Solving differential equations

Jiří Chmelík, Marek Trtík PA199

Initial value problem for ordinary differential equations.

Forward Euler's method.

▶ Backward Euler's method.

Midpoint method.

Runge-Kutta methods.

Initial value problem

Initial value problem

Initial value problem (IVP) for the 1st order **ordinary differential equations** (ODE)s:

 $\dot{\mathbf{y}} = \overline{\mathbf{F}(\mathbf{y},t)}$, $\overline{\mathbf{y}(t_0)} = \overline{\mathbf{y}_0}$

 \blacktriangleright $y(t) = (y_1(t), ..., y_n(t))^T$ is a vector of **unknown** functions y_i : ℝ → ℝ.

 \blacktriangleright $F(y, t) = (f_1(y(t), t), ..., f_n(y(t), t))^T$ is a vector of **known** fns $f_i: \mathbb{R}^{n+1} \to \mathbb{R}$. **The initial value condition:**

 \blacktriangleright t_0 given time point.

 $\boldsymbol{y}_0 = (y_1(t_0), ..., y_n(t_0))^T$ is a vector of **known** values of functions y_i at t_0 . Solution: Any vector of functions $\hat{y}(t) = (\hat{y}_1(t), ..., \hat{y}_n(t))$ s.t.:

 $\dot{\hat{\mathbf{y}}} = F(\widehat{\mathbf{y}}, t), \qquad \widehat{\mathbf{y}}(t_0) = \mathbf{y}_0$

NOTE: We can extend to higher orders, e.g., $\ddot{y} = F(y, \dot{y}, t)$, $y(t_0) = y_0$. We can also have initial condition for derivatives, e.g., $\dot{y}(t_0) = \dot{y}_0$.

Initial value problem

- **Example**: Check that $y(t) = \frac{3}{4}$ 4 $+$ \overline{c} $\frac{c}{t^2}$, $c \in \mathbb{R}$ is a general solution to $\dot{y} =$ $3-4y$ $2t$. Find c for which initial condition $y(1) = -4$ is satisfied. Solution:
	- $\frac{d}{dt}$ dt 3 4 $+$ \mathcal{C}_{0} $\left(\frac{c}{t^2}\right) = 2c$ t^3 \blacktriangleright $3-4\left(\frac{3}{4}\right)$ $\frac{3}{4} + \frac{c}{t^2}$ $\frac{c}{t^2}$ $2t$ = − $4c$ $\frac{\pi c}{t^2}$. 1 $2t$ = − $2c$ t^3 $\frac{3}{4}$ 4 $+$ \overline{c} $\frac{c}{1^2} = -4 \Rightarrow c = -\frac{19}{4}$ 4

In physics simulations: \blacktriangleright Initial conditions define current state of the system.

6

Direction field

Plot of a function $F(y, t)$ for some values of y, t .

Goal: Get visual impression about derivatives y .

Example: Show direction field for $\dot{y} = y - t$. [axes: *t* horizontal, *y* vertical]

Numerical solution

 \blacktriangleright The goal is find $y(t_1)$, where $t_1 > t_0$, for a given IVP $\dot{y} = F(y, t)$, $y(t_0) = y_0$: Start at the initial time t_0 and the initial value y_0 .

- Compute a sequence of values $y(t_0 + \Delta t)$, $y(t_0 + 2\Delta t)$, ..., $y(t_0 + n\Delta t)$, where $t_1 = t_0 + n\Delta t.$
- \blacktriangleright There are two kinds of methods:
	- **Explicit** methods:
		- \blacktriangleright Compute $y(t_0 + \Delta t)$ by a function $\mathcal{F}(F, y_0, t_0, \Delta t)$ of **current** state of the system.
	- **Implicit** methods:
		- Compute $y(t_0 + \Delta t)$ by a solution of an equation $\mathcal{F}(F, y_0, t_0, \Delta t, y(t_0 + \Delta t)) = 0$ over the **current and future** state of the system.

Taylor theorem

- For a k-times differentiable function $y: \mathbb{R} \to \mathbb{R}$ at a point $t_0 \in D(y)$ there exists a polynomial $P_k: \mathbb{R} \to \mathbb{R}$ and a functions $R: \mathbb{R} \to \mathbb{R}$ s.t.
	- \triangleright $y(t_0 + \Delta t) = P_k(t_0 + \Delta t) + \Delta t^k R(t_0 + \Delta t)$
	- \blacktriangleright $P_k(t_0 + \Delta t) = y(t_0) + \Delta t \dot{y}(t_0) + \Delta t \dot{y}(t_0)$ Δt^2 $\frac{d}{2!} \ddot{y}(t_0) + \cdots +$ Δt^k $k!$ $y^{(k)}(t_0$
	- \blacktriangleright lim $\Delta t\rightarrow 0$ $R(t_0 + \Delta t) = 0$

