PA170 Digital Geometry Lecture 07: Topological Characterization of Curves and Surfaces

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Point Set Topology

- It considers local properties of spaces, and is closely related to analysis
- It generalizes the concept of continuity to define topological spaces, in which limits of sequences can be considered

Combinatorial Topology

- It is the oldest branch of topology, which dates back to Euler
- It considers the global properties of spaces, built up from a network of vertices, edges, and faces

Algebraic Topology

- It also considers the global properties of spaces, and uses algebraic objects such as groups or rings to answer topological questions
- It converts topological problems into algebraic ones that are hopefully easier to solve

Differential Topology

- \bullet It considers spaces with some kind of smoothness associated to each point (e.g., a square and a circle are not differentiably equivalent to each other)
- It is useful for studying properties of vector fields, such as magnetic or electric fields

INTRODUCTION TO COMBINATORIAL TOPOLOGY

Motivation: Combinatorial Topology

- Combinatorial topology studies the topological properties of sets represented as complexes of small parts
- The topological properties are derived from these complexes

A Euclidean complex A simplicial complex

Common Types of Complexes

• Euclidean complexes consist of convex cells

$$
Examples: \qquad \qquad \longrightarrow
$$

• Simplicial complexes consist of simplices

All *n*-simplices (
$$
0 \le n \le 3
$$
):

 \mathbf{r}

Simplicial complexes are special cases of Euclidean complexes

Euclidean Complexes: Definition

- Let $M \subseteq \mathbb{E}^n$ be the union of a finite number of convex cells
- A Euclidean complex is a partition *S* of *M* into a nonempty finite set of convex cells with the following two properties:

EC1: If *p* is a cell of *S* and *q* is a side of *p*, *q* is a cell of *S*

EC2: The intersection of two cells of *S* is either empty or a side of both cells

A finite Euclidean complex that contains only triangles, line segments, and points is called a triangulation

CURVES

Simple Closed Curves: Definitions

A simple closed curve γ splits the plane into two open components. One component is bounded and the other component is unbounded, with γ being the frontier between these components

Parametric Definition

 γ is a set of points $\{(x,y): \phi(t) = (x,y) \wedge a \leq t \leq b\}$ where $\phi: [a,b] \to \mathbb{R}^2$ is a continuous mapping the image of which is homeomorphic to a unit circle

Implicit Definition

• γ is a set of points $\{(x, y) : f(x, y) = 0\}$ satisfying an equation $f(x, y) = 0$

Topological Definition

 \bullet γ is a one-dimensional continuum (a nonempty, compact, and topologically connected subset of a topological space) in E *n*

- A simple curve is a curve in which every point *p* has branching index 2
- A simple arc is either a curve in which every point *p* has branching index 2 except for its two endpoints, which have branching index 1, or a simple curve with one of its points labeled as an endpoint
- A regular point of a curve has branching index 2 and is not an endpoint
- A branch point has branching index 3 or greater
- A singular point is either an endpoint or a branch point
- An elementary curve is the union of a finite number of simple arcs, each pair of which have at most a finite number of points in common
- Elementary curves can be approximated by polygonal chains

Topological Characterization of Elementary Curves

- \bullet An elementary curve γ can be partitioned into a one-dimensional geometric complex *S* that consists of α_1 simple arcs (1-cells), α_0 endpoints (0-cells), and β_0 components
- The Euler characteristic $\chi(S)$ of *S* is defined as $\chi(S) = \alpha_0 \alpha_1$; $\chi(S)$ is preserved for any partition of γ
- The connectivity $\beta_1(S)$ of *S* is given as $\beta_1(S) = \beta_0 \alpha_0 + \alpha_1$; $\beta_1(S)$ is equal to the number of atomic cycles of *S*

• Both the Euler characteristic and connectivity are topological invariants

SURFACES

Manifolds

- Let $[S, \mathcal{G}]$ be a topological space and $p \in S$
- Any subset of *S* that contains an open superset of *p* is called a topological neighborhood of *p*
- \bullet [*S*, *G*] is called an *n*-manifold if every $p \in S$ has a topological neighborhood in *S*, which is homeomorphic to an open *n*-sphere (near each point resembles \mathbb{E}^n)
- An *n*-manifold is called hole-free iff it is compact (closed and bounded)
- The surfaces of a ball and of a torus are examples of hole-free 2-manifolds

Simple Closed Surfaces: Definitions

A simple closed surface σ splits \mathbb{E}^{3} into two open components. One component is bounded and the other component is unbounded, with σ being the frontier between these components

