PA199 - Game Engine Architecture
Jiri Chmelik

Semester: Autumn 2023

Ten or twenty years ago it was all fun and games.
Now it’s blood, sweat, and code.
--Jonathan Blow, 2004

Outline

» Introduction — What is game Engine?
» Game Engine Architecture
» Game Engine Modules
Low-level Engine systems
Graphics and Physics

Gameplay systems

Outline

» Introduction — What is game Engine?

» Game Engine Architecture

» Game Engine Modules
Low-level Engine systems
ok | Plssci
Gameplay-systems

What is Game Engine?

“The term “game engine” arose in the mid-1990s in reference to first-person
shooter (FPS) games like the insanely popular Doom by id Software. Doom
was architected with a reasonably well-defined separation between its core
software components (such as the three-dimensional graphics rendering
system, the collision detection system, or the audio system) and the art
assets, game worlds, and rules of play that comprised the player’s gaming
experience.”

[Greg2009]

What is Game Engine?

» A game engine is an open, extendable software system that can be used
as the foundation for more different games, without major modification.

» A game engine is free from any function, parameter, variable, class or
data structure that could be considered as part of an actual game.

» Generic infrastructure for game creation:
- Enables reuse of code
- Often facilitates porting code to various hardware platforms

- Glue together all sub-systems, middleware, libraries, etc.

Existing Game Engines

» History milestones » Proprietary, in-house Engines
= Quake » Sage (EA)
= 1996, Id Software, John Carmack et al. > RTS games
= Source codes now available » Glacier (IOI)
= Unreal
» Decima (Guerrilla Games)
- 1998, Epic . .
= Designed for FPS games, later extended to > Northlight Engine (Remedy Ent.)
general usage. » Enforce, Real Virtuality, Enfusion (BI),
= Source » LS3D (2K),

= 2004, Valve

= Half-life, Portal, ...
» https://en.wikipedia.org/wiki/List of game engines

= Unity
= 2005, Unity Technologies
" many

https://en.wikipedia.org/wiki/List_of_Unity_games
https://en.wikipedia.org/wiki/List_of_game_engines

Existing Game Engines

id Tech 2-0
Quake engine

id Tech 2 ,
. DarkPlaces QuakeWorld Hexen II Engine
Quake IT engine

id Tech 3
Quake III engine

_ id Tech 4) . .
Quake III Arena Quake Live . ioquake3 Source Engine Half-Life
Doom 3 engine

Tremulous Half-Life 2

Heretic 2 Quake 11 GoldSrc Hexen 11

Urban Terror

Quake Engine family, wikipedia

Game Engine Reusability Gamut

Can be "modded” to
Cannot be used to build Can be customized to build any game in a Can be used to build any

more than one game make very similar games specific genre game imaginable

Hydro Tﬁunder Quake Il Engine Unity Probably
Engine Engine 3 impossible

[Greg2009]

Game Engine Architecture

Two basic parts:

» Runtime components

» Tools and assets pipeline
- Digital Content Creation Tools (DCC, assets)

- Asset Conditioning Pipeline

= Tools — World editor

Architecture...

A 2D Game Circa 1994

sound

streaming

file | /0 main/misc. simulation

fast 2D graphics

[Blow2004]

Architecture...

A 3D Game Circa 1996

streaming mai : o] o collision

atti/ titiog.

file I/0 detection

fast 2D graphics 3D rendering

[Blow2004]

A 3D Single-Player Game Circa 2004

main/misc. sound, low-level

Architecture...

sound,
management

partitioning
and searc

ipted events/
Lay af

streaming file 1/0 3D animation

1pting

Tools

(often not

distributed

to players) scripted event
creation

[Blow2004]

A 3D MMG Circa 2004

shared client

server main/misc. client main/misc
connects to connects to
nearly everything patch/update network network nearly everything
in sarvar server low-level prediction/ in server
and shared correction and shared
natwork

collision detection/
scene management

intersection client gameplay

code
account/
registration simulation/ 3D animati
sarver physics a(r:‘]S[]l? ion

server
gameplay code

sound:
manager

sound:
low-level
persistent

store spatial partition

and query

streaming "
. 3D rendering:
file 170 low-level

persistent
Ko static 3D animation
glue file 1/0 [skeletal only)

3D rendering:
scone management

database analysis :
and recovery scripted script evaluator
content

Tools

(often not scripted world construction goometry and client software
distributed content and layout animation audio/animation update publishing
to players) creation exporters

[Blow2004]

game master tools physically-based

Architecture...

» Ideal scenario - reality is elsewhere

» Each node = alot of code

Greg2009

BAME-FFECKFIC SUESVETEMS

G- & padfio Rendering Player Maznanios

Gamaplay Foundations.

