Particle system dynamics

Jiri Chmelik, Marek Trtik
PA199

Outline

>

>

>

>

>

Motivation

Motion of a single particle: Equations of motion
» Use of an ODE solver

Motion of many particles

Forces
» Gravity, drag, spring, local inferaction

Collision: particle vs. plane
» Detection, response, simple friction

Motivation

WIBJSAS

-9[21HPd-AlUN/UDYSNPOW

DUHYSHOT/WOD anyyB//:sdiy

https://en.wikipedia.org
/wiki/Particle_system

https://experiments.withgoogle.com/fluid-particles

Particle definifion

» Parficle = an abstract object with these properties:
» No spatial extent - it is just a point in 3D space
» Velocity
» Respond to forces (e.g., gravity)
» Mass - resistance to changes in motion state

» Particle in math: P = (x,v, F,m).
» Particle in C++:
struct Particle {
Vector3 position;
Vector3 velocity;
Vector3d force;
float mass;

Parficle equations of mofion

» Motion of a particle P in space is given by a function of time:
» P(t)=(x,v,F,m)(t) = (x(t),v(t), F,m)
» mis constant (not dependent on time).
» F is total external force (not updated by the particle system).

» To compute P(t) we need to know how it changes in time.
=> We need to compute P(t) = (x(t), v(t)).
» Newton's second law of motion: F = ma
dv

» Important relations: v = x = % ,a=v=—.

» So, P(t) is a solution of Newton’s equations of motion:

LN N
x(t) = v(t), v(t)—a—a.

Solving equations of motion

» There is 6 ordinary differential equations (ODE) of the 15 order in the

Newton's equations of a single particle.
» x(t) and v(t) are 3D vector functions.

» In general, a system of n 15" order ODEs has the form:
y=F(yt)
where y(t) = (yo(b), ...,yn_l(t))T olgle
F,8) = (FoGo(®), e, o1 (0,0, e, Frca o (), o, Ynea (0,0)
Therefore, we have a system:

yO — FO(yOJ o Yn—1» t)' Iyn—l — Fn—l(yO; o Yn—1 t)
» At each simulation time t, we know x(t,) = X, and v(ty) = V,.

» Therefore, we solve the initial value problem of 15t order ODEs:
y=F,t). y(to) = Yo

Solving equations of motion

» We are given a black-box function ODE solving the initial value
problem of 15t order ODEs y = F(y,t), y(ty) = ¥ -

using F_y_t1 = std::function<float(std::vector<float> const&,float)>;

void ODE(
std::.vector<float> const& y0, /] X,V Of particle(s)
std::vector<f_y_t> const& Fyt, // x,v of particle(s), i.e. v, F/m
float& t, // current time (to be updated)
float const dft, // tfime step
std::vector<float>& y // integrated x, v of particle(s)

);

NOTE: Implementation of ODE is the topic of next lecture.

Bullding Inifial state for ODE

void getState(Particle const& p, std::vector<float>& y0) {
yO.push_back(p.position.x);
y0.push_back(p.position.y);
yO.push_back(p.position.z);

yO.push_back(p.velocity .x);
y0.push_back(p.velocity.y);
y0O.push_back(p.velocity.z);

Building derivatives tfor ODE

void getDerivative(Parficle const& p, std:ivector<F_y_t>& Fyt) {

Fyt.push_back(]

Fyt.push_back(]
Fyt.push_back(]

Fyt.push_back(]
Fyt.push_back(]
Fyt.push_back(]

}

](std:

](std:
](std:

](std:
](std:
](std:

vector<float> const&,float){ return p.velocity.x; });

vector<float> const&,float){ return p.velocity.y; });
:vector<float> const&,float){ return p.velocity.z; });

:vector<float> const&,float){ return p.force.x/p.mass; });
vector<float> const&,float){ return p.force.y/p.mass; });
.-vector<float> const&,float){ return p.force.z/p.mass; });

» Observation: Parameters of lambda functions are not used.
» Our functions F(y, t) are simple; ODE solver handles general case.