Numerical solution

Examples (Taylor approximation):

" \mathcal{O} " error notation

 \blacktriangleright What is the error from the approximation using P_k : $y(t_0 + \Delta t) \approx P_k(t_0 + \Delta t)$

It is a distance from the exact value $P_{k+1}(t_0 + \Delta t) + \Delta t^{k+1} R(t_0 + \Delta t)$: error = $P_{k+1}(t_0 + \Delta t) + \Delta t^{k+1} R(t_0 + \Delta t) - P_k(t_0 + \Delta t)$ = Δt^{k+1} $(k + 1)!$ $y^{(k+1)}(t_0) + \Delta t^{k+1} R(t_0 + \Delta t)$

 \blacktriangleright For small Δt the error is proportional to the term Δt^{k+1} . Therefore,

$$
y(t_0 + \Delta t) = P_k(t_0 + \Delta t) + O(\Delta t^{k+1})
$$

 \blacktriangleright We get forward Euler's method, when we approximate y by P_1 at t_0 :

$$
y(t_0 + \Delta t) \approx y(t_0) + \Delta t \dot{y}(t_0)
$$

=
$$
y(t_0) + \Delta t F(y(t_0), t_0)
$$

We see that forward Euler's method is an **explicit** method.

- **Example**: Let IPV be $\dot{y} = \frac{3-4y}{2t}$ $2t$, $y(1) = -4$. Compute $y(2)$ by forward Euler's method. [Note: Exact solution is $y(t) = \frac{3}{4}$ 4 − 19 $\frac{19}{4t^2}$] Solution:
	- Let's choose a time step $\Delta t = \frac{1}{2}$ 2 => We must apply the method 2 times.

 \rightarrow y(1) = -4 \leftarrow from the initial condition. \blacktriangleright y 3 2 $= y (1 +$ 1 2 \approx $y(1)$ + 1 2 $F(y(1), 1) = -4 +$ 1 2 $3-4(-4)$ $2·1$ = 3 4 \leftarrow 1st iteration \blacktriangleright y(2) = 3 4 $+$ 1 2 $3-4\cdot\frac{3}{4}$ 4 $2\cdot\frac{3}{2}$ 2 = 3 4 \leftarrow 2nd iteration

We see the method is **simple** and **fast**.

Low accuracy issue:

 \triangleright $\mathcal{O}(\Delta t^2)$ error in each iteration.

Example:

 $IVP: \dot{y} = \frac{3-4y}{2t}$ $2t$, $y(1) = -4$. Euler's method: $\Delta t = \frac{1}{2}$, $\varDelta t=$ 1 4 Exact solution: $y(t) = \frac{3}{4}$ 4 19 $4t^2$

Instability issue:

 \blacktriangleright The iteration process may diverge.

Example:

 $\overline{N} = -2.3y, y(0) = 1.$ Euler's method: $\Delta t = 1$, $\Delta t = \frac{1}{2}$ 2 Exact solution: $y(t) = e^{-2.3t}$.

▶ What can we do with the issues?

- \blacktriangleright Use smaller time step Δt to reduce the error and/or avoid the instability.
- ▶ But we then need more iterations => slower simulation.
- ▶ Choose more accurate/stable solver.

Suggestion for seminar: Implement method "ODE_Euler_forward".

```
void ODE _Euler_forward(
        std::vector<float> const& y0, \frac{1}{x}, \frac{1}{x}, \frac{1}{y} of particle(s)
        float const dt, \frac{1}{2} // time step
        std::vector<float>& y) \qquad // integrated x, v of particle(s)
{ TODO }
```
std::vector<F_y_t> const& Fyt, $\frac{1}{x}$, $\frac{1}{x}$, $\frac{1}{y}$ of particle(s), i.e. $\frac{1}{x}$, $\frac{1}{x}$ float& t, the state of the current time (to be updated)

- **Example**: Let's consider a particle $P(t) = (x, v, F, m)$, where $m = 0.1$ kg, in a homogenous gravity field with $\boldsymbol{g} = (0.0, -10)^\top \mathrm{m} \cdot \mathrm{s}^{-2}.$ At time $t=1$ we have $\pmb{x} = (1, -1.5)^\mathsf{T}$ m, $\pmb{v} = (1.0.0)^\mathsf{T}$ m \cdot s $^{-1}$. Using forward Euler's method with $\Delta t =$ 0.5s compute $P(2)$.
- Solution: Particle moves by Newton's equations of motion:

$$
\dot{x}(t) = v(t), \qquad \dot{v}(t) = \frac{F}{m}
$$

Therefore: $x(1.5) = \begin{pmatrix} 1+0.5 \cdot 1 \\ -1+0.5 \cdot 0 \\ 5+0.5 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1.5 \\ -1 \\ 5 \end{pmatrix}, v(1.5) = \begin{pmatrix} 1+0.5 \frac{0.1 \cdot 0}{0.1} \\ 0+0.5 \frac{0.1 \cdot 0}{0.1} \\ 0+0.5 \frac{0.1 \cdot -10}{0.1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -5 \end{pmatrix}.$

