PA170 Digital Geometry Lecture 07: Topological Characterization of Curves and Surfaces

Martin Maška (xmaska@fi.muni.cz)

Centre for Biomedical Image Analysis Faculty of Informatics, Masaryk University, Brno

Autumn 2023

Recap: Common Subfields of Topology

Point Set Topology

- It considers local properties of spaces, and is closely related to analysis
- It generalizes the concept of continuity to define topological spaces, in which limits of sequences can be considered

Combinatorial Topology

- It is the oldest branch of topology, which dates back to Euler
- It considers the global properties of spaces, built up from a network of vertices, edges, and faces

Algebraic Topology

- It also considers the global properties of spaces, and uses algebraic objects such as groups or rings to answer topological questions
- It converts topological problems into algebraic ones that are hopefully easier to solve

Differential Topology

- It considers spaces with some kind of smoothness associated to each point (e.g., a square and a circle are not differentiably equivalent to each other)
- It is useful for studying properties of vector fields, such as magnetic or electric fields

INTRODUCTION TO COMBINATORIAL TOPOLOGY

Motivation: Combinatorial Topology

- Combinatorial topology studies the topological properties of sets represented as complexes of small parts
- The topological properties are derived from these complexes

A Euclidean complex

A simplicial complex

Common Types of Complexes

• Euclidean complexes consist of convex cells

• Simplicial complexes consist of simplices

All *n*-simplices
$$(0 \le n \le 3)$$
:

• Simplicial complexes are special cases of Euclidean complexes

Euclidean Complexes: Definition

- Let $M \subseteq \mathbb{E}^n$ be the union of a finite number of convex cells
- A Euclidean complex is a partition *S* of *M* into a nonempty finite set of convex cells with the following two properties:

EC1: If *p* is a cell of *S* and *q* is a side of *p*, *q* is a cell of *S*

EC2: The intersection of two cells of *S* is either empty or a side of both cells

 A finite Euclidean complex that contains only triangles, line segments, and points is called a triangulation

CURVES

Simple Closed Curves: Definitions

• A simple closed curve γ splits the plane into two open components. One component is bounded and the other component is unbounded, with γ being the frontier between these components

Parametric Definition

γ is a set of points {(x, y) : φ(t) = (x, y) ∧ a ≤ t ≤ b} where φ : [a, b] → ℝ² is a continuous mapping the image of which is homeomorphic to a unit circle

Implicit Definition

• γ is a set of points {(x, y) : f(x, y) = 0} satisfying an equation f(x, y) = 0

Topological Definition

• γ is a one-dimensional continuum (a nonempty, compact, and topologically connected subset of a topological space) in \mathbb{E}^n

- A simple curve is a curve in which every point *p* has branching index 2
- A simple arc is either a curve in which every point *p* has branching index 2 except for its two endpoints, which have branching index 1, or a simple curve with one of its points labeled as an endpoint
- A regular point of a curve has branching index 2 and is not an endpoint
- A branch point has branching index 3 or greater
- A singular point is either an endpoint or a branch point
- An elementary curve is the union of a finite number of simple arcs, each pair of which have at most a finite number of points in common
- Elementary curves can be approximated by polygonal chains

Topological Characterization of Elementary Curves

• An elementary curve γ can be partitioned into a one-dimensional geometric complex *S* that consists of α_1 simple arcs (1-cells), α_0 endpoints (0-cells), and β_0 components

- The Euler characteristic χ(S) of S is defined as χ(S) = α₀ − α₁; χ(S) is preserved for any partition of γ
- The connectivity β₁(S) of S is given as β₁(S) = β₀ α₀ + α₁; β₁(S) is equal to the number of atomic cycles of S
- Both the Euler characteristic and connectivity are topological invariants

SURFACES

Manifolds

- Let [S, G] be a topological space and $p \in S$
- Any subset of S that contains an open superset of p is called a topological neighborhood of p
- [S, G] is called an *n*-manifold if every p ∈ S has a topological neighborhood in S, which is homeomorphic to an open *n*-sphere (near each point resembles ℝⁿ)
- An *n*-manifold is called hole-free iff it is compact (closed and bounded)
- The surfaces of a ball and of a torus are examples of hole-free 2-manifolds

Simple Closed Surfaces: Definitions

• A simple closed surface σ splits \mathbb{E}^3 into two open components. One component is bounded and the other component is unbounded, with σ being the frontier between these components