Wrappers
Maoge

Wigual Effects

Online MuEiplaysr

Human interface
Dewiloss (HID}

ame: Menus

Res: ac Hame Acceic)

Hardwars (FC, XS0X 280, FS3, =)

Architecture - Game Engine Modules

v v VY

v

Core

Graphics

Animation

Physics

Sound

Scripting

Artificial Intelligence
Networking

User Interface

Many more

» Low-level Engine systems
Core / Engine Support Systems
Resources and File Systems
Game Loops and Times
Human Interface Devices
Tools for Debugging and Development
» Graphics and Physics systems

» Gameplay systems

» Middleware

Outline

» Introduction — What is game Engine?
» Game Engine Architecture
» Game Engine Modules

= Low-level Engine systems

= Graphics and Physics

= Gameplay systems

Outline

» Introduction — What is game Engine?
» Game Engine Architecture

» Game Engine Modules

» Low-level Engine systems
Core / Engine Support Systems
Resources and File Systems
« Game Loops and Times
Human Interface Devices

Tools for Debugging and Development

Core / Engine Support Systems

» Starting up, shuting down subsystems
= In defined order
= Could be solved e.g. by Singleton pattern
« Ogre (Rendering engine):

OgreRoot.h
class OgreExport Root : public Singleton<Root>
// Singletons
LogManager* mLogManager;
SceneManager* mCurrentSceneManager;
MaterialManager* mMaterialManager;

MeshManager* mMeshManager;

SkeletonManager* mSkeletonManager;

Core / Engine Support Systems

» Memory Management
- RAM (along CPU, GPU times) are main resources in “runtime budget”
= Efficient data storage

= Standard vs. custom made data structures
Continuous LOD, UE5 Nanite

» Localization system
= Not just strings
» Engine configuration

= Usually contfig files. Ogre example:
plugins.cfg—list of optional engine plug-ins are enabled and where to find them on disk.
resources.cfg —paths to game assets folders.

ogre.cfg - options specifying renderer (DirectX or OpenGL), preferred video mode, screen size, etc.

= How to load them, activate them (in-game console).

Resources and File Systems

» Wide variety of assets in use:
- texture (various formats),
- 3D meshes for graphics, for collisions,
- animation clips, audio clips,

- level design, etc.

» Each particular asset should be loaded in memory just once

- If five meshes share the same texture...

» Offline Asset manager (recourse manager, media manager)

Resources and File Systems

» File system
- Wraps OS native file system API - multiplatform support
- Filenames and paths
= Synchronous (loading screen), asynchronous I/O operations (streaming)

,Genshin Impact” example
» Cross-platform MO (not ,, massive”)
» Auto-updater, DLCs
» Huge and detailed world — cannot fit into memory
» Teleport mechanics — synchronous loading
» Exploring mechanics — streaming — visible LOD poping effect
» Different sizes on different platform

» Unity

Resources and File Systems

» Asset Manager
- Off-line (non run-time) part
Example — 2D artist POW vs. level designer PoW.
Version control system for source assets (PSD, blender files), e.g. Perforce
Tools to transform assets to engine-ready form
Packing assets

Resource database tool

Runtime asset managment
Lifetime — data loading / unloading
Redundancy - single copy

Memory managment

Outline

» Introduction — What is game Engine?
» Game Engine Architecture

» Game Engine Modules

» Low-level Engine systems
Core / Engine Support Systems
Resources and File Systems
« Game Loops and Time
Human Interface Devices

Tools for Debugging and Development

Game Loop

While (true)

{

processInput () ;
update () ;

render ()

“program spends 90% of its time in 10% of the code”

Rendering Loop

Wwhile (!quit)

{
updateCamera () ;
updateScene () ;
renderScene () ;

SwapBuffers() ;

» Target - atleast 60 FPS (about 16 milliseconds per frame).

Game Loop

» Composition of all subsystems
= Rendering loop
= Simulation loop
= /O handling
= Audio
= Networking
= Al
= Etc.
» Various subsystems uses various frequency
= Graphics — 60Hz
= Physics simulations — 50Hz at Unity, 1000Hz for haptics
= Al-few Hz
= OS messages, callbacks — not fix frequency

» Some have to be in sync, some not

Time in Game

Real time

Game time, time scale, pause, ...
Animation timeline

CPU time budget

GPU time budget

Update A-time, FixedUpdate time
Network time (hit/miss problem)
display’s refresh rate, multithreading,

etc.

vV vV v v v v vV v v.yY

Time precision vs. Magnitude
= Example: Time since game was started

in seconds, stored as float value

MMORPG, server running for days, weeks, ...

Outline

» Introduction — What is game Engine?
» Game Engine Architecture

» Game Engine Modules

» Low-level Engine systems
Core / Engine Support Systems
Resources and File Systems
« Game Loops and Time
Human Interface Devices

Tools for Debugging and Development

Human Interface Devices (HID)

» Pleathora of devices; input, output taxonomy ...

