean distances to the intersection points of γ with the grid lines
- In case an intersection point is of the same distance from two grid points, either both grid points are added to $R(\gamma)$ or one of them is chosen based on a predefined rule

Digitized Grid=Intersection Sequence

- An ordered sequence of grid points in $R(\gamma)$ is called a digitized grid-intersection sequence $\rho(\gamma)$ of γ
- Such a sequence can be represented by a chain code
- Remark: Chain codes can also represent object borders (typically obtained by a border tracing algorithm)

P776770770070101232334444457700002220007654467000

DOMAIN DIGITIZATIONS

Preliminaries

We want to define a framework for a general class of digitization models in *n*D

• Let
$$
\Pi_{cube} = \left\{ (x_1, \ldots, x_n) : \max_{1 \leq i \leq n} |x_i| \leq \frac{1}{2} \right\}
$$
 be a *n*-cell centered at $o = (0, \ldots, 0)$:

• Let $\emptyset \neq \Pi_{\sigma} \subseteq \Pi_{cube}$, and consider its translates $\Pi_{\sigma}(q) = \{q + p : p \in \Pi_{\sigma}\}\$ centered at grid points $q \in \mathbb{Z}^n$ as the domains of influence:

Obviously, Π*cube*(*q*) is the *n*-cell *c^q* centered at *q*

σ -Digitization

The inner $σ$ -digitization *dig* $^-_\sigma(S)$ of a set $S \subseteq \mathbb{R}^n$ is the union of all c_q such that Π $_\sigma(q)$ is contained in *S*:

 $c_q \subseteq$ *dig* $^-_{\sigma}(S)$ iff $\Pi_{\sigma}(q) \subseteq S$

The outer σ -digitization $\textit{dig}^+_\sigma(S)$ of a set $S\subseteq \mathbb{R}^n$ is the union of all c_q such that $\Pi_\sigma(q)$ intersects *S*:

 $c_q \subseteq \mathit{dig}^+_\sigma(\mathcal{S})$ iff $\Pi_\sigma(q) \cap \mathcal{S} \neq \emptyset$

$$
\mathbb{R}^{\mathbb{Z}}
$$

If
$$
\Pi_{\sigma} = \Pi_{cube}
$$
, $dig_{cube} = J^{-}$ (inner Jordan digitization) and $dig_{cube}^{+} = J^{+}$ (outer Jordan digitization)

$$
\left\vert \cdot\right\vert
$$

If
$$
\Pi_{\sigma} = \{o\}
$$
, $dig_{\sigma}^{+} = dig_{\sigma}^{-} = G$ (Gauss digitization)

$$
\begin{array}{|c|c|} \hline \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad \\ \hline \end{array}
$$

If
$$
\Pi_{\sigma} = \{(x_1, ..., x_n) : \exists i.(1 \le i \le n \land x_i = 0) \land \max_{1 \le i \le n} |x_i| \le \frac{1}{2})\},
$$

 $dig_{\sigma}^+ = R$ (grid-intersection digitization)

DIGITIZATION OF STRAIGHT LINES

Bresenham's Algorithm for Line Digitization

A standard routine in computer graphics, which builds on top of the grid-intersection digitization model

Check out a demo at <http://bert.stuy.edu/pbrooks/graphics/demos/BresenhamDemo.htm>

Bresenham's Algorithm (First Octant, Nonnegative Slope)

Task: Draw a digital line with a nonnegative slope between two points, (*xs*, *ys*) and (*xe*, *ye*), in the first octant

Pseudocode of the algorithm

```
\bullet Initialize constants: dx = x_e - x_s, dy = y_e - y_s, b0 = 2 ∗ dy, b1 = 2 ∗ (dy − dx)
```
2 Initialize variables: $x = x_s$, $y = y_s$, $err = 2 * dy - dx$

```
\bullet while x < x_eDraw (x, y) as a digital line element
x = x + 1if err < 0err = err + b0else
    y = y + 1err = err + b1
```
Complexity: The algorithm runs in $\mathcal{O}(x_e - x_s)$ and involves basic assignment, arithmetic, and conditional operations only

- Digital geometric figures (shapes) are sets of grid points obtained by digitizing their continuous counterparts
- 1D sets (curves) are digitized using the grid-intersection digitization model
- 2D and 3D sets are digitized using the Gauss or Jordan digitization models
- Domain digitization defines a general digitization model
- The Bresenham algorithm digitizes lines using the grid-intersection digitization model