Parametric Definition

 σ is a set of points σ = {(x, y, z) : φ(s, t) = (x, y, z) ∧ a ≤ s, t ≤ b} where φ : [a, b] × [a, b] → ℝ³ is a continuous mapping the image of which is homeomorphic to a unit sphere

Implicit Definition

• σ is a set of points {(x, y, z) : f(x, y, z) = 0} satisfying an equation f(x, y, z) = 0

Topological Definition

• σ is a hole-free surface (a hole-free 2-manifold)

Surfaces with Frontiers: Definition

- A surface S is called a surface with frontiers iff S is homeomorphic to a polyhedral surface and can be partitioned into two nonempty subsets S° and ∂S such that every p ∈ S° has a topological neighborhood in S, which is homeomorphic to an open disk, and every p ∈ ∂S has a topological neighborhood in S, which is homeomorphic to the union of the interior of a triangle and one of its sides (without endpoints) where p is mapped onto that side
- The points of S° are called interior points of S, and the points of θS are called frontier points of S
- The number of frontiers is a topological invariant

Surfaces with Frontiers: Definition

- A surface S is called a surface with frontiers iff S is homeomorphic to a polyhedral surface and can be partitioned into two nonempty subsets S° and ϑS such that every $p \in S^{\circ}$ has a topological neighborhood in S, which is homeomorphic to an open disk, and every $p \in \vartheta S$ has a topological neighborhood in S, which is homeomorphic to the union of the interior of a triangle and one of its sides (without endpoints) where p is mapped onto that side
- The points of S° are called interior points of S, and the points of ϑS are called frontier points of S
- The number of frontiers is a topological invariant

A surface with three frontiers A surface with one frontier

Topological Characterization of 2D Euclidean Complexes

- Let *S* be a 2D Euclidean complex that consists of α_i *i*-cells ($0 \le i \le 2$)
- The Euler characteristic of *S* is defined as $\chi(S) = \alpha_0 \alpha_1 + \alpha_2$
- If *S* is a simple polyhedron, $\chi(S) = 2$ (Descartes & Euler)
- In 1812, Lhuilier incorrectly derived the following formula:

$$\alpha_0 - \alpha_1 + \alpha_2 = 2(c - t + 1) + p$$

where c is the number of cavities, t is the number of tunnels, and p is the number of polygons ("tunnel exits") on the polyhedron faces

Betti Numbers

Betti numbers β_i (0 ≤ i ≤ n) are topological invariants, which extend the polyhedral formula to *n*-dimensional spaces (the Poincaré formula):

$$\chi(\cdot) = \sum_{i=0}^{n} (-1)^{i} \cdot \beta_{i}$$

- Informally, β_0 is the number of connected components, β_1 is the number of tunnels, and $\beta_0 + \beta_2$ is the number of closed surfaces (so that there are β_2 cavities)
- Formally, β_i is the rank of the *i*-th homology group of the particular topological space, and can be algorithmically calculated

 $\beta_0 = 1, \, \beta_1 = 1059, \, \beta_2 = 0$

The Orientability of Surfaces

- An oriented triangle is a triangle with a direction on its frontier (e.g., clockwise or counterclockwise), which is called the orientation of that triangle
- Two triangles are called coherently oriented if they induce opposite orientations on their common side
- A triangulation of a surface is called orientable iff it is possible to orient all of the triangles in such a way that every pair of triangles with a common side is coherently oriented: otherwise it is called nonorientable
- All triangulations of the same surface are either orientable or nonorientable
- A surface is called orientable iff it has an orientable triangulation
- The orientability of a surface is a topological invariant

A Möbius strip

The Genus of Orientable Surfaces

- Let S be an orientable surface. The genus g(S) of S is the number of handles of S
- It can be shown that $\chi(S) = 2 2g(S)$
- The genus is a topological invariant

- A simple closed curve is defined as a one-dimensional continuum
- The topology of elementary curves can be characterized by the Euler characteristic and connectivity
- A simple closed surface is defined as a hole-free 2-manifold
- The topology of surfaces is uniquely determined by the number of frontiers, orientability, and Euler characteristic
- Betti numbers can correctly describe tunnels and cavities in surfaces
- A Möbius strip is a popular example of a nonorientable surface