PA170 Digital Geometry Lecture 03: Metrics

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Motivation: How To Measure Distances in Digital Grids

City-block distance

Euclidean distance

Chessboard distance

INTRODUCTION TO METRICS

Let [S, +, ·, ℝ] be an *n*-dimensional vector space over ℝ. A norm || · || assigns to any p ∈ S a nonnegative scalar ||p|| that satisfies the following three properties:

N1 Identity

$$orall oldsymbol{
ho}\in oldsymbol{\mathcal{S}}: \|oldsymbol{
ho}\|= {\mathsf{0}} ext{ iff } oldsymbol{
ho}=({\mathsf{0}},\ldots,{\mathsf{0}})$$

N2 Homogeneity

$$\forall p \in S, \forall a \in \mathbb{R} : \|a \cdot p\| = |a| \cdot \|p\|$$

N3 Triangle Inequality

 $\forall p, q \in S : \|p+q\| \le \|p\| + \|q\|$

Metrics

 Let S be an arbitrary nonempty set. A function d : S × S → ℝ is a distance function (metric) on S iff it has the following three properties:

M1 Positive Definiteness

 $\forall p, q \in S : d(p,q) \ge 0 \text{ and } d(p,q) = 0 \text{ iff } p = q$

M2 Symmetry

 $\forall p,q \in S: d(p,q) = d(q,p)$

M3 Triangle Inequality

 $\forall p, q, r \in S : d(p, r) \le d(p, q) + d(q, r)$

- If || · || is a norm on [S, +, ·, ℝ], d(p,q) = ||p q|| (∀p,q ∈ S) defines a norm-induced metric on S
- A norm-induced metric has also the following two properties:

M4 Translation Invariance

 $\forall p, q, r \in S : d(p+r, q+r) = d(p, q)$

M5 Homogeneity

 $\forall p,q \in S, \forall a \in \mathbb{R} : d(a \cdot p, a \cdot q) = |a| \cdot d(p,q)$

- If [S, d] is a metric space and $\emptyset \neq A \subseteq S$, [A, d] is also a metric space
- Metrics on \mathbb{R}^n define metrics on \mathbb{Z}^n , $\mathbb{G}_{m,n}$, and $\mathbb{G}_{l,m,n}$

• If *d* is not a metric on *A*, *d* is not a metric on any set *S* containing *A* either

- Any positive linear combination a ⋅ d₁ + b ⋅ d₂ and maximum max{d₁, d₂} of two metrics d₁ and d₂ on a set S define a metric on S
- The product $d_1 \cdot d_2$ and minimum min $\{d_1, d_2\}$ are not necessarily metrics on S

Minkowski Norms and Metrics

• Let
$$S = \mathbb{R}^n$$
 and $p = (x_1, \dots, x_n) \in \mathbb{R}^n$

• The Minkowski norms $\|p\|_m$ on $[S, +, \cdot, \mathbb{R}]$ are defined as:

•
$$\|p\|_m = \sqrt[m]{|x_1|^m + \dots + |x_n|^m}$$
 $(m = 1, 2, \dots)$
• $\|p\|_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

• The Minkowski norms $\|p\|_m$ on $[S, +, \cdot, \mathbb{R}]$ induce the Minkowski metrics L_m on S:

•
$$L_m(p,q) = \sqrt[m]{|x_1 - y_1|^m + \dots + |x_n - y_n|^m}$$
 $(m = 1, 2, \dots)$
• $L_\infty(p,q) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\}$

• A sequence of Minkowski distances *L_m* for increasing *m* is nondecreasing:

$$\forall p,q \in \mathbb{R}^n, 1 \leq m_1 \leq m_2 \leq \infty : L_{m_1}(p,q) \geq L_{m_2}(p,q)$$

Common Metrics on 2D Grids

• Let
$$p = (x_p, y_p) \in \mathbb{Z}^2$$
 and $q = (x_q, y_q) \in \mathbb{Z}^2$, we define

- City-block metric $d_4(p,q) = |x_p x_q| + |y_p y_q| = L_1(p,q)$
- Euclidean metric $d_e(p,q) = \sqrt{(x_p x_q)^2 + (y_p y_q)^2} = L_2(p,q)$
- Chessboard metric $d_8(p,q) = \max\{|x_p x_q|, |y_p y_q|\} = L_{\infty}(p,q)$

• $d_8(p,q) \leq d_e(p,q) \leq d_4(p,q) \leq 2 \cdot d_8(p,q) \quad (\forall p,q \in \mathbb{Z}^2)$

Unit Disks

- Let S ⊆ ℝ², o = (0,0) ∈ S, and d be a metric on S. The set {p ∈ S : d(p, o) ≤ 1} is called a unit disk in [S, d]
- Translation-invariant (M4) and homogeneous (M5) metrics can be compared via their unit disks

 Let 0 < e ∈ ℝ and d be a metric on a grid G. The set N_{e,d}(p) = {q ∈ G : d(p,q) < e} is called an e-neighborhood of a grid point p ∈ G for the metric d

- In digital geometry, the measurements are often based on integer-valued metrics
- In contrast to d_4 and d_8 , d_e is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
 - $\lfloor a \rfloor$ is the largest integer less than or equal to a
 - $\lceil a \rceil$ is the smallest integer greater than or equal to a
 - [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise

(floor) (ceil) (round)

- In digital geometry, the measurements are often based on integer-valued metrics
- In contrast to d_4 and d_8 , d_e is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
 - [a] is the largest integer less than or equal to a
 - $\lceil a \rceil$ is the smallest integer greater than or equal to a
 - [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise

(floor) (ceil) (round)

Which of $\lfloor d_e \rfloor$, $\lceil d_e \rceil$, and $\lfloor d_e \rfloor$ is a metric on \mathbb{Z}^n ?

