
Solving differential equations

Jiří Chmelík, Marek Trtík

PA199

2

 Initial value problem for ordinary differential equations.

 Forward Euler’s method.

 Backward Euler’s method.

 Midpoint method.

 Runge-Kutta methods.

Outline

3

Initial value problem

4

 Initial value problem (IVP) for the 1st order ordinary differential

equations (ODE)s:
ሶ𝒚 = 𝑭 𝒚, 𝑡 , 𝒚 𝑡0 = 𝒚0

 𝒚 𝑡 = 𝑦1 𝑡 , … , 𝑦𝑛 𝑡
⊤

is a vector of unknown functions 𝑦𝑖: ℝ → ℝ.

 𝑭 𝒚, 𝑡 = 𝑓1 𝒚 𝑡 , 𝑡 , … , 𝑓𝑛 𝒚 𝑡 , 𝑡
⊤

is a vector of known fns 𝑓𝑖: ℝ
𝑛+1 → ℝ.

 The initial value condition:
 𝑡0 given time point.

 𝒚0 = 𝑦1 𝑡0 , … , 𝑦𝑛 𝑡0
⊤

is a vector of known values of functions 𝑦𝑖 at 𝑡0.

 Solution: Any vector of functions ෝ𝒚(𝑡) = (ො𝑦1 𝑡 , … , ො𝑦𝑛 𝑡) s.t.:
ሶෝ𝒚 = 𝑭 ෝ𝒚, 𝑡 , ෝ𝒚 𝑡0 = 𝒚0

 NOTE: We can extend to higher orders, e.g., ሷ𝒚 = 𝑭(𝒚, ሶ𝒚, 𝑡), 𝒚 𝑡0 = 𝒚0.
 We can also have initial condition for derivatives, e.g., ሶ𝒚 𝑡0 = ሶ𝒚0.

Initial value problem

5

 Example: Check that 𝑦 𝑡 =
3

4
+

𝑐

𝑡2
, 𝑐 ∈ ℝ is a general solution to

ሶ𝑦 =
3−4𝑦

2𝑡
. Find 𝑐 for which initial condition 𝑦 1 = −4 is satisfied.

 Solution:

𝑑

𝑑𝑡

3

4
+

𝑐

𝑡2
= −

2𝑐

𝑡3

3−4(
3

4
+

𝑐

𝑡2
)

2𝑡
= −

4𝑐

𝑡2
⋅
1

2𝑡
= −

2𝑐

𝑡3

3

4
+

𝑐

12
= −4 => 𝑐 = −

19

4

 In physics simulations:
 Initial conditions define current state of the system.

Initial value problem

6

 Plot of a function 𝑭(𝒚, 𝑡) for some values of 𝒚, 𝑡.
 Goal: Get visual impression about derivatives 𝒚.

 Example: Show direction field for ሶ𝑦 = 𝑦 − 𝑡. [axes: 𝑡 horizontal, 𝑦 vertical]

Direction field

Step 1

Find contours:

ሶ𝑦 = 𝑦 − 𝑡 = 𝑐, 𝑐 ∈ R.

Step 2

Draw 𝑦’s slopes

using arrows.

Step 3

Draw more arrows.

Step 4

Predict solutions.

P
ic

tu
re

s so
u

rc
e

: [3
]

7

 The goal is find 𝒚 𝑡1 , where 𝑡1 > 𝑡0, for a given IVP ሶ𝒚 = 𝑭 𝒚, 𝑡 , 𝒚 𝑡0 = 𝒚0:

 Start at the initial time 𝑡0 and the initial value 𝒚0.

 Compute a sequence of values 𝒚 𝑡0 + Δ𝑡 , 𝒚 𝑡0 + 2Δ𝑡 , … , 𝒚 𝑡0 + 𝑛Δ𝑡 , where

𝑡1 = 𝑡0 + 𝑛Δ𝑡.

 There are two kinds of methods:

 Explicit methods:

Compute 𝒚 𝑡0 + Δ𝑡 by a function 𝓕(𝑭, 𝒚0, 𝑡0, Δ𝑡) of current state of the system.

 Implicit methods:

Compute 𝒚 𝑡0 + Δ𝑡 by a solution of an equation 𝓕 𝑭, 𝒚0, 𝑡0, Δ𝑡, 𝒚 𝑡0 + Δ𝑡 = 0

over the current and future state of the system.

