PA170 Digital Geometry

Lecture 4: Distance Measurement

Martin Maska (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis
Faculty of Informatics, Masaryk University, Brno

Autumn 2023

INTRODUCTION TO DISTANGCE
TRANSFORMS

Distance Transforms

@ Let / be a binary image, defined on a grid G, with nonempty foreground (/) as well as
background (/). For any grid metric d, the d distance transform of / associates with
every image element p € G the (shortest) d distance from p to (/)

@ Remark: The distance fromp € Sto T C Sis definedas d(p, T) = mi?_ d(p,q)
qge

Binary image ds distance transform ds distance transform

[
\

Binary image Distance graph Distance map Iso-distance curves 3/21

Distance Transforms: Commentary

@ If one is interested in distances between background image elements and the
foreground, the role of background and foreground is exchanged

@ Foreground and background distance transforms are sometimes represented by the
signed distance function

@ Distance transforms are exploited in a broad range of applications:
e Separation of touching objects
e Computation of morphological operators (dilation, erosion)
o Computation of geometrical representations (skeletonization, Voronoi tesselation,
Delaunay triangulation, medial axes, etc.)
Robot navigation
Distance-based shape measurements (object centers, maximal width, etc.)
Pattern (shape) matching
Image registration
k-NN computation

4/21

DISTANCE TRANSFORM FOR
REGULAR METRICS

Regular Distance Transform: Preliminaries

@ Let p € G be a grid point of a grid G. lts a-adjacency set A,(p) can be split into two
disjoint sets (A.(p) = A5 (p) U A (p)), depending on whether an adjacent grid point
g € G precedes (g € AS (p)) or follows (q € A, (p)) the grid point p when scanning G
row by row from top to bottom and each row is scanned from left to right

ST LI

A (p) A5 (p)

6/21

£
=
—
®)
L=y
<<
(%))
%))
©
°F
2
T
S
S
2
(%))
c
©
T
)
(&)
C
©
+—
=
(M)
| -
©
>
(@)
)
o

to-bottom scan of G calculate for each image element p

to-right, top-

@ In asingle left

if pe

bottom-to-top scan of G calculate for each image element p

@ In a single right-to-left

o (P)} =
a for 4-adjacent image elements

h(q) +w(p,q):qeA

Y

)

min{fi(p

(p)
1in case of d; and dg; and w(p, q)

b for 8-adjacent image elements in case of d (

where w(p, q)
and w(p, q)

)

0O<a<b<2a

Second pass (ds) First pass (ds) Second pass (ds)

First pass (ds)

7/21

Two-Pass Algorithm: Properties

@ The calculated distances are exact for all regular metrics on digital grids

@ Easy implementation without the need for an auxiliary image buffer (i.e., only the
input binary image and the ouput image with the calculated distances are needed)

@ Straightforward extension into higher dimensions, especially for higher-dimensional
chamfer distances

@ |ts time complexity is O(n) (n is the number of image elements)

8/21

EUCLIDEAN DISTANCE
TRANSFORM (EDT)

Classification of Algorithms for EDT

Remark: The Euclidean metric d, is not regular on digital grids, and thus the incremental
propagation of distances is not so straightforward

Brute-force approaches
@ Exact but inefficient calculation of Euclidean distances

Ordered-propagation approaches
@ Efficient but non-exact calculation of Euclidean distances
@ The Fast Marching algorithm is relatively difficult to implement (see PA166)

Raster-scanning approaches
@ Efficient but non-exact calculation of Euclidean distances

@ Danielsson’s algorithm is easy to implement

10/21

Danielsson’s Algorithm: Main Idea

@ ltis a two-pass, raster-scanning algorithm for calculating non-exact Euclidean
distance transforms

@ It propagates pairs of integers (not distances themselves), which encode the
absolute values of the relative coordinates of the nearest background image element

@ The pairs of integers are propagated from top to bottom and from bottom to top,
being compared as follows: min{(x1, y1), (X2, y2)} is equal to (x;, y;) for which x? + y?2
is smaller. If they are equal the pair with the smaller x-coordinate is taken.

