PA170 Digital Geometry Lecture 03: Metrics

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Motivation: How To Measure Distances in Digital Grids

INTRODUCTION TO METRICS

• Let $[S, +, \cdot, \mathbb{R}]$ be an *n*-dimensional vector space over \mathbb{R} . A norm $\|\cdot\|$ assigns to any $p \in S$ a nonnegative scalar $||p||$ that satisfies the following three properties:

N1 Identity

$$
\forall p \in S : ||p|| = 0 \text{ iff } p = (0, \ldots, 0)
$$

N2 Homogeneity

$$
\forall \boldsymbol{\rho} \in \boldsymbol{S}, \forall \boldsymbol{a} \in \mathbb{R}: \|\boldsymbol{a} \cdot \boldsymbol{\rho}\| = |\boldsymbol{a}| \cdot \|\boldsymbol{\rho}\|
$$

N3 Triangle Inequality

 $\forall p, q \in S : ||p + q|| \le ||p|| + ||q||$

Metrics

• Let *S* be an arbitrary nonempty set. A function $d : S \times S \to \mathbb{R}$ is a distance function (metric) on *S* iff it has the following three properties:

M1 Positive Definiteness

∀*p*, *q* ∈ *S* : *d*(*p*, *q*) ≥ 0 and *d*(*p*, *q*) = 0 iff *p* = *q*

M2 Symmetry

 $∀p, q ∈ S : d(p, q) = d(q, p)$

M3 Triangle Inequality

 $∀p, q, r ∈ S : d(p, r) ≤ d(p, q) + d(q, r)$

- \bullet If $\| \cdot \|$ is a norm on $[S, +, \cdot, \mathbb{R}], d(p, q) = \|p q\|$ (∀*p*, *q* ∈ *S*) defines a norm-induced metric on *S*
- A norm-induced metric has also the following two properties:

M4 Translation Invariance

 $∀p, q, r ∈ S : d(p + r, q + r) = d(p, q)$

M5 Homogeneity

∀*p*, *q* ∈ *S*, ∀*a* ∈ R : *d*(*a* · *p*, *a* · *q*) = |*a*| · *d*(*p*, *q*)

- \bullet If [*S*, *d*] is a metric space and $\emptyset \neq A \subseteq S$, [*A*, *d*] is also a metric space
- \mathbb{R}^n define metrics on \mathbb{Z}^n , $\mathbb{G}_{m,n}$, and $\mathbb{G}_{l,m,n}$

If *d* is not a metric on *A*, *d* is not a metric on any set *S* containing *A* either

- Any positive linear combination $a \cdot d_1 + b \cdot d_2$ and maximum max $\{d_1, d_2\}$ of two metrics d_1 and d_2 on a set *S* define a metric on *S*
- \bullet The product $d_1 \cdot d_2$ and minimum min $\{d_1, d_2\}$ are not necessarily metrics on *S*

Minkowski Norms and Metrics

• Let
$$
S = \mathbb{R}^n
$$
 and $p = (x_1, \ldots, x_n) \in \mathbb{R}^n$

• The Minkowski norms $||p||_m$ on $[S, +, \cdot, \mathbb{R}]$ are defined as:

•
$$
||p||_m = \sqrt[m]{|x_1|^m + \cdots + |x_n|^m}
$$
 $(m = 1, 2, \dots)$
• $||p||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

• The Minkowski norms $\|\rho\|_m$ on $[S, +, \cdot, \mathbb{R}]$ induce the Minkowski metrics L_m on *S*:

•
$$
L_m(p,q) = \sqrt[m]{|x_1 - y_1|^m + \cdots + |x_n - y_n|^m}
$$
 $(m = 1, 2, \ldots)$
\n• $L_\infty(p,q) = \max\{|x_1 - y_1|, \ldots, |x_n - y_n|\}$

A sequence of Minkowski distances *L^m* for increasing *m* is nondecreasing:

$$
\forall p,q \in \mathbb{R}^n, 1 \leq m_1 \leq m_2 \leq \infty : L_{m_1}(p,q) \geq L_{m_2}(p,q)
$$

Common Metrics on 2D Grids

• Let
$$
p = (x_p, y_p) \in \mathbb{Z}^2
$$
 and $q = (x_q, y_q) \in \mathbb{Z}^2$, we define

- City-block metric $d_4(p, q) = |x_p x_q| + |y_p y_q| = L_1(p, q)$
- Euclidean metric $d_e(p,q) = \sqrt{(x_p x_q)^2 + (y_p y_q)^2} = L_2(p,q)$
- \bullet Chessboard metric $d_8(p, q) = \max\{|x_p x_q|, |y_p y_q|\} = L_\infty(p, q)$

 $d_8(p,q) \leq d_e(p,q) \leq d_4(p,q) \leq 2 \cdot d_8(p,q) \quad (\forall p,q \in \mathbb{Z}^2)$

Unit Disks

- Let $S \subseteq \mathbb{R}^2$, $o = (0,0) \in S$, and *d* be a metric on *S*. The set $\{p \in S : d(p,o) \leq 1\}$ is called a unit disk in [*S*, *d*]
- Translation-invariant (**M4**) and homogeneous (**M5**) metrics can be compared via their unit disks

• Let $0 < e \in \mathbb{R}$ and *d* be a metric on a grid G. The set $N_{e,d}(p) = \{q \in \mathbb{G} : d(p,q) < e\}$ is called an e -neighborhood of a grid point $p \in \mathbb{G}$ for the metric d

- In digital geometry, the measurements are often based on integer-valued metrics
- \bullet In contrast to d_4 and d_8 , d_6 is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
	- $|a|$ is the largest integer less than or equal to a (floor)
	- \bullet [a] is the smallest integer greater than or equal to a (ceil)
	- [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise (round)

- In digital geometry, the measurements are often based on integer-valued metrics
- \bullet In contrast to d_4 and d_8 , d_6 is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
	- $|a|$ is the largest integer less than or equal to a (floor)
	- \bullet [a] is the smallest integer greater than or equal to a (ceil)
	- [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise (round)

Which of $\lfloor d_e \rfloor$, $\lceil d_e \rceil$, and $\lfloor d_e \rfloor$ is a metric on \mathbb{Z}^n ?