Numerical solution

8

 For a 𝑘-times differentiable function 𝑦:ℝ → ℝ at a point 𝑡0 ∈ 𝐷(𝑦) there

exists a polynomial 𝑃𝑘: ℝ → ℝ and a functions 𝑅:ℝ → ℝ s.t.

 𝑦 𝑡0 + Δ𝑡 = 𝑃𝑘 𝑡0 + Δ𝑡 + Δ𝑡𝑘𝑅(𝑡0 + Δ𝑡)

 𝑃𝑘 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡 ሶ𝑦 𝑡0 +
Δ𝑡2

2!
ሷ𝑦 𝑡0 +⋯+

Δ𝑡𝑘

𝑘!
𝑦 𝑘 𝑡0

 lim
Δ𝑡→0

𝑅 𝑡0 + Δ𝑡 = 0

Taylor theorem

9

 Examples (Taylor approximation):

Numerical solution

𝑦 𝑡 = 𝑒𝑡, 𝑃1 𝑡 = 1 + 𝑡, 𝑡0 = 0. 𝑦 𝑡 = 𝑒𝑡, 𝑃2 𝑡 = 1 + 𝑡 +
𝑡2

2
, 𝑡0 = 0.

10

 What is the error from the approximation using 𝑃𝑘:

𝑦 𝑡0 + Δ𝑡 ≈ 𝑃𝑘 𝑡0 + Δ𝑡

 It is a distance from the exact value 𝑃𝑘+1 𝑡0 + Δ𝑡 + Δ𝑡𝑘+1𝑅(𝑡0 + Δ𝑡):
error = 𝑃𝑘+1 𝑡0 + Δ𝑡 + Δ𝑡𝑘+1𝑅 𝑡0 + Δ𝑡 − 𝑃𝑘 𝑡0 + Δ𝑡

=
Δ𝑡𝑘+1

(𝑘 + 1)!
𝑦 𝑘+1 𝑡0 + Δ𝑡𝑘+1𝑅(𝑡0 + Δ𝑡)

 For small Δ𝑡 the error is proportional to the term Δ𝑡𝑘+1. Therefore,

𝑦 𝑡0 + Δ𝑡 = 𝑃𝑘 𝑡0 + Δ𝑡 + 𝒪(Δ𝑡𝑘+1)

“𝒪” error notation

11

 We get forward Euler’s method, when we approximate 𝑦 by 𝑃1 at 𝑡0:

𝑦 𝑡0 + Δ𝑡 ≈ 𝑦 𝑡0 + Δ𝑡 ሶ𝑦 𝑡0
= 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0), 𝑡0

 We see that forward Euler’s method is an explicit method.

Forward Euler’s method

12

 Example: Let IPV be ሶ𝑦 =
3−4𝑦

2𝑡
, 𝑦 1 = −4. Compute 𝑦 2 by forward

Euler’s method. [Note: Exact solution is 𝑦 𝑡 =
3

4
−

19

4𝑡2
]

 Solution:

 Let’s choose a time step Δ𝑡 =
1

2
 => We must apply the method 2 times.

 𝑦 1 = −4 from the initial condition.

 𝑦
3

2
= 𝑦 1 +

1

2
≈ 𝑦 1 +

1

2
𝐹 𝑦 1 , 1 = −4 +

1

2
⋅
3−4 −4

2⋅1
=

3

4
 1st iteration

 𝑦 2 =
3

4
+

1

2
⋅
3−4⋅

3

4

2⋅
3

2

=
3

4
 2nd iteration

 We see the method is simple and fast.

Forward Euler’s method

13

 Low accuracy issue:

 𝒪 Δ𝑡2 error in each iteration.

 Example:

Forward Euler’s method

IVP: ሶ𝑦 =
3−4𝑦

2𝑡
, 𝑦 1 = −4.

Euler’s method: 𝛥𝑡 =
1

2
, 𝛥𝑡 =

1

4
.

Exact solution: 𝑦 𝑡 =
3

4
−

19

4𝑡2

14

 Instability issue:

 The iteration process may diverge.

 Example:

Forward Euler’s method

IVP: ሶ𝑦 = −2.3𝑦, 𝑦 0 = 1.

Euler’s method: 𝛥𝑡 = 1, 𝛥𝑡 =
1

2
.

Exact solution: 𝑦 𝑡 = 𝑒−2.3𝑡.

