PA170 Digital Geometry Lecture 05: Adjacency Graphs

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Boundaries, Borders, and Holes Informally

• What is a boundary, border, and hole of a set?

Boundaries, Borders, and Holes Informally

- What is a boundary, border, and hole of a set?
- Boundary lies "between" two sets and separates them from each other
- Border is a part of a set that lies near its boundary
- Hole is a component "inside" a set (a finite complementary component)

Adjacency Structures as Adjacency Graphs

- Let *S* be a countable set and *A* be an adjacency relation on *S*. [*S*, *A*] is called an adjacency structure
- An adjacency structure [*S*, *A*] can be represented using an adjacency graph (its nodes correspond to the elements of *S* and its edges are given by *A*)
- Nodes of adjacency graphs do not have assigned locations in a Euclidean space

8-adjacency grid

Voronoi tesselation

Delaunay triangulation

Adjacency Sets

Let [S, A] be an adjacency graph. The set A(M) of all nodes adjacent to M ⊆ S (i.e., the set of all p ∈ M such that A(p) ∩ M ≠ Ø) is called the adjacency set of M

Region Adjacency Graphs

- If [S, A] is an adjacency graph, two disjoint subsets M₁ and M₂ of S are called adjacent (M₁AM₂ or (M₁, M₂) ∈ A) iff A(M₁) ∩ M₂ ≠ Ø
- A region adjacency relation \mathcal{A} is irreflexive and symmetric
- Let R be a partition of S into connected components and (possibly) the infinite background component. The undirected graph [R, A] is called the region adjacency graph of R

(8,4)-adjacency graph and the corresponding region adjacency graph

Types of Nodes and Borders

- Let [S, A] be an adjacency graph and $M \subseteq S$ be a subset of its nodes
- *p* ∈ *M* is called an interior node of *M* iff *A*(*p*) ⊆ *M*; otherwise it is called a border node of *M*
- The set M^{∇} of all inner nodes of M is called the inner set of M
- The set δM of all border nodes of M is called the border (inner border) of M
- A border node of $S \setminus M$ is sometimes called a coborder (outer border) node of M

Set M

Its inner 4-border

Its outer 4-border

Invalid Edges and Boundary

- Let [S, A] be an adjacency graph and $M \subset S$ be a proper subset of S
- An edge $\{p,q\}$ of [S,A] is called *M*-invalid iff $p \in M$ and $q \in (S \setminus M)$
- The boundary of *M* is the set of all *M*-invalid edges

Boundary Detection

- Detection of boundaries in 2D (3D) binary images is often performed using the Marching Squares (Cubes) algorithm
- It scans the input binary image in successive blocks of image elements and evaluates their configurations of foreground and background values assigned

Oriented Adjacency Graphs

- Let [S, A] be an adjacency graph. A local circular order ξ(p) at a node p ∈ S is an ordered sequence (q₁,..., q_n) of all nodes in A(p) without repetitions
- An oriented adjacency graph [S, A, ξ] is defined by an adjacency graph [S, A] and an orientation ξ, defined by local circular orders of the adjacency sets
- These local orders can be used to trace edges in [S, A, ξ] as follows: if we arrive at p from q_i ∈ A(p), we move next to q_k, where k = (i + 1) mod n

Oriented Adjacency Subgraphs

- A subset M ⊆ S induces a substructure [M, A_M, ξ_M] of an oriented adjacency graph [S, A, ξ] where A_M contains only those adjacency pairs {p, q} such that p, q ∈ M and {p, q} ∈ A, and where, for any p ∈ M, ξ_M(p) is the reduced local circular order defined by deleting all nodes that are not in M from ξ(p)
- The cycles of $[M, A_M, \xi_M]$ may differ from cycles of $[S, A, \xi]$

Oriented Adjacency Subgraphs

- A subset M ⊆ S induces a substructure [M, A_M, ξ_M] of an oriented adjacency graph [S, A, ξ] where A_M contains only those adjacency pairs {p, q} such that p, q ∈ M and {p, q} ∈ A, and where, for any p ∈ M, ξ_M(p) is the reduced local circular order defined by deleting all nodes that are not in M from ξ(p)
- The cycles of $[M, A_M, \xi_M]$ may differ from cycles of $[S, A, \xi]$