11/21

Danielsson’s Algorithm: Pseudocode

@ Set integer pairs in tmp to (0,0) (or (oo, o)) for background (or foreground) pixels

@ For each row of tmp (from top to bottom), replace each (f(x), f(y))
@ from left to right with min{(f(x), f(y)), (f(x), f(y — 1)) + (0,1)}
@ from left to right with min{(f(x), f(y)), (f(x — 1), f(¥)) + (1,0)}
@ from right to left with min{(f(x), f(y)), (f(x + 1), f(¥)) + (1,0)}

© For each row of tmp (from bottom to top), replace each (f(x), f(y))
@ from right to left with min{(f(x), f(y)), (f(x), f(y + 1)) + (0,1)}
@ from right to left with min{(f(x), f(y)), (f(x + 1), f(y)) + (1,0)}
@ from left to right with min{(f(x), f(y)), (f(x — 1), f(y)) + (1,0)}

© Calculate the Euclidean distances from the integer pairs stored in tmp

[]

111142 2 2 1
1 114 2 2 22282214 1
1 22228 3 322214 1
1142232363628 2 1
1 2 283636282214 1

0101010101
IRl o 01 011.102020210
01011102021222121101
1002122203132,11101
011121132332222,010
102,0223,2322212 1,101
102,03040312,11101
0111213104 302,010
011112221303302010
102012021202122,11,101

12 3 4362214 1
1142232 4 3 2 1
1142228323 3 2 1
1 2222222222214 1

01112111011,1011,12,11,10101 1142214 114 1 142214 1 1

102,010l 10102010

101,101011,101011,11,0

Final integer pairs (tmp) Euclidean distances 12/21

Danielsson’s Algorithm: Erroneous Distances

13/21

Danielsson’s Algorithm: Discussion

@ The calculated distances are not always exact, differing from the Euclidean distances
by a fraction of the grid constant at most

@ Easy implementation with the need of an auxiliary image buffer

@ Possible extension into higher dimensions

@ lIts time complexity is O(n) (nis the number of image elements)

@ Different masks and propagation strategies can be taken to improve the accuracy of
the calculated distances

14/21

GEODESIC DISTANCE

Geodesic Distance (Intrinsic Distance)

@ A geodesic distance between two points p € S and g € S is defined as the length of
the shortest path p = (p = p1,p2,....Pn=q),p; € S,0 < i < n, from p and g within a
set S:

n—1

d5(p,q) = L(p) = Z an(pi; Pit1)
i=1

where dy(-, -) is the distance between two adjacent points along the path p

[]
The shortest 8-path (of length 5) and 4-paths (of length 16 and 8) within different sets of pixels

16/21

Geodesic Distance: Algorithm

@ Raster-scanning approaches are not suitable because they must run until stability

@ Ordered-propagation approaches are thus preferred:

e Their main idea is to process image elements from closest to farthest
@ A positive distance between adjacent image elements (i.e., dy > 0) guarantees that
every image element is propagated only once

e Dijkstra algorithm (a graph-based approach): O(m - log n) (m is the number of edges,
and n is the number of vertices)

e Fast Marching algorithm (a PDE-based approach): O(n-log n) (nis the number of image
elements)

17/21

DISTANCES BETWEEN SETS

Hausdorff Metric (Hausdorff Distance)

@ Any metric d on a compact set S can be extended to a Hausdorff metric on the family
of all nonempty compact subsets A, B of S by defining

HD(A, B) = i i
(A B) max{g\g;gggd(p,q),rgeaggelgd(p,q)}

@ The Hausdorff distance is very sensitive to outliers
@ Percentile Hausdorff distance (the inner maxima replaced by a percentile — often the
95th percentile), average distance (the inner maxima replaced by averaging), and

symmetric-difference-based metrics (card(AAB) and %) are used in practice

19/21

Hausdorff Distance: Algorithm

@ Let A, B C Gm,p be two finite sets of grid points
@ Let R be the smallest isothetic rectangle of size k x I/, which contains AU B

@ If card(A) and card(B) are O(k - /), a brute-force algorithm takes O(k? - I?) steps

@ By calculating and scanning distance transforms of A and B, the Hausdorff distance
HD(A, B) can efficiently be calculated in O(k - /) steps:
@ Calculate a distance transform DT(A) in R
@ Calculate a distance transform DT(B) in R
© Let abe the maximum value in DT(A) across all the grid points in B

© Let b be the maximum value in DT(B) across all the grid points in A
@ Return max{a, b}

20/21

Take-Home Messages

@ Distance transforms for regular metrics can be calculated exactly on digital grids
using a two-pass algorithm

@ Non-exact Euclidean distance transforms can efficiently be computed using the
Danielsson algorithm

@ Geodesic (intrinsic) distances can efficiently be computed using ordered-propagation
approaches

@ Modified Hausdorff distances are often used in practice when calculating distances
between sets

21/21