15

 What can we do with the issues?

 Use smaller time step Δ𝑡 to reduce the error and/or avoid the instability.

 But we then need more iterations => slower simulation.

 Choose more accurate/stable solver.

 Suggestion for seminar: Implement method “ODE_Euler_forward”.

void ODE _Euler_forward(
std::vector<float> const& y0, // 𝒙, 𝒗 of particle(s)
std::vector<F_y_t> const& Fyt, // ሶ𝒙, ሶ𝒗 of particle(s), i.e. 𝒗, 𝑭/𝑚
float& t, // current time (to be updated)
float const dt, // time step
std::vector<float>& y) // integrated 𝒙, 𝒗 of particle(s)

{ TODO }

Forward Euler’s method

16

 Example: Let’s consider a particle 𝒫(𝑡) = 𝒙, 𝒗, 𝑭,𝑚 , where 𝑚 = 0.1kg, in a

homogenous gravity field with 𝒈 = 0,0, −10 ⊤m ⋅ s−2. At time 𝑡 = 1 we have

𝒙 = 1,−1,5 ⊤m,𝒗 = 1,0,0 ⊤m ⋅ s−1. Using forward Euler’s method with Δ𝑡 =
0.5s compute 𝒫 2 .

 Solution: Particle moves by Newton’s equations of motion:

ሶ𝒙 𝑡 = 𝒗 𝑡 , ሶ𝒗(𝑡) =
𝑭

𝑚

 Therefore: 𝒙 1.5 =
1 + 0.5 ⋅ 1
−1 + 0.5 ⋅ 0
5 + 0.5 ⋅ 0

=
1.5
−1
5

, 𝒗 1.5 =

1 + 0.5
0.1⋅0

0.1

0 + 0.5
0.1⋅0

0.1

0 + 0.5
0.1⋅−10

0.1

=
1
0
−5

.

𝒙 2 = 2,−1,0 ⊤, 𝒗 2 = 1,0,−10 ⊤.

Forward Euler’s method

17

Backward Euler’s method

18

 From the fundamental theorem of the calculus:

න
𝑡0

𝑡0+Δ𝑡

ሶ𝑦 𝑡 𝑑𝑡 = 𝑦 𝑡0 + Δ𝑡 − 𝑦 𝑡0 .

 Therefore,

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 +න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡 .

 We can approximate the integral by

“right-hand” rectangle:

න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡 ≈ Δ𝑡𝐹 𝑦 𝑡0 + Δ𝑡 , 𝑡0 + Δ𝑡 .

Backward Euler’s method

𝑡0 + Δ𝑡𝑡0
Δ𝑡

𝑡

𝐹(𝑦(𝑡), 𝑡)

𝐹(𝑦(𝑡0 + Δ𝑡), 𝑡0 + Δ𝑡)

න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡
𝐹(𝑦(𝑡0), 𝑡0)

Δ𝑡𝐹 𝑦 𝑡0 + Δ𝑡 , 𝑡0 + Δ𝑡

19

 Backward Euler’s method leads to this equation:

𝑦 𝑡0 + Δ𝑡 ≈ 𝑦 𝑡0 + Δ𝑡𝐹 𝑦 𝑡0 + Δ𝑡 , 𝑡0 + Δ𝑡

 Backward Euler’s method is an implicit method.

 We must solve this equation to obtain the unknown 𝑦 𝑡0 + Δ𝑡 :

𝑦 𝑡0 + Δ𝑡 − 𝑦 𝑡0 − Δ𝑡𝐹 𝑦 𝑡0 + Δ𝑡 , 𝑡0 + Δ𝑡 = 0

 Use any available method for solving the equation, e.g., Newton’s

method (𝑦[𝑘+1] = 𝑦[𝑘] −𝓕(𝑦[𝑘])/ ሶ𝓕(𝑦[𝑘])).

 Note: If we have system of ODEs, then we get system of equations.

Backward Euler’s method

20

 Example: Let IPV be ሶ𝑦 =
3−4𝑦

2𝑡
, 𝑦 1 = −4. Compute 𝑦 2 by backward

Euler’s method. [Note: Exact solution is 𝑦 𝑡 =
3

4
−

19

4𝑡2
]

 Solution:

 Let’s choose a time step Δ𝑡 =
1

2
 => We must apply the method 2 times.

 𝑦 1 = −4 from the initial condition.

