PA170 Digital Geometry Lecture 4: Distance Measurement

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

INTRODUCTION TO DISTANCE TRANSFORMS

Distance Transforms

- Let *I* be a binary image, defined on a grid G, with nonempty foreground ⟨*I*⟩ as well as background ⟨*I*⟩. For any grid metric *d*, the *d* distance transform of *I* associates with every image element *p* ∈ G the (shortest) *d* distance from *p* to ⟨*I*⟩
- Remark: The distance from $p \in S$ to $T \subseteq S$ is defined as $d(p, T) = \min_{q \in T} d(p, q)$

Distance Transforms: Commentary

- If one is interested in distances between background image elements and the foreground, the role of background and foreground is exchanged
- Foreground and background distance transforms are sometimes represented by the signed distance function
- Distance transforms are exploited in a broad range of applications:
 - Separation of touching objects
 - Computation of morphological operators (dilation, erosion)
 - Computation of geometrical representations (skeletonization, Voronoi tesselation, Delaunay triangulation, medial axes, etc.)
 - Robot navigation
 - Distance-based shape measurements (object centers, maximal width, etc.)
 - Pattern (shape) matching
 - Image registration
 - k-NN computation

• ...

DISTANCE TRANSFORM FOR REGULAR METRICS

Regular Distance Transform: Preliminaries

Let *p* ∈ G be a grid point of a grid G. Its *α*-adjacency set *A_α(p)* can be split into two disjoint sets (*A_α(p) = A_α[←](p) ∪ A_α[→](p)*), depending on whether an adjacent grid point *q* ∈ G precedes (*q* ∈ *A_α[←](p)*) or follows (*q* ∈ *A_α[→](p)*) the grid point *p* when scanning G row by row from top to bottom and each row is scanned from left to right

Regular Distance Transform: Two-Pass Algorithm

In a single left-to-right, top-to-bottom scan of G calculate for each image element p

$$f_1(p) = \begin{cases} 0, & \text{if } p \in \overline{\langle I \rangle} \\ \min\{f_1(q) + w(p,q) : q \in A_{\alpha}^{\leftarrow}(p)\}, & \text{if } p \in \langle I \rangle \end{cases}$$

In a single right-to-left, bottom-to-top scan of G calculate for each image element p

$$f_2(p) = \min\{f_1(p), f_2(q) + w(p,q) : q \in A_{lpha}^{
ightarrow}(p)\} = d(p, \overline{\langle I
angle})$$

where w(p,q) = 1 in case of d_4 and d_8 ; and w(p,q) = a for 4-adjacent image elements and w(p,q) = b for 8-adjacent image elements in case of $d_{a,b}$ ($0 < a \le b \le 2a$)

Second pass (d₈)

• The calculated distances are exact for all regular metrics on digital grids

• Easy implementation without the need for an auxiliary image buffer (i.e., only the input binary image and the ouput image with the calculated distances are needed)

• Straightforward extension into higher dimensions, especially for higher-dimensional chamfer distances

• Its time complexity is O(n) (*n* is the number of image elements)

EUCLIDEAN DISTANCE TRANSFORM (EDT)

Remark: The Euclidean metric d_e is not regular on digital grids, and thus the incremental propagation of distances is not so straightforward

Brute-force approaches

• Exact but inefficient calculation of Euclidean distances

Ordered-propagation approaches

- Efficient but non-exact calculation of Euclidean distances
- The Fast Marching algorithm is relatively difficult to implement (see PA166)

Raster-scanning approaches

- Efficient but non-exact calculation of Euclidean distances
- Danielsson's algorithm is easy to implement

 It is a two-pass, raster-scanning algorithm for calculating non-exact Euclidean distance transforms

• It propagates pairs of integers (not distances themselves), which encode the absolute values of the relative coordinates of the nearest background image element

• The pairs of integers are propagated from top to bottom and from bottom to top, being compared as follows: $\min\{(x_1, y_1), (x_2, y_2)\}$ is equal to (x_i, y_i) for which $x_i^2 + y_i^2$ is smaller. If they are equal the pair with the smaller *x*-coordinate is taken.

Danielsson's Algorithm: Pseudocode

- Set integer pairs in tmp to (0,0) (or (∞,∞)) for background (or foreground) pixels 2
 - For each row of tmp (from top to bottom), replace each (f(x), f(y))
 - from left to right with min{(f(x), f(y)), (f(x), f(y-1)) + (0, 1)}
 - 2 from left to right with min{(f(x), f(y)), (f(x-1), f(y)) + (1, 0)}
 - **3** from right to left with min{(f(x), f(y)), (f(x+1), f(y)) + (1, 0)}

So For each row of tmp (from bottom to top), replace each (f(x), f(y))

- from right to left with min{(f(x), f(y)), (f(x), f(y+1)) + (0, 1)}
- 2 from right to left with min{(f(x), f(y)), (f(x+1), f(y)) + (1, 0)}
- **3** from left to right with min{(f(x), f(y)), (f(x-1), f(y)) + (1, 0)}

