PA170 Digital Geometry Lecture 06: Introduction to Topology

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Topology in a Nutshell

- Topology is a branch of mathematics, which studies properties of spaces under continuous deformations
- It is often viewed as "rubber-sheet geometry" because objects can be stretched and contracted like rubber, but they cannot be broken nor glued together
- Joke: A topologist is a person who cannot distinguish a coffee mug from a doughnut

A coffee mug A doughnut

Point Set Topology

- It considers local properties of spaces, and is closely related to analysis
- It generalizes the concept of continuity to define topological spaces, in which limits of sequences can be considered

Combinatorial Topology

- It is the oldest branch of topology, which dates back to Euler
- \bullet It considers the global properties of spaces, built up from a network of vertices, edges, and faces

Algebraic Topology

- It also considers the global properties of spaces, and uses algebraic objects such as groups or rings to answer topological questions
- It converts topological problems into algebraic ones that are hopefully easier to solve

Differential Topology

- \bullet It considers spaces with some kind of smoothness associated to each point (e.g., a square and a circle are not differentiably equivalent to each other)
- It is useful for studying properties of vector fields, such as magnetic or electric fields

TOPOLOGICAL SPACES

- \bullet [*S*, \mathcal{G}] is called a topological space iff \mathcal{G} is a family of subsets of *S* with the following three properties:
	- **T1:** $\{\emptyset, S\} \subseteq \mathcal{G}$
	- **T2:** Let M_1, M_2, \ldots be a finite or infinite family of sets in G. The union of these sets is also in G
	- **T3:** Let M_1, M_2, \ldots, M_n be a finite family of sets in G. The intersection of these sets is also in G
- G is called a topology on S, and its elements are called open sets
- A set *M* ⊆ *S* is called closed iff its complement *M* = *S* \ *M* is open
- *M* is called (topologically) connected iff it is not the union of two disjoint non-empty open subsets of *M*
- The interior *M* of *M* ⊆ *S* is the union of all open subsets of *M*
- The closure *M* of *M* is the intersection of all closed subsets of *S* that contain *M*
- The frontier of M is the set $\partial M = M^\bullet \cap (\overline{M})^\bullet$

Homeomorphism and Topological Invariants

- Let Φ be a mapping of a topological space S_1 into a topological space S_2
- \bullet ϕ is called continuous iff, for any open subset *M* of S_2 , the set Φ −1 (*M*) = {*p* ∈ *S*¹ : Φ(*p*) ∈ *M*} is open in *S*¹
- Φ is called a homeomorphism iff it is bijective, continuous, and Φ⁻¹ is also continuous
- Two topological spaces are called homeomorphic (topologically equivalent) iff each of them can be mapped onto the other by a homeomorphism
- The letters *I* and *C* are homeomorphic, whereas the letters *X* and *Y* are not
- A property of a subset *M* of a topological space *S* is called a topological invariant iff, for any homeomorphism Φ, the property is also valid for Φ(*M*)
- The number of components and Euler characteristic are examples of topological invariants

TOPOLOGY ON INCIDENCE **GRAPHS**

Incidence Grids as Incidence Graphs

- A regular incidence grid can be represented by an incidence graph [*S*, *I*, dim]
- **Remark:** The incidence relation *I* is reflexive (self-incidence is allowed), and thus incidence graphs are pseudographs (they contain loops) formally

Closed and Open Sets in Incidence Graphs

- Let *G* = [*S*, *I*, dim] be an incidence graph and *M* ⊆ *S* be a subset of its nodes
- *M* is called closed in *G* iff, for any $p \in M$ and any $q \in I(p)$ such that $dim(q) < dim(p)$, we have *q* ∈ *M*
- *M* is called open in *G* iff $\overline{M} = S \setminus M$ is closed in *G*
- The closure *M* of *M* is the smallest closed set that contains *M*
- Remark: These definitions do not have analogues for adjacency graphs

Inner and Border Nodes

- Let [*S*, *I*, dim] be an incidence graph and *M* ⊆ *S* be a subset of its nodes
- A node *p* ∈ *M* is called an inner node of *M* iff *I*(*p*) ⊆ *M*. Otherwise, it is called a border node of *M*
- The set of all inner nodes of *M* is called the inner set *M*[∇] of *M*, and the set of border nodes of *M* is called the border δ*M* of *M*