 𝑦
3

2
= 𝑦 1 +

1

2
= 𝑦 1 +

1

2
𝐹 𝑦

3

2
,
3

2
= −4 +

1

2
⋅
3−4𝑦

3

2

2⋅
3

2

= −
7

2
−

2

3
𝑦

3

2

We solve: 𝑦
3

2
= −

7

2
−

2

3
𝑦

3

2
 => 𝑦

3

2
= −

7

2 1+
2

3

= −
21

10
 1st iteration

 𝑦 2 = −
21

10
+

1

2
⋅
3−4𝑦 2

2⋅2
= −

21

10
+

3

8
−

1

2
𝑦(2) => 𝑦 2 = −

23

20
 2nd iteration

Backward Euler’s method

21

 We can plot out result and compare it with forward Euler’s method:

Backward Euler’s method

IVP: ሶ𝑦 =
3−4𝑦

2𝑡
, 𝑦 1 = −4.

Backward Euler: 𝛥𝑡 =
1

2
.

Forward Euler: 𝛥𝑡 =
1

2
.

Exact solution: 𝑦 𝑡 =
3

4
−

19

4𝑡2

22

 Example 2: Let IPV be ሶ𝑦 = −2.3𝑦, 𝑦 0 = 1. Compute 𝑦 4 by backward
Euler’s method.

 Solution:

 Let’s choose a time step Δ𝑡 = 1 => We must apply the method 4 times.

 𝑦 0 = 1 from the initial condition.

 𝑦 1 = 1 + 1 ⋅ −2.3𝑦(1) => 𝑦 1 =
1

1+2.3
=

10

33
 1st iteration

 𝑦 2 =
10

33
+ 1 ⋅ −2.3𝑦(2) => 𝑦 2 =

10

33
⋅
10

33
=

10

33

2
 2nd iteration

 𝑦 3 =
10

33

2
− 2.3𝑦(3) => 𝑦 3 =

10

33

2
⋅
10

33
=

10

33

3
 3rd iteration

 𝑦 4 =
10

33

3
− 2.3𝑦(4) => 𝑦 4 =

10

33

4
 4th iteration

 Note: Observe the geometric progression 𝑦𝑘+1 = 𝑞𝑦𝑘 , 𝑞 =
10

33
 => 𝑦𝑘 = 𝑞𝑘𝑦0.

Backward Euler’s method

23

 We can plot out result and compare it with forward Euler’s method:

Backward Euler’s method

IVP: ሶ𝑦 = −2.3𝑦, 𝑦 0 = 1.

Backward Euler: 𝛥𝑡 = 1.

Forward Euler: 𝛥𝑡 = 1.

Exact solution: 𝑦 𝑡 = 𝑒−2.3𝑡

24

 Properties of backward Euler’s method

 Hard to implement.

 Requires solving an equation or a system of equations.

 𝒪 Δ𝑡2 error in each iteration.

 Stable for large time step Δ𝑡.

 Choice between forward/backward Euler’s method depends on a

problem. “Rule of thumb”:

 Prefer forward method for “stable” problems.

 Prefer backward method for “stiff” problems.

Backward Euler’s method

25

Midpoint method

26

 Let’s try to approximate 𝑦 by 𝑃2 at 𝑡0:

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡 ሶ𝑦 𝑡0 +
Δ𝑡2

2!
ሷ𝑦 𝑡0 + 𝒪(Δ𝑡3)

= 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0), 𝑡0 +
Δ𝑡2

2
ሶ𝐹 𝑦(𝑡0), 𝑡0 + 𝒪(Δ𝑡3)

 How to compute ሶ𝐹?

 Using the chain rule, we get: ሶ𝐹 =
𝜕𝐹

𝜕𝑡
+

𝜕𝐹

𝜕𝑦
ሶ𝑦 =

𝜕𝐹

𝜕𝑡
+

𝜕𝐹

𝜕𝑦
𝐹

 Not much better, because we still do not know
𝜕𝐹

𝜕𝑡
,
𝜕𝐹

𝜕𝑦
.

 So, let’s try to approximate 𝐹 using 𝑃1 …

 Note: We must use a 2-variables version of Taylor’s theorem.