Calculate the Euclidean distances from the integer pairs stored in tmp

							_				 	
												0,1
											0,2	1,0
									1,2			0,1
				1,0		1,2	2,2		1,3	2,1		
						1,3	2,3	3,2	2,2	2,0		
			1,0	2,0		3,2	3,2		1,2			
			1,0	2,0		4,0	3,1					
		0,1		2,1				2,0	1,0			
	0,1		1,2		1,3	0,3		2,0	1,0			
	1,0	2,0	1,2		1,2		1,2			0,1		
0,1												
		2,0	1,0						1,0			
	1,0		0,1	0,1		0,1	0,1		1,0			
	0,1	1,0		0,1	0,1	0,1		1,0	0,1			
		0,1	0,1				0,1	0,1				
			0,1	0,1	0,1	0,1	0,1					

								1,4			
								2.2	2.8	2.2	
								3.2	2.2		
				2,2	3,2	3,6	3,6	2,8			
				2.8	3.6	3.6	2.8	2.2	1.4		
						3.6	2.2				
			2,2	3.2							
		2.2	2.8	3.2							
				2,2			2.2				
1	2,2						2,2				
	1.4			1.4			1.4				

Final integer pairs (tmp)

Fuclidean distances

Danielsson's Algorithm: Erroneous Distances

- The calculated distances are not always exact, differing from the Euclidean distances by a fraction of the grid constant at most
- Easy implementation with the need of an auxiliary image buffer
- Possible extension into higher dimensions
- Its time complexity is $\mathcal{O}(n)$ (*n* is the number of image elements)
- Different masks and propagation strategies can be taken to improve the accuracy of the calculated distances

GEODESIC DISTANCE

Geodesic Distance (Intrinsic Distance)

 A geodesic distance between two points *p* ∈ *S* and *q* ∈ *S* is defined as the length of the shortest path *ρ* = (*p* = *p*₁, *p*₂, ..., *p_n* = *q*), *p_i* ∈ *S*, 0 ≤ *i* ≤ *n*, from *p* and *q* within a set *S*:

$$d^{S}(p,q) = \mathcal{L}(\rho) = \sum_{i=1}^{n-1} d_{N}(p_{i},p_{i+1})$$

where $d_N(\cdot, \cdot)$ is the distance between two adjacent points along the path ρ

The shortest 8-path (of length 5) and 4-paths (of length 16 and 8) within different sets of pixels

• Raster-scanning approaches are not suitable because they must run until stability

- Ordered-propagation approaches are thus preferred:
 - Their main idea is to process image elements from closest to farthest
 - A positive distance between adjacent image elements (i.e., d_N > 0) guarantees that every image element is propagated only once
 - Dijkstra algorithm (a graph-based approach): $O(m \cdot \log n)$ (*m* is the number of edges, and *n* is the number of vertices)
 - Fast Marching algorithm (a PDE-based approach): O(n · log n) (n is the number of image elements)

DISTANCES BETWEEN SETS

Hausdorff Metric (Hausdorff Distance)

• Any metric *d* on a compact set *S* can be extended to a Hausdorff metric on the family of all nonempty compact subsets *A*, *B* of *S* by defining

$$\mathsf{HD}(A,B) = \max\left\{\max_{p \in A} \min_{q \in B} d(p,q), \max_{p \in B} \min_{q \in A} d(p,q)\right\}$$

- The Hausdorff distance is very sensitive to outliers
- Percentile Hausdorff distance (the inner maxima replaced by a percentile often the 95th percentile), average distance (the inner maxima replaced by averaging), and symmetric-difference-based metrics (card($A\Delta B$) and $\frac{\text{card}(A\Delta B)}{1+\text{card}(A\cup B)}$) are used in practice

- Let $A, B \subset \mathbb{G}_{m,n}$ be two finite sets of grid points
- Let *R* be the smallest isothetic rectangle of size $k \times I$, which contains $A \cup B$
- If card(A) and card(B) are $\mathcal{O}(k \cdot l)$, a brute-force algorithm takes $\mathcal{O}(k^2 \cdot l^2)$ steps
- By calculating and scanning distance transforms of \overline{A} and \overline{B} , the Hausdorff distance HD(A, B) can efficiently be calculated in $\mathcal{O}(k \cdot l)$ steps:
 - Calculate a distance transform $DT(\overline{A})$ in R
 - 2 Calculate a distance transform $DT(\overline{B})$ in R
 - It the maximum value in $DT(\overline{A})$ across all the grid points in B
 - **(4)** Let b be the maximum value in $DT(\overline{B})$ across all the grid points in A
 - Seturn max{*a*, *b*}

- Distance transforms for regular metrics can be calculated exactly on digital grids using a two-pass algorithm
- Non-exact Euclidean distance transforms can efficiently be computed using the Danielsson algorithm
- Geodesic (intrinsic) distances can efficiently be computed using ordered-propagation approaches
- Modified Hausdorff distances are often used in practice when calculating distances between sets