Particle system dynamics

Jiří Chmelík, <u>Marek Trtík</u> PA199

Outline

- Motivation
- Motion of a single particle: Equations of motion
 - Use of an ODE solver
- Motion of many particles
- Forces
 - Gravity, drag, spring, local interaction
- Collision: particle vs. plane
 - Detection, response, simple friction

Motivation

Particle definition

- Particle = an abstract object with these properties:
 - No spatial extent it is just a point in 3D space
 - Velocity
 - Respond to forces (e.g., gravity)

Vector3 force;

float mass;

- Mass resistance to changes in motion state
- ▶ Particle in math: $\mathcal{P} = (x, v, F, m)$.

```
Particle in C++:
struct Particle {
Vector3 position;
Vector3 velocity;
```

;

Particle equations of motion

- \blacktriangleright Motion of a particle \mathcal{P} in space is given by a function of time:
 - $\mathcal{P}(t) = (\mathbf{x}, \mathbf{v}, \mathbf{F}, m)(t) = (\mathbf{x}(t), \mathbf{v}(t), \mathbf{F}, m)$
 - \blacktriangleright m is constant (not dependent on time).
 - \triangleright **F** is total **external** force (not updated by the particle system).
- ▶ To compute $\mathcal{P}(t)$ we need to know how it **changes in time**.
 - => We need to compute $\dot{\mathcal{P}}(t) = (\dot{x}(t), \dot{v}(t))$.
 - Newton's second law of motion: F = ma
 - Important relations: $v = \dot{x} = \frac{dx}{dt}$, $a = \dot{v} = \frac{dv}{dt}$.
- \triangleright So, $\mathcal{P}(t)$ is a solution of Newton's equations of motion:

$$\dot{x}(t) = v(t), \qquad \dot{v}(t) = a = \frac{F}{m}.$$

Solving equations of motion

- ► There is 6 **ordinary differential equations** (ODE) of the 1st order in the Newton's equations of a single particle.
 - \triangleright x(t) and v(t) are 3D vector functions.
- ln general, a system of n 1st order ODEs has the form:

$$\dot{\boldsymbol{y}} = \boldsymbol{F}(\boldsymbol{y},t)$$

where $y(t) = (y_0(t), ..., y_{n-1}(t))^T$ and

$$\mathbf{F}(\mathbf{y}, \mathbf{t}) = (F_0(y_0(t), \dots, y_{n-1}(t), t), \dots, F_{n-1}(y_0(t), \dots, y_{n-1}(t), t))^{\top}.$$

Therefore, we have a system:

$$\dot{y}_0 = F_0(y_0, \dots, y_{n-1}, t), \qquad \dots \quad , \dot{y}_{n-1} = F_{n-1}(y_0, \dots, y_{n-1}, t)$$

- \blacktriangleright At each simulation time t_0 we know $x(t_0)=X_0$ and $v(t_0)=V_0$.
- ▶ Therefore, we solve the **initial value problem** of 1st order ODEs:

$$\dot{\mathbf{y}} = \mathbf{F}(\mathbf{y}, t), \ \mathbf{y}(t_0) = \mathbf{y}_0$$

Solving equations of motion

We are given a black-box function ODE solving the initial value problem of 1st order ODEs $\dot{y} = F(y,t)$, $y(t_0) = y_0$:

```
using F_y_t = std::function<float(std::vector<float> const&,float)>;
```

```
void ODE( std::vector<float> const& y0, std::vector<F_y_t> const& Fyt, float& t, float const dt, std::vector<float>& y0, std::vector<float>& y0, std::vector<float>& y0, std::vector<float>& y0, std::vector<float>& y1, std::vector<float>& y2, std::vector<float>& y3, std::vector<float>& y4, std:
```

NOTE: Implementation of ODE is the topic of next lecture.

Building initial state for ODE

```
void getState(Particle const& p, std::vector<float>& y0) {
    y0.push_back(p.position.x);
    y0.push_back(p.position.z);

    y0.push_back(p.velocity.x);
    y0.push_back(p.velocity.y);
    y0.push_back(p.velocity.y);
}
```

Building derivatives for ODE

```
void getDerivative(Particle const& p, std::vector<F_y_t>& Fyt) {
    Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.x; });
    Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.y; });
    Fyt.push_back([&p](std::vector<float> const&,float){ return p.velocity.z; });

Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.x/p.mass; });
    Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.y/p.mass; });
    Fyt.push_back([&p](std::vector<float> const&,float){ return p.force.z/p.mass; });
}
```

- Observation: Parameters of lambda functions are not used.
 - \blacktriangleright Our functions F(y,t) are simple; ODE solver handles general case.