Frontier

- Let [*S*, *I*, dim] be an incidence graph and *M* ⊆ *S* be a subset of its nodes. The frontier ϑ*M* of *M* is the border of *M*•
- Remark: This definition does not have an analogue for adjacency graphs

DIGITAL TOPOLOGY

 $[S,\mathcal{G}]$ is called a digital topology in the grid cell model iff $\mathcal{S}=\mathbb{C}_{n}^{(n)}$ $n^{(1)}$ $(n \geq 1)$ and $\mathcal G$ is a family of open sets that satisfy **T1** through **T3**, as well as the following:

> **DT1:** All connected sets are 0-connected **DT2:** All disconnected sets are (*n* − 1)-disconnected **DT3:** The closure of any singleton (i.e., a 1-element set) is (*n* − 1)-connected

- Up to homeomorphism, there is only one digital topology on \mathbb{Z}^1 (alternating topology)
- Up to homeomorphism, there are only two digital topologies on \mathbb{Z}^2 (grid point topology and grid cell topology)
- Up to homeomorphism, there are only five digital topologies on \mathbb{Z}^3
- Up to homeomorphism, there are only 24 digital topologies on \mathbb{Z}^4

Homeomorphy: Topological Equivalence of Binary Components

Two components in an *n*D binary image are called topologically equivalent (homeomorphic) iff their geometric representations in the incidence grid are homeomorphic in E *n*

Two homeomorphic foreground components when considering (8, 4)-adjacency

Isotopy: Topological Equivalence of Binary Images

- Two subsets *L* and *M* of a topological space *S* are called isotopic iff there exists a homeomorphism Φ on *S* such that $\Phi(L) = M$
- Isotopy is a stronger concept than homeomorphy
- Two *n*D binary images are called topologically equivalent (isotopic) iff their geometric representations in the incidence grid are isotopic in E *n*
- Two *n*D binary images are isotopic iff their rooted adjacency trees are isomorphic

Are these two binary images isotopic when considering (8, 4)-adjacency?

Simple Point Concept: Topology-Preserving Deformations

- Two isotopic binary images can be transformed one to another using topology-preserving deformations
- Topology-preserving deformations consist in switching the binary image values from foreground to background or from background to foreground at simple points

Original

No topology change

Topology change

Simple Points in 2D Binary Images

- Let *I* be a 2D binary image defined over a grid \mathbb{G} , and (α_1, α_2) be a pair of topologically compatible α -adjacencies
- A grid point $x \in \mathbb{G}$ is called (α_1, α_2) -simple iff it is α_1 -adjacent to exactly one α_1 -connected foreground component in $A_8(x)$ and α_2 -adjacent to exactly one α_2 -connected background component in $A_8(x)$
- Simple points can efficiently be detected using a precomputed LUT over all 256 possible configurations

Top: (8, 4)-simple points; Bottom: Points that are not (8, 4)-simple; Gray indicates an arbitrary binary value

Simple Points in 3D Binary Images

- The extension of 2D simple point characterization is not straightforward because tunnels can be created or destroyed
- The detection of 3D simple points is carried out by calculating two topological numbers using BFS in 26-adjacency sets

Left: Switching *x* from foreground to background creates a tunnel Right: Switching *x* from background to foreground destroys a tunnel

Homotopy: Simply Connected Sets

- Let *M* be a subset of a topological space [*S*, G]
- Homotopy provides a precise definition of the topological structure of *M*
- *M* is called path-connected iff, for any *p*, *q* ∈ *M*, there exists a parametrized path from *p* to *q* contained in *M*
- Two parametrized paths with the same fixed endpoints and contained in *M* are called homotopic iff one can continuously be transformed in *M* into another
- *M* is called simply connected iff it is path-connected and, for all *p*, *q* ∈ *M*, all parametrized paths from *p* to *q* contained in *M* are homotopic
- If *M* is simply connected, all loops contained in *M* are contractible in *M* into a single point

- Homeomorphisms preserve topological invariants of topological spaces
- The frontier of a set is the border of its closure
- Isotopic binary images have isomorphic region adjacency trees
- Switching values of binary images at simple points does not change their topology
- Simply connected sets are path-connected, and all their loops are contractible in them into a single point