Parametric Definition

 σ is a set of points $\sigma = \{(x, y, z) : \phi(s, t) = (x, y, z) \land a \leq s, t \leq b\}$ where $\phi:[\textit{a},\textit{b}]\times[\textit{a},\textit{b}]\rightarrow\mathbb{R}^3$ is a continuous mapping the image of which is homeomorphic to a unit sphere

Implicit Definition

 σ is a set of points $\{(x, y, z) : f(x, y, z) = 0\}$ satisfying an equation $f(x, y, z) = 0$

Topological Definition

 \bullet σ is a hole-free surface (a hole-free 2-manifold)

Surfaces with Frontiers: Definition

- A surface *S* is called a surface with frontiers iff *S* is homeomorphic to a polyhedral surface and can be partitioned into two nonempty subsets \mathcal{S}° and $\vartheta \mathcal{S}$ such that every *p* ∈ *S* ◦ has a topological neighborhood in *S*, which is homeomorphic to an open disk, and every $p \in \vartheta S$ has a topological neighborhood in S, which is homeomorphic to the union of the interior of a triangle and one of its sides (without endpoints) where *p* is mapped onto that side
- The points of *S*[°] are called interior points of *S*, and the points of ϑ *S* are called frontier points of *S*
- The number of frontiers is a topological invariant

Surfaces with Frontiers: Definition

- A surface *S* is called a surface with frontiers iff *S* is homeomorphic to a polyhedral surface and can be partitioned into two nonempty subsets \mathcal{S}° and $\vartheta \mathcal{S}$ such that every *p* ∈ *S* ◦ has a topological neighborhood in *S*, which is homeomorphic to an open disk, and every $p \in \vartheta S$ has a topological neighborhood in S, which is homeomorphic to the union of the interior of a triangle and one of its sides (without endpoints) where *p* is mapped onto that side
- The points of *S*[°] are called interior points of *S*, and the points of ϑ *S* are called frontier points of *S*
- The number of frontiers is a topological invariant

A surface with three frontiers A surface with one frontier

Topological Characterization of 2D Euclidean Complexes

- Let *S* be a 2D Euclidean complex that consists of α_i *i*-cells (0 \leq *i* \leq 2)
- The Euler characteristic of *S* is defined as $\chi(S) = \alpha_0 \alpha_1 + \alpha_2$
- **If** *S* is a simple polyhedron, $\chi(S) = 2$ (Descartes & Euler)
- In 1812, Lhuilier incorrectly derived the following formula:

$$
\alpha_0-\alpha_1+\alpha_2=2(c-t+1)+p
$$

where *c* is the number of cavities, *t* is the number of tunnels, and *p* is the number of polygons ("tunnel exits") on the polyhedron faces

Betti Numbers

Betti numbers β_i (0 \leq *i* \leq *n*) are topological invariants, which extend the polyhedral formula to *n*-dimensional spaces (the Poincaré formula):

$$
\chi(\cdot) = \sum_{i=0}^n (-1)^i \cdot \beta_i
$$

- **Informally,** β_0 **is the number of connected components,** β_1 **is the number of tunnels,** and $\beta_0 + \beta_2$ is the number of closed surfaces (so that there are β_2 cavities)
- Formally, β*ⁱ* is the rank of the *i*-th homology group of the particular topological space, and can be algorithmically calculated

The Orientability of Surfaces

- An oriented triangle is a triangle with a direction on its frontier (e.g., clockwise or counterclockwise), which is called the orientation of that triangle
- Two triangles are called coherently oriented if they induce opposite orientations on their common side
- A triangulation of a surface is called orientable iff it is possible to orient all of the triangles in such a way that every pair of triangles with a common side is coherently oriented; otherwise it is called nonorientable
- All triangulations of the same surface are either orientable or nonorientable
- A surface is called orientable iff it has an orientable triangulation
- The orientability of a surface is a topological invariant

The Genus of Orientable Surfaces

- Let *S* be an orientable surface. The genus *g*(*S*) of *S* is the number of handles of *S*
- It can be shown that $\chi(S) = 2 2g(S)$
- The genus is a topological invariant

- A simple closed curve is defined as a one-dimensional continuum
- The topology of elementary curves can be characterized by the Euler characteristic and connectivity
- A simple closed surface is defined as a hole-free 2-manifold
- The topology of surfaces is uniquely determined by the number of frontiers, orientability, and Euler characteristic
- Betti numbers can correctly describe tunnels and cavities in surfaces
- A Möbius strip is a popular example of a nonorientable surface