Simulation step for single particle

```
void doSimulationStep(Particle& p, float& t, float const dt) {
     UpdateForce(p,t,dt); // Applies external forces and impulses.
     std::vector<float> y0, y;
     std::vector<F_y_t> Fyt;
     getState(p, y0);
     getDerivative(p, Fyt);
     ODE(y0, Fyt, t, dt, y);
                               // Computes y and updates t (t += dt).
     setState(p, y.begin());
```

Saving ODE results

```
void setState(Particle& p, std::vector<float>::const_iterator& it) {
    p.position.x = *it; ++it;
    p.position.z = *it; ++it;
    p.velocity.x = *it; ++it;
    p.velocity.y = *it; ++it;
    p.velocity.y = *it; ++it;
    p.velocity.z = *it; ++it;
}
```

Data flow in simulation step

Particle system

- \blacktriangleright It is a system consisting of n patricles.
- ▶ Particle system in math:

$$\mathcal{P}^{n} = [\mathcal{P}_{0}, \mathcal{P}_{1}, \dots, \mathcal{P}_{n-1}] = [(\mathbf{x}_{0}, \mathbf{v}_{0}, \mathbf{F}_{0}, m_{0}), (\mathbf{x}_{1}, \mathbf{v}_{1}, \mathbf{F}_{1}, m_{1}), \dots, (\mathbf{x}_{n-1}, \mathbf{v}_{n-1}, \mathbf{F}_{n-1}, m_{n-1})].$$

Particle system in C++:
using ParticleSystem = std::vector<Particle>;

ODE helper functions

```
void getState(ParticleSystem const& ps, std::vector<float>& y0) {
      for (Particle const& p : ps) getState(p,y0);
void getDerivative(ParticleSystem const& ps, std::vector<F_y_t>& Fyt) {
      for (Particle const& p : ps) getDerivatives(p, Fyt);
void setState(ParticleSystem& ps, std::vector<float>::const_iterator& it) {
     for (Particle& p : ps) setState(p, it);
```

Simulation step for whole system

```
void doSimulationStep(ParticleSystem& ps, float& t, float const dt) {
     UpdateForce(ps,t,dt); // Applies external forces and impulses.
     std::vector<float> y0, y;
     std::vector<F_y_t> Fyt;
     getState(ps, y0);
     getDerivative(ps, Fyt);
     ODE(y0, Fyt, t, dt, y);
                               // Computes y and updates t (t += dt).
     setState(ps, y.begin());
```

Data flow in simulation step

NOTE: For \mathcal{P}^n we have a system of 6n equations.

Forces

```
void UpdateForce(ParticleSystem& ps, float const t, float const dt) {
    clearForce(ps);
    applyForce(ps,t,dt); // Add all forces and impulses to all particles.
}

void clearForce(ParticleSystem& ps) {
    for (Particle& p : ps) p.force = Vector3(0,0,0);
}
```

Next we discuss what forces we can add to particles inside the function applyForce().

Gravity

- ► Homogenous field:
 - For each particle we add the force vector $\mathbf{F} = m\mathbf{g}$ where
 - \blacktriangleright m is the mass of the particle.
 - **g** is a **constant** vector, e.g., g = Vector3(0,0,-10).
- Radial field:
 - \triangleright There is a center of gravity S of mass M (it can be one of the particles).
 - For each particle we add the force vector

$$F = G \frac{Mm}{|S-x|^2} \frac{S-x}{|S-x|} = G \frac{Mm}{|S-x|^3} (S-x)$$
, where

- G is the gravitational constant.
- \blacktriangleright m is the mass of the particle.
- \triangleright x is the position of the particle.
- ▶ We can handle cases when |S x| is small by not applying the force.

Viscous Drag

- ► A force of the environment making a particle decrease its velocity relative to the environment.
- ▶ A drag force can also enhance numerical stability of simulation.
- ▶ For each particle we add the force vector $\mathbf{F} = k_d(\mathbf{V} \mathbf{v})$, where
 - \triangleright k_d is the coefficient of drag.
 - \triangleright V is the velocity of the environment (often V = 0).
 - ightharpoonup v is the velocity of the particle.