Simulation step for single particle

void doSimulationStep (Particle& p, float& t, float const dt) {
UpdateForce(p,t,dt); // Applies external forces and impulses.

std::vector<float> y0, vy;

std::vector<k_y_t> Fyf;

getState(p, y0);

getDerivative(p, Fyft);

ODE(yO0, Fyt, t, dt, y); // Computes y and updates t (t += dft).
setState(p, y.begin());

10

Saving ODE results

void setState(Particle& p, std:.vector<float>:.const_iterator& it) {
p.position.x = *it; ++if;
p.position.y = *it; ++it;
p.position.z = *it; ++it;

p.velocity.x = *it; ++it;
p.velocity.y = *it; ++it;
p.velocity.z = *it; ++if;

Data flow In simulation step

p.posi’&;n p:yeloci’ry
yo|X|y|Zz|Xx|Y|Zz
p.velocity Qv @p.force/p.mass
Fyt | fx fy fz| [« fy fz
ODEl
yix|ylz|x|yl|z
p.position p.velocity

12

Parficle system

» |t is a system consisting of n patricles.

» Parficle system in math:
?n — [PO;P]_; ""‘7)71—1] —
[(x0, Vo, Fo, mg), (X1, V1, F1,my), ..., (Xp_1,Vp—1, Fumg, my_1)].

» Parficle system in C++:
using ParficleSystem = std::vector<Particle>;

13

ODE helper functions

void getState(ParticleSystem consté& ps, std:.vector<float>& y0) {
for (Partficle const& p : ps) getState(p.y0);

}

void getDerivative(ParticleSystem const& ps, std::vector<F_y_t>& Fyf) {
for (Partficle const& p : ps) getDerivatives(p, Fyt);

}

void setState (ParticleSystem& ps, std:.vector<float>:.const_iterator& if) {
for (Particle& p : ps) setState(p, it);

}

14

Simulation step for whole system

void doSimulationStep (ParticleSystem& ps, float& 1, float const dt) {
UpdateForce(ps,t,dt); // Applies external forces and impulses.

std::vector<float> y0, vy;

std::vector<k_y_t> Fyf;

getState(ps, y0);

getDerivative(ps, Fyt);

ODE(yO0, Fyt, t, dt, y); // Computes y and updates t (t += dft).
setState(ps, y.begin());

15

y0

Fyt

Data flow In simulation step

f;

;

;

f

3

ODEl

y

z

L

f.%

z

z

X

y

Z

X

y

Z

X

y

Z

X

y

Z

X

y

Z

NOTE: For P™ we have a system of 6n equations.

Forces

void UpdateForce(ParticleSystem& ps, float const 1, float const dt) {
clearForce(ps);
applyForce(ps.t,dt); // Add all forces and impulses to all particles.

}

void clearForce(ParticleSystem& ps) {
for (Particle& p : ps) p.force = Vector3(0,0,0);

}

» Next we discuss what forces we can add to particles inside the
function applyForce().

17

Gravity

» Homogenous field:

» For each particle we add the force vector F = mg where
» mis the mass of the particle.
» g is a constant vector, e.g., g = Vector3(0,0, —10).

» Radial field:
» There is a center of gravity § of mass M (it can be one of the particles).
» For each particle we add the force vector

Mm S-x Mm
F=G6 = Cisap S — %) where

» G is the gravitational constant.
» mis the mass of the particle.
» x is the position of the particle.

» We can handle cases when [§ — x| is small by not applying the force.

18

Viscous Drag

» A force of the environment making a parficle decrease its velocity
relative to the environment.

» A drag force can also enhance numerical stability of simulation.

» For each parficle we add the force vector F = k;(V — v), where
» k, is the coefficient of drag.
» V is the velocity of the environment (often V = 0).
» v is the velocity of the particle.

19

NYeltlgle

» It is a force between two particles P; and P; given by Hook’s law:

F; = — | ks(ld| — dp) + kqd 4)4
[— S 0] d |d| |d|

F; = —F; (3 Newton's law - action and reaction)

where

» k. is the spring constant.