- In digital geometry, the measurements are often based on integer-valued metrics
- \bullet In contrast to d_4 and d_8 , d_6 is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
	- $|a|$ is the largest integer less than or equal to a (floor)
	- \bullet [a] is the smallest integer greater than or equal to a (ceil)
	- [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise (round)

Which of $\lfloor d_e \rfloor$, $\lceil d_e \rceil$, and $\lfloor d_e \rfloor$ is a metric on \mathbb{Z}^n ?

 $\lfloor d_e \rfloor$ and $\lfloor d_e \rfloor$ are not metrics on \mathbb{Z}^n (**M3** is broken)

- In digital geometry, the measurements are often based on integer-valued metrics
- \bullet In contrast to d_4 and d_8 , d_6 is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
	- $|a|$ is the largest integer less than or equal to a (floor)
	- \bullet [a] is the smallest integer greater than or equal to a (ceil)
	- [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise (round)

Which of $\lfloor d_e \rfloor$, $\lceil d_e \rceil$, and $\lfloor d_e \rfloor$ is a metric on \mathbb{Z}^n ?

 $\lfloor d_e \rfloor$ and $\lfloor d_e \rfloor$ are not metrics on \mathbb{Z}^n (**M3** is broken) $\lceil d_e \rceil$ is a metric on \mathbb{Z}^n (If *d* is a metric on *S*, $\lceil d \rceil$ is also a metric on *S*)

Regular Metrics

- An integer-valued metric *d* on a set *S* is called regular iff, for all *p*, *q* ∈ *S* such that $d(p, q) \geq 2$, there exists $r \in S$ ($r \neq p$ and $r \neq q$) such that $d(p, q) = d(p, r) + d(r, q)$
- **•** It implies that for all distinct $p, q \in S$, there exists $r \in S$ such that $d(p, r) = 1$ and $d(p, q) = 1 + d(r, q)$
- d_4 and d_8 are regular integer-valued metrics on \mathbb{Z}^2
- $\lceil d_e \rceil$ is a regular integer-valued metric on \mathbb{R}^n but not on \mathbb{Z}^n ($n > 1$)

APPROXIMATION TO THE EUCLIDEAN METRIC

Motivation: d_4 and d_8 Are Too Coarse Approximations to d_e

e-Neighborhoods of *d^e e*-Neighborhoods of *d*⁴ *e*-Neighborhoods of *d*⁸

Combining d_4 and d_8

• We can combine d_4 and d_8 as

$$
d(p,q)=\max\{d_8,\frac{2}{3}\cdot d_4\}
$$

- *e*-Neighborhoods of *d*(*p*, *q*) are upright octagons obtained by intersecting upright squares of side 2 · *e* with diamonds of diagonal 3 · *e*
- Regular octagons can be reached by choosing the pair of weights appropriately

e-Neighborhoods of d_e *e*-Neighborhoods of max $\{d_8, \frac{2}{3}\}$ $\frac{2}{3} \cdot d_4$

Chamfer Distance

- Let $\rho, q \in \mathbb{Z}^2$, and let ρ be a sequence of king's moves from ρ to q
- Let $l_{a,b}(\rho) = a \cdot m + b \cdot n$ with *m* being the number of isothetic moves and *n* being the number of diagonal moves
- $d_{a,b}(p,q) = \min_{\rho} I_{a,b}(\rho)$ is called the (a,b) -chamfer distance from ρ to q
- Generalized chamfer distances can be defined using additional types of moves

e-Neighborhoods of d_e *e*-Neighborhoods of $d_{1,\sqrt{2}}$

Chamfer Distance: Properties

- The chamfer distance $d_{a,b}$ is a metric if $0 < a \le b \le 2a$
- \bullet This metric is a nonnegative linear combination of d_4 and d_8
- \bullet On a $(k + 1) \times (k + 1)$ grid, the chamfer distance d_{1b} that best approximates d_e has

$$
b=\frac{1}{\sqrt{2}}+\sqrt{\sqrt{2}-1}\approx 1.351\;,
$$

producing a maximum error of

$$
|d_e-d_{1,b}|\leq \left(\frac{1}{\sqrt{2}}-\sqrt{\sqrt{2}-1}\right)k\approx 0.06k
$$

The optimal value of *b* is close to $\frac{4}{3}$, and thus $d_{3,4}$ is a good approximation to 3 \cdot d_{e}

Summary: Different Approximations to the Euclidean metric

 \bullet The city-block (d_4) and chessboard (d_8) metrics are regular, integer-valued metrics on digital grids

 \bullet $\lceil d_e \rceil$ is an integer-valued metric on digital grids, but it is not regular

 \bullet The chamfer distance $d_{3,4}$ is a regular, integer-valued metric on 2D digital grids, which provides a good approximation to 3 · *d^e*