Spring

lt is a force between two particles \mathcal{P}_i and \mathcal{P}_j given by Hook's law:

$$\begin{aligned} \boldsymbol{F}_i &= -\left(k_S(|\boldsymbol{d}| - d_0) + k_d \dot{\boldsymbol{d}} \cdot \frac{\boldsymbol{d}}{|\boldsymbol{d}|}\right) \frac{\boldsymbol{d}}{|\boldsymbol{d}|} \\ \boldsymbol{F}_i &= -\boldsymbol{F}_i \quad \text{(3rd Newton's law - action and reaction)} \end{aligned}$$

where

- $\triangleright k_s$ is the spring constant.
- $\triangleright k_d$ is the damping constant.
- $ightharpoonup d = x_i x_i$ is the distance vector between the particles.
- $ightharpoonup d_0$ is the rest length between the particles.
- $ightharpoonup \dot{d} = v_i v_j$ is the relative velocity between the particles.

Local interaction

- ▶ Particles start to interact when they come close.
- Particles stop to interact when they move apart.
- Example: Particle-based fluid simulation.
- Computationally expensive task:
 - \triangleright $\mathcal{O}(n^2)$ all pairs of particles are checked.
 - Space partitioning methods (e.g., octree) are essential for performance.

https://experiments.withgoogle.com/fluid-particles

Collision: particle vs. plane

We often want particles to collide with the ground or a wall. These boundaries can be approximated by planes.

https://github.com/LakshithaMadushan/Unity-Particle-System

- ▶ The process consists of two parts:
 - Detection of a collision.
 - Response to the collision.

Collision detection

- Let us consider a particle $\mathcal{P} = (x, v, F, m)$.
- ▶ The plane is represented by the equation $\mathbf{N} \cdot (\mathbf{X} \mathbf{P}) = 0$, where
 - \triangleright **N** is the unit normal vector pointing "outside" (above the ground).
 - **P** is some point in the plane.
 - **X** is a tested point.
- ▶ The particle collides with the plane only if $\mathbf{N} \cdot (\mathbf{x} \mathbf{P}) \leq 0$.
 - Only in that case we proceed to the collision response.

Collision response

- If the particle increases the penetration with the plane, i.e., when $N \cdot v < 0$, then we change the component of v orthogonal to the plane:
 - ▶ The component of v orthogonal to the plane is $v^{\perp} = (N \cdot v)N$.
 - The velocity change is then is $\Delta v = -(1+r)v^{\perp} = -(1+r)(N \cdot v)N$, where $r \in \langle 0,1 \rangle$ is the coefficient of restitution.
 - \blacktriangleright We update v to be $v + \Delta v$.
 - NOTE: Formally, we apply an impulse $I = m\Delta v$ to the particle.
- ▶ If $N \cdot F < 0$, then we cancel the component of F orthogonal to the plane:
 - We compute $\Delta F = -F^{\perp}$, where $F^{\perp} = (N \cdot F)N$.
 - ▶ We update F to be $F + \Delta F$.
 - NOTE: This step should be applied after all external forces (gravity, etc.) were added to the F field of the particle.

Simple friction

- ▶ We build a simplified friction model for particle system:
 - ▶ We do not distinguish static and dynamic friction.
 - ▶ We ignore variable changes caused by interactions with other particles.
- ▶ If $N \cdot F < 0$, then a friction force F_f is acting on the particle:
 - $|F_f|$ is proportional to $|F^{\perp}|$, where $F^{\perp} = (N \cdot F)N$.
 - The direction of F_f is opposite to the component v^{\parallel} of v parallel with the plane, where $v^{\parallel} = \frac{N \times v \times N}{|N \times v \times N|}$.
- ▶ Therefore, we define the friction force as $\mathbf{F}_f = k_f (\mathbf{N} \cdot \mathbf{F}) \mathbf{v}^{\parallel}$, where
 - \triangleright k_f is a friction coefficient.
- ▶ Note: We should apply the friction before the collision response.

Summary

- We defined particle and particle system.
- ▶ We learned Newton's equations of motion for a particle, i.e., a system of 1st order ODEs.
- We learned how to use ODE solver for the simulation.
- We learned several kinds of forces which we can apply to particles.
- We know how to compute and respond to collision of a particle with a plane, including application of a friction force.

References

▶ [1] Andrew Witkin; Physically Based Modeling: Principles and Practice Particle System Dynamics; Robotics Institute, Carnegie Mellon University, 1997.