- In digital geometry, the measurements are often based on integer-valued metrics
- In contrast to d_4 and d_8 , d_e is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
 - $\lfloor a \rfloor$ is the largest integer less than or equal to a
 - [a] is the smallest integer greater than or equal to a
 - [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise

Which of $\lfloor d_e \rfloor$, $\lceil d_e \rceil$, and $\lfloor d_e \rfloor$ is a metric on \mathbb{Z}^n ?

 $\lfloor d_e \rfloor$ and $\lfloor d_e \rfloor$ are not metrics on \mathbb{Z}^n (**M3** is broken)

(floor)

(ceil)

(round)

- In digital geometry, the measurements are often based on integer-valued metrics
- In contrast to d_4 and d_8 , d_e is not an integer-valued metric on digital grids
- Let $a \in \mathbb{R}$, we define
 - [a] is the largest integer less than or equal to a
 - $\lceil a \rceil$ is the smallest integer greater than or equal to a
 - [a] is the nearest integer to a if it is unique, and $\lceil a \rceil$ otherwise

Which of $\lfloor d_e \rfloor$, $\lceil d_e \rceil$, and $\lceil d_e \rceil$ is a metric on \mathbb{Z}^n ?

 $\lfloor d_e \rfloor$ and $\lfloor d_e \rfloor$ are not metrics on \mathbb{Z}^n (**M3** is broken) $\lceil d_e \rceil$ is a metric on \mathbb{Z}^n (If *d* is a metric on *S*, $\lceil d \rceil$ is also a metric on *S*)

(floor)

(ceil)

(round)

Regular Metrics

- An integer-valued metric d on a set S is called regular iff, for all $p, q \in S$ such that $d(p,q) \ge 2$, there exists $r \in S$ ($r \ne p$ and $r \ne q$) such that d(p,q) = d(p,r) + d(r,q)
- It implies that for all distinct $p, q \in S$, there exists $r \in S$ such that d(p, r) = 1 and d(p, q) = 1 + d(r, q)
- d_4 and d_8 are regular integer-valued metrics on \mathbb{Z}^2
- $\lceil d_e \rceil$ is a regular integer-valued metric on \mathbb{R}^n but not on \mathbb{Z}^n (n > 1)

APPROXIMATION TO THE EUCLIDEAN METRIC

Motivation: d_4 and d_8 Are Too Coarse Approximations to d_e

e-Neighborhoods of *d_e*

e-Neighborhoods of d₄

e-Neighborhoods of d₈

Combining d_4 and d_8

• We can combine *d*₄ and *d*₈ as

$$d(p,q) = \max\{d_8, \frac{2}{3} \cdot d_4\}$$

- *e*-Neighborhoods of *d*(*p*, *q*) are upright octagons obtained by intersecting upright squares of side 2 · *e* with diamonds of diagonal 3 · *e*
- Regular octagons can be reached by choosing the pair of weights appropriately

e-Neighborhoods of d_e

e-Neighborhoods of $\max\{d_8, \frac{2}{3} \cdot d_4\}$

Chamfer Distance

- Let $p, q \in \mathbb{Z}^2$, and let ρ be a sequence of king's moves from p to q
- Let $I_{a,b}(\rho) = a \cdot m + b \cdot n$ with *m* being the number of isothetic moves and *n* being the number of diagonal moves
- $d_{a,b}(p,q) = \min_{a} l_{a,b}(\rho)$ is called the (a,b)-chamfer distance from p to q
- Generalized chamfer distances can be defined using additional types of moves

e-Neighborhoods of de

e-Neighborhoods of $d_{1,\sqrt{2}}$

Chamfer Distance: Properties

- The chamfer distance $d_{a,b}$ is a metric if $0 < a \le b \le 2a$
- This metric is a nonnegative linear combination of d₄ and d₈
- On a $(k + 1) \times (k + 1)$ grid, the chamfer distance $d_{1,b}$ that best approximates d_e has

$$b = \frac{1}{\sqrt{2}} + \sqrt{\sqrt{2} - 1} \approx 1.351$$
,

producing a maximum error of

$$|d_e - d_{1,b}| \leq \left(rac{1}{\sqrt{2}} - \sqrt{\sqrt{2} - 1}
ight)k pprox 0.06k$$

• The optimal value of b is close to $\frac{4}{3}$, and thus $d_{3,4}$ is a good approximation to $3 \cdot d_e$

Summary: Different Approximations to the Euclidean metric

• The city-block (*d*₄) and chessboard (*d*₈) metrics are regular, integer-valued metrics on digital grids

• $\lceil d_e \rceil$ is an integer-valued metric on digital grids, but it is not regular

• The chamfer distance $d_{3,4}$ is a regular, integer-valued metric on 2D digital grids, which provides a good approximation to $3 \cdot d_e$