» k, is the damping constant.

» d = x; — x; is the distance vector between the particles.
» d, is the rest length between the particles.

>d=v, — v; is the relafive velocity between the particles.

20

Local interaction

» Particles start to inferact when they come close.
» Particles stop to interact when they move apart.

» Example: Particle-based fluid simulation.

» Computationally expensive task:
» 0(n?) - all pairs of particles are checked.
» Space partitioning methods (e.q., octree)
are essential for performance.

https://experiments.withgoogle.com/fluid-particles

Collision: particle vs. plane

» We often want particles to collide with the ground or a wall. These
boundaries can be approximated by planes.

https://github.com/LakshithaMadushan/Unity-
Partficle-System

» The process consists of two parts:
» Detection of a collision.
» Response to the collision.

22

Collision detection

» Let us consider a particle P = (x,v, F,m).

» The plane is represented by the equation N - (X — P) = 0, where
» N is the unit normal vector pointing “outside” (above the ground).
» Pis some point in the plane.
» X is a tested point.

» The particle collides with the plane only if N- (x — P) < 0.
» Only in that case we proceed to the collision response.

23

Collision response

» If the particle increases the penetration with the plane, i.e., when N -

v < 0, then we change the component of v orthogonal to the plane:
» The component of v orthogonal to the plane is v+ = (N - v)N.
» The velocity change is thenis Av = —(1 + r)vt = —(1 + r)(N - v)N, where
» r €(0,1) is the coefficient of restitution.
» We update v to be v + Av.
» NOTE: Formally, we apply an impulse I = mAv to the particle.

» If N-F <0, then we cancel the component of F orthogonal fo the

plane:

» We compute AF = —F*, where F+ = (N - F)N.

» We update F to be F + AF.

» NOTE: This step should be applied after all external forces (gravity, etc.)

were added to the F field of the particle. o

Simple friction

» We build a simplified friction model for particle system:
» We do not distinguish static and dynamic friction.
» We ignore variable changes caused by inferactions with other particles.

» If N-F <0, then a friction force F; is acting on the particle:
» |Ff| is proportional to |F+|, where F+ = (N - F)N.

» The direction of F; is opposite to the component v! of v parallel with the
NXvXN

INXvXN|

plane, where v!l =

» Therefore, we define the friction force as F; = k¢(N - F)v", where
» k¢ is a friction coefficient.

» Note: We should apply the friction before the collision response. o

Summary

» We defined particle and particle system.

» We learned Newton's equations of motion for a particle, i.e., a system
of 15t order ODEs.

» We learned how to use ODE solver for the simulation.
» We learned several kinds of forces which we can apply to particles.

» We know how to compute and respond to collision of a particle with a
plane, including application of a friction force.

26

References

» [1] Andrew Witkin; Physically Based Modeling: Principles and Practice
Parficle System Dynamics; Robotics Institute, Carnegie Mellon
University, 1997.

27

	Slide 1: Particle system dynamics
	Slide 2: Outline
	Slide 3: Motivation
	Slide 4: Particle definition
	Slide 5: Particle equations of motion
	Slide 6: Solving equations of motion
	Slide 7: Solving equations of motion
	Slide 8: Building initial state for ODE
	Slide 9: Building derivatives for ODE
	Slide 10: Simulation step for single particle
	Slide 11: Saving ODE results
	Slide 12: Data flow in simulation step
	Slide 13: Particle system
	Slide 14: ODE helper functions
	Slide 15: Simulation step for whole system
	Slide 16: Data flow in simulation step
	Slide 17: Forces
	Slide 18: Gravity
	Slide 19: Viscous Drag
	Slide 20: Spring
	Slide 21: Local interaction
	Slide 22: Collision: particle vs. plane
	Slide 23: Collision detection
	Slide 24: Collision response
	Slide 25: Simple friction
	Slide 26: Summary
	Slide 27: References