Midpoint method

(*)

27

𝐹 𝑦(𝑡0) + Δ𝑦, 𝑡0 + Δ𝑡 = 𝐹 𝑦 𝑡0 , 𝑡0 + Δ𝑦
𝜕𝐹

𝜕𝑦
𝑦 𝑡0 , 𝑡0 + Δ𝑡

𝜕𝐹

𝜕𝑡
𝑦 𝑡0 , 𝑡0 + 𝒪 Δ𝑦2 + Δ𝑡2

 Let’s substitute: Δ𝑦 →
Δ𝑡

2
𝐹 𝑦(𝑡0), 𝑡0 , Δ𝑡 →

Δ𝑡

2

𝐹 𝑦(𝑡0) +
Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2
= 𝐹 𝑦 𝑡0 , 𝑡0 +

Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0

𝜕𝐹

𝜕𝑦
𝑦 𝑡0 , 𝑡0 +

Δ𝑡

2

𝜕𝐹

𝜕𝑡
𝑦(𝑡0), 𝑡0

+ 𝒪(Δ𝑡2)

𝐹 𝑦(𝑡0) +
Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2
= 𝐹 𝑦 𝑡0 , 𝑡0 +

Δ𝑡

2
ሶ𝐹 𝑦 𝑡0 , 𝑡0 + 𝒪(Δ𝑡2)

Δ𝑡

2
ሶ𝐹 𝑦 𝑡0 , 𝑡0 + 𝒪 Δ𝑡2 = 𝐹 𝑦 𝑡0 +

Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2
− 𝐹 𝑦 𝑡0 , 𝑡0

Δ𝑡2

2
ሶ𝐹 𝑦 𝑡0 , 𝑡0 + 𝒪(Δ𝑡3) = Δ𝑡𝐹 𝑦(𝑡0) +

Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2
− Δ𝑡𝐹 𝑦 𝑡0 , 𝑡0

Midpoint method

Δ𝑡

2
ሶ𝐹 𝑦 𝑡0 , 𝑡0

(*)

28

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0), 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0) +
Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2
− Δ𝑡𝐹 𝑦 𝑡0 , 𝑡0

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0) +
Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2

 This is an explicit method.

 This method is more accurate than Euler’s method:

 Euler: 𝒪(Δ𝑡2)

 Midpoint: 𝒪(Δ𝑡3)

Midpoint method

29

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0) +
Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2

Midpoint method

𝑡0 + Δ𝑡𝑡0

𝑡

𝑦

𝑦(𝑡0)

𝑡0 +
Δ𝑡

2

Slope: 𝐹(𝑦(𝑡0), 𝑡0)

𝑦 𝑡0 + Δ𝑡/2

𝑦(𝑡0 + Δ𝑡)

Slope: 𝐹(𝑦(𝑡0 +
Δ𝑡

2
), 𝑡0 +

Δ𝑡

2
)

2nd Euler step by
Δ𝑡

2
.

30

Midpoint method

IVP: ሶ𝑦 =
3−4𝑦

2𝑡
, 𝑦 1 = −4.

Midpoint method: 𝛥𝑡 =
1

2
.

Forward Euler: 𝛥𝑡 =
1

2
.

Exact solution: 𝑦 𝑡 =
3

4
−

19

4𝑡2

31

Midpoint method

IVP: ሶ𝑦 = −2.3𝑦, 𝑦 0 = 1.

Midpoint method: 𝛥𝑡 = 1.

Forward Euler: 𝛥𝑡 = 1.

Exact solution: 𝑦 𝑡 = 𝑒−2.3𝑡

32

 There is also implicit version of the midpoint method.

 From the fundamental theorem of the calculus:

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 +න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡 .

 We can approximate the integral by “midpoint” rectangle:

න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡 ≈ Δ𝑡𝐹
𝑦 𝑡0 + 𝑦 𝑡0 + Δ𝑡

2
,
𝑡0 + (𝑡0 + Δ𝑡)

2

 Therefore, we get

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝐹
𝑦 𝑡0 + 𝑦 𝑡0 + Δ𝑡

2
, 𝑡0 +

Δ𝑡

2

Midpoint method

33

Runge-Kutta methods

34

 In general, we can approximate the integral as follows:

න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡 ≈ Δ𝑡

𝑖=1

𝑛

𝑏𝑖𝐹 𝑦 𝑡0 + 𝑐𝑖Δ𝑡 , 𝑡0 + 𝑐𝑖Δ𝑡

 The problem is that values 𝑦 𝑡0 + 𝑐𝑖Δ𝑡 are unknown!