Atomic and Border Cycles

- Let (p, q) be a directed edge in $[M, A_M, \xi_M]$, ρ_1 be the cycle generated by (p, q) in $[M, A_M, \xi_M]$, and ρ_2 be the cycle generated by (p, q) in $[M, A, \xi]$. ρ_1 is an atomic cycle of $[M, A_M, \xi_M]$ iff $\rho_1 = \rho_2$ and a border cycle of $[M, A_M, \xi_M]$ otherwise
- For any $M \subset S$, $[M, A_M, \xi_M]$ has at least one border cycle
- Each border cycle of [M, A_M, ξ_M] contains at least one border node of M, and each border node is incident with at least one border cycle

Inner and Outer Border Cycles

- A border cycle of [M, A_M, ξ_M] is called outer iff it separates M from the infinite complementary component
- All other border cycles of $[M, A_M, \xi_M]$ are called inner border cycles

Holes

- Let [S, A, ξ] be an infinite oriented adjacency graph and M be a finite connected subset of S with exactly one infinite complementary component
- Any finite complementary component of *M* is called a hole of *M*
- A (finite) complementary component of *M* assigned to an inner border cycle is called a proper hole of *M*
- A finite complementary component assigned to an outer border cycle of *M* is called an improper hole of *M*

Directed Invalid Edges

- Let [S, A, ξ] be an oriented adjacency graph and M ⊆ S be a subset of its nodes. A directed edge (r, q) from a coborder node r ∈ (S \ M) to a boder node q ∈ δM is called invalid
- Every directed invalid edge points to exactly one border cycle in $[M, A_M, \xi_M]$

Border Tracing Algorithm: Main Idea

- Let $[S, A, \xi]$ be an oriented adjacency graph and $M \subset S$ be a finite proper subset of S
- Each component *C* of *M* is handled independently:
 - Generate a list of all directed invalid edges for C
 - Trace the border cycle to which one of these edges points to (and delete the already processed invalid edges)
 - If there is still an undeleted directed invalid edge, repeat the tracing process

Border Tracing Algorithm: Main Idea

- Let $[S, A, \xi]$ be an oriented adjacency graph and $M \subset S$ be a finite proper subset of S
- Each component C of M is handled independently:
 - Generate a list of all directed invalid edges for C
 - Trace the border cycle to which one of these edges points to (and delete the already processed invalid edges)
 - If there is still an undeleted directed invalid edge, repeat the tracing process

Border Tracing Algorithm: Main Idea

- Let $[S, A, \xi]$ be an oriented adjacency graph and $M \subset S$ be a finite proper subset of S
- Each component C of M is handled independently:
 - Generate a list of all directed invalid edges for C
 - Trace the border cycle to which one of these edges points to (and delete the already processed invalid edges)
 - If there is still an undeleted directed invalid edge, repeat the tracing process

Border Tracing Algorithm: Directed Invalid Edge (q, p)

1 Let
$$(q_0, p_0) := (q, p), i := 0$$
, and $k := 0$

2 Let $\xi(p_i) = \langle \dots, q_k, q, \dots \rangle$ be the local circular order at p_i . If $q \in \overline{C}$, go to Step 4

- Solution Node *q* is another node on the border cycle. Let i := i + 1 and $p_i := q$. Let $\xi(p_i) = \langle \dots, p_{i-1}, q, \dots \rangle$ be the local circular order at p_i . If $q \in C$, go to Step 3; Otherwise, let k := i 1, and go to Step 4
- If $(q, p_i) = (q_0, p_0)$, go to Step 5. Otherwise, let k := k + 1 and $q_k := q$, and go to Step 2
- We are back at the original directed invalid edge (q, p). The border cycle of the component C is (p₀, p₁,..., p_i)

• What is a boundary, border, and hole of a set M?

• What is a boundary, border, and hole of a set M?

- The boundary of *M* is the set of all *M*-invalid edges of the corresponding adjacency graph
- The border δM of M is the set of all border nodes of the corresponding adjacency graph
- Proper and improper holes of *M* are finite complementary components of *M* assigned to the border cycles of the corresponding oriented adjacency graph