» Key term “mapping”
= Translates raw input (state of device, analog signals) into events (button down, button up)
= Cross-platform support
= Gestures (repeated tapping) recognition, combos (sequences), chords

= Translates input events into game actions (On higher level of game engine)

» Chords
- Multiple keys / buttons pressed in “the same” time

- Detection (human imperfection, few frames buffer)

Collision with single-button actions
» Wait before performing action

» Start action, cancel it if chord is detected

Outline

» Introduction — What is game Engine?
» Game Engine Architecture

» Game Engine Modules

» Low-level Engine systems
Core / Engine Support Systems
Resources and File Systems
« Game Loops and Time
Human Interface Devices

Tools for Debugging and Development

Logging and Tracing

» Old-school print... () functions

= PC - console application

= On game consoles, mobile platform — through engine — console window
» Verbosity level

= volid VerboseDebugPrint (int verbosity, string message,
» Channnels, filters

= Log, warning, error

= Rendering, simulation, animation, file system, ...

= QOutput to file
» Crash report

= Via exception handler

= Current level, World-space location of the player

= Animation/action state of the player

= Current state of other subsystems

Debug Drawing Facilities

» Debug ray, debug 2D, 3D shapes
- Simple to use in code, do not have to be super-fast
- Not included in released version

» “One might say that a picture is worth 1,000 minutes of debugging.” [Greg2009]

» Usually provide a simple way for taking screenshots

Debug Drawing Facilities

» Uncharted: Drake’s Fortune, Naughty Dog [Greg2009]

Menus, console

» In-game Menus
« Turning on/off, configuring engine subsystems — in runtime
= Should not be accessible in released games

= Video: Uncharted 4: Debug Menu

= Video: Unreal Engine 5 tech demo

Optimized for console controls

» In-game Console

= Video: Counter-strike with steering wheel

https://youtu.be/cbIZ1vD3h6Q
https://youtu.be/qC5KtatMcUw?t=135
https://youtu.be/Fl35QCbMi-c
https://youtu.be/Fl35QCbMi-c
https://youtu.be/Fl35QCbMi-c

In-Game Profiling

» Simple overlay - in game, in editor

= Performance in editor # performance in build game

Maximize On Play Mute Audio | Stats |Gizmos |~ ' | 4
Collision d |

Stat

E-SF‘F‘Dmt Check

Audia:

N Level:-74.8dB DSP load: 0.2%
Clipping: 0.0% Stream load: 0.0% o .:he,:k
ez Lz Chae
Graphics: 161.3 FPS (6.2ms) Sliceine SRl
CPU: main 8.2ms render thread 1.1ms
Batches: 4 Saved by batching: O
' Tris: 1.7k Verts: 5.1k

Screen: 946x532 - 5.8 MB
SetPasscalls: 4 Shadow casters: 0
Visible skinned meshes: 0 Animations: O

Unity Unreal Engine

In-Game Profiling

- a¥el:
] Timeline’ recording : . A *| ™ Record Deep Profile | Profile Editor | Active Profiler ™| Clear | Frame: 670 f B23 Eurrent_
. ' GPU Usage - 10ms {100FFS)
= Hierarchy . atl

[Shadows /Depth
B Deferred PrePass |
[Deferred Lighting b R . oA R,) e U2 s o0 B n 1 s om0 et o
B PostProcess Yy ' i L S T By S

W Cther

» 3rd Party Tools : o
= NVIDIA Nsight Graphics
= RenderDoc

" XCOde tOOlS Main TI | Hierarchy CPU:0.809ms CPU:7.66ms | Frame Debugger
Oveview | Total| DrawCalls| GPUms| |Object| Total| DrawCalls|GPU ms
¥ Camera.Render 48 4| Main Ca32.8% 15 2.518
Drawing 3
¥ Render.OpagueGeometry
RenderDeferred.GBuffer 0% 3
:

RenderDeferred.Light

o
Y

= oM
L
5

]

)]
—
S

Pl RE8)
LA =l
= =]
o

o
=
o

P Shadows .RenderShadowmap
Shadows.CollectShadows
RenderTexture SetActive

RenderDeferred.FinalPass
RenderTexture SetActive
Camera.RenderSkybox

Camara lmsnaFffacte

w
L IO s T W
ga o L
[
o

Y

N I?F
0.322

S FT

e e BN

Middleware

» 3rd party software ,layer” providing functionality of some engine sub-system
= Graphical subsystem
trueSky - Cloud, Atmosphere and Weather Tool Kit
Ogre3D - Graphical engine itself, could be used as middleware
Enlighten — used in previous versions of Unity for Global Illumination
= Physics, Animation
Havok — 3D physics Engine,

Euphoria — motion synthesis, , inteligent ragdoll”

Middleware

» Sound
- Wwise - audio engine and authoring tools

Cyberpunk, Hitman IIJ, ...

- FMOD
Creaks, Tomb Raider, KCD, Witcher 2, ...

- OpenAL
Similar to OpenGL

References

» Game Programming Patterns — Robert Nystrom, 2009-2014, available online.
» [Greg2009] - Jason Gregory: Game Engine Architecture, 2009
» BinSubaih et al. - A Survey of ‘Game’ Portability, 2007, available online.

» [Blow2004] - Game Development: Harder Than You Think: Ten or twenty years ago it
was all fun and games. Now it’s blood, sweat, and code, 2004, available online.

https://gameprogrammingpatterns.com/
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0705.pdf
https://dl.acm.org/doi/10.1145/971564.971590