 Runge-Kutta methods solve the issue by this substitution:

𝑘1 = 𝐹 𝑦 𝑡0 , 𝑡0

𝑘𝑖 = 𝐹 𝑦 𝑡0 + Δ𝑡

𝑗=1

𝑖−1

𝑎𝑖,𝑗𝑘𝑗 , 𝑡0 + 𝑐𝑖Δ𝑡 , s. t.

𝑗=1

𝑖−1

𝑎𝑖,𝑗 = 𝑐𝑖

න
𝑡0

𝑡0+Δ𝑡

𝐹 𝑦 𝑡 , 𝑡 𝑑𝑡 ≈ Δ𝑡

𝑖=1

𝑛

𝑏𝑖𝑘𝑖

Runge-Kutta methods

35

 Therefore, Runge-Kutta of order 𝑛 is defined as:

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡

𝑖=1

𝑛

𝑏𝑖𝑘𝑖 ,

where terms 𝑘𝑖 were defined on the previous slide.

 However, we must compute the numbers 𝑎𝑖,𝑗 , 𝑏𝑖 , 𝑐𝑖 so that resulting

expression yields an approximation by Taylor’s polynomial 𝑃𝑛.

Runge-Kutta methods

36

 Example: Runge-Kutta method of order 1 (i.e. 𝑛 = 1):

𝑘1 = 𝐹 𝑦 𝑡0 , 𝑡0
𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝑏1𝑘1 = 𝑦 𝑡0 + Δ𝑡𝑏1𝐹 𝑦 𝑡0 , 𝑡0

 What value we should choose for 𝑏1? We compare 𝑦 𝑡0 + Δ𝑡 with 𝑃1.

𝑃1 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡 ሶ𝑦 𝑡0 = 𝑦 𝑡0 + Δ𝑡𝐹 𝑦 𝑡0 , 𝑡0
 Therefore, 𝑏1 must be 1.

 Observation: Euler’s method is Runge-Kutta method of order 1.

Runge-Kutta methods

37

 Example: Runge-Kutta method of order 2 (i.e. 𝑛 = 2):

𝑘1 = 𝐹 𝑦 𝑡0 , 𝑡0

𝑘2 = 𝐹 𝑦 𝑡0 + Δ𝑡𝑎2,1𝑘1, 𝑡0 + 𝑐2Δ𝑡

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝑏1𝑘1 + Δ𝑡𝑏2𝑘2
 We compute 𝑎2,1, 𝑏1, 𝑏2 by comparison of 𝑦 𝑡0 + Δ𝑡 with 𝑃2.

𝑃2 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡 ሶ𝑦 𝑡0 +
Δ𝑡2

2!
ሷ𝑦 𝑡0

= 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0), 𝑡0 +
Δ𝑡2

2
ሶ𝐹 𝑦(𝑡0), 𝑡0

= 𝑦 𝑡0 + Δ𝑡𝐹 𝑦(𝑡0), 𝑡0 +
Δ𝑡2

2

𝜕𝐹

𝜕𝑡
+
𝜕𝐹

𝜕𝑦
𝐹 𝑦(𝑡0), 𝑡0

Runge-Kutta methods

38

For the comparison let’s approximate 𝑘2 by 𝑃1:

𝑘2 = 𝐹 𝑦 𝑡0 + Δ𝑡𝑎2,1𝑘1, 𝑡0 + 𝑐2Δ𝑡

≈ 𝐹 𝑦 𝑡0 , 𝑡0 + Δ𝑡(𝑐2
𝜕𝐹

𝜕𝑡
+ 𝑎2,1𝑘1

𝜕𝐹

𝜕𝑦
) 𝑦 𝑡0 , 𝑡0

= 𝐹 𝑦 𝑡0 , 𝑡0 + Δ𝑡(𝑐2
𝜕𝐹

𝜕𝑡
+ 𝑎2,1𝐹

𝜕𝐹

𝜕𝑦
) 𝑦 𝑡0 , 𝑡0

 When we substitute the approximated 𝑘2 we get:

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝑏1𝐹 𝑦 𝑡0 , 𝑡0

+ Δ𝑡𝑏2(𝐹 𝑦 𝑡0 , 𝑡0 + Δ𝑡(𝑐2
𝜕𝐹

𝜕𝑡
+ 𝑎2,1𝐹

𝜕𝐹

𝜕𝑦
) 𝑦 𝑡0 , 𝑡0)

= 𝑦 𝑡0 + Δ𝑡 𝑏1 + 𝑏2 𝐹 𝑦 𝑡0 , 𝑡0

+ Δ𝑡2𝑏2 𝑐2
𝜕𝐹

𝜕𝑡
+ 𝑎2,1

𝜕𝐹

𝜕𝑦
𝐹 𝑦 𝑡0 , 𝑡0

Runge-Kutta methods

39

So, we must solve this system of equations:

𝑏1 + 𝑏2 = 1, 𝑏2𝑐2 =
1

2
, 𝑏2𝑎2,1 =

1

2
.

 One possible solution is: 𝑏1 = 0, 𝑏2 = 1, 𝑐2 =
1

2
, 𝑎2,1 =

1

2
.

 (Note: Another solution is: 𝑏1 =
1

2
, 𝑏2 =

1

2
, 𝑐2 = 1, 𝑎2,1 = 1)

 We get the result:

𝑘1 = 𝐹 𝑦 𝑡0 , 𝑡0

𝑘2 = 𝐹 𝑦 𝑡0 +
Δ𝑡

2
𝑘1, 𝑡0 +

Δ𝑡

2

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡𝑘2 = 𝑦 𝑡0 + Δ𝑡𝐹 𝑦 𝑡0 +
Δ𝑡

2
𝐹 𝑦 𝑡0 , 𝑡0 , 𝑡0 +

Δ𝑡

2
.

 Observation: Midpoint method is Runge-Kutta method of order 2.

Runge-Kutta methods

40

 Example: Runge-Kutta method of order 4:

𝑘1 = 𝐹 𝑦(𝑡0), 𝑡0

𝑘2 = 𝐹 𝑦 𝑡0 +
𝑘1
2
, 𝑡0 +

Δ𝑡

2

𝑘3 = 𝐹 𝑦 𝑡0 +
𝑘2
2
, 𝑡0 +

Δ𝑡

2

𝑘4 = 𝐹 𝑦 𝑡0 + 𝑘3, 𝑡0 + Δ𝑡

𝑦 𝑡0 + Δ𝑡 = 𝑦 𝑡0 + Δ𝑡
1

6
𝑘1 +

1

3
𝑘2 +

1

3
𝑘3 +

1

6
𝑘4

Runge-Kutta methods

41

Schema of numerical methods

Picture source: [2]

42

[1] A. Witkin, D. Baraff; Differential Equation Basics; Physically Based

Modeling: Principles and Practice, 1997

[2] J.C.Butcher; Numerical methods for ordinary differential equations;

3rd edition, Wiley, 2016.

[3] https://tutorial.math.lamar.edu/Classes/DE/DE.aspx

References

	Slide 1: Solving differential equations
	Slide 2: Outline
	Slide 3: Initial value problem
	Slide 4: Initial value problem
	Slide 5: Initial value problem
	Slide 6: Direction field
	Slide 7: Numerical solution
	Slide 8: Taylor theorem
	Slide 9: Numerical solution
	Slide 10: “script cap O” error notation
	Slide 11: Forward Euler’s method
	Slide 12: Forward Euler’s method
	Slide 13: Forward Euler’s method
	Slide 14: Forward Euler’s method
	Slide 15: Forward Euler’s method
	Slide 16: Forward Euler’s method
	Slide 17: Backward Euler’s method
	Slide 18: Backward Euler’s method
	Slide 19: Backward Euler’s method
	Slide 20: Backward Euler’s method
	Slide 21: Backward Euler’s method
	Slide 22: Backward Euler’s method
	Slide 23: Backward Euler’s method
	Slide 24: Backward Euler’s method
	Slide 25: Midpoint method
	Slide 26: Midpoint method
	Slide 27: Midpoint method
	Slide 28: Midpoint method
	Slide 29: Midpoint method
	Slide 30: Midpoint method
	Slide 31: Midpoint method
	Slide 32: Midpoint method
	Slide 33: Runge-Kutta methods
	Slide 34: Runge-Kutta methods
	Slide 35: Runge-Kutta methods
	Slide 36: Runge-Kutta methods
	Slide 37: Runge-Kutta methods
	Slide 38: Runge-Kutta methods
	Slide 39: Runge-Kutta methods
	Slide 40: Runge-Kutta methods
	Slide 41: Schema of numerical methods
	Slide 42: References