 $\mathbf{x}(2) = (2, -1, 0)^{\top}, \ \mathbf{v}(2) = (1, 0, -10)^{\top}.$

 From the fundamental theorem of the calculus: \mathbf{I} t_{0} $\tau^t{}_0+\!\Delta t$ $\dot{y}(t)dt = y(t_0 + \Delta t) - y(t_0).$ $F(y(t),t)$

Therefore,

$$
y(t_0 + \Delta t) = y(t_0) + \int_{t_0}^{t_0 + \Delta t} F(y(t), t) dt.
$$

▶ We can approximate the integral by "right-hand" rectangle:

> \mathbf{I} t_{0} $t_0+\Delta t$ $F(y(t), t)dt \approx \Delta t F(y(t_0 + \Delta t), t_0 + \Delta t).$

Backward Euler's method leads to this equation:

$$
y(t_0 + \Delta t) \approx y(t_0) + \Delta t F(y(t_0 + \Delta t), t_0 + \Delta t)
$$

 Backward Euler's method is an **implicit** method. \blacktriangleright We must solve this equation to obtain the unknown $y(t_0 + \Delta t)$: $y(t_0 + \Delta t) - y(t_0) - \Delta t F(y(t_0 + \Delta t), t_0 + \Delta t) = 0$

 Use any available method for solving the equation, e.g., Newton's method $(y^{[k+1]} = y^{[k]} - \mathcal{F}(y^{[k]}) / \mathcal{F}(y^{[k]})).$

 \blacktriangleright Note: If we have system of ODEs, then we get system of equations.

- **Example**: Let IPV be $\dot{y} = \frac{3-4y}{2t}$ $2t$, $y(1) = -4$. Compute $y(2)$ by backward Euler's method. [Note: Exact solution is $y(t) = \frac{3}{4}$ 4 − 19 $\frac{19}{4t^2}$ Solution:
	- Let's choose a time step $\Delta t = \frac{1}{3}$ 2 => We must apply the method 2 times.

 \rightarrow y(1) = -4 \leftarrow from the initial condition.

$$
y\left(\frac{3}{2}\right) = y\left(1 + \frac{1}{2}\right) = y(1) + \frac{1}{2}F\left(y\left(\frac{3}{2}\right), \frac{3}{2}\right) = -4 + \frac{1}{2} \cdot \frac{3 - 4y\left(\frac{3}{2}\right)}{2\cdot\frac{3}{2}} = -\frac{7}{2} - \frac{2}{3}y\left(\frac{3}{2}\right)
$$

\nWe solve: $y\left(\frac{3}{2}\right) = -\frac{7}{2} - \frac{2}{3}y\left(\frac{3}{2}\right) \implies y\left(\frac{3}{2}\right) = -\frac{7}{2\left(1 + \frac{2}{3}\right)} = -\frac{21}{10} \iff 1^{\text{st}} \text{ iteration}$
\n $y(2) = -\frac{21}{10} + \frac{1}{2} \cdot \frac{3 - 4y(2)}{2 \cdot 2} = -\frac{21}{10} + \frac{3}{8} - \frac{1}{2}y(2) \implies y(2) = -\frac{23}{20} \iff 2^{\text{nd}} \text{ iteration}$

▶ We can plot out result and compare it with forward Euler's method:

IVP: $\dot{y} = \frac{3-4y}{2t}$ $2t$, $y(1) = -4$. Backward Euler: $\Delta t = \frac{1}{3}$ 2 Forward Euler: $\Delta t = \frac{1}{2}$ Exact solution: $y(t) = \frac{3}{4}$ 4 19 $4t^2$

- ► Example 2: Let IPV be $\dot{y} = -2.3y$, $y(0) = 1$. Compute $y(4)$ by backward Euler's method.
- Solution:
	- Let's choose a time step $\Delta t = 1$ => We must apply the method 4 times.
	- \rightarrow y(0) = 1 \leftarrow from the initial condition.

$$
y(1) = 1 + 1 \cdot -2.3y(1) \implies y(1) = \frac{1}{1+2.3} = \frac{10}{33} \qquad \text{41} \text{ iteration}
$$
\n
$$
y(2) = \frac{10}{33} + 1 \cdot -2.3y(2) \implies y(2) = \frac{10}{33} \cdot \frac{10}{33} = \left(\frac{10}{33}\right)^2 \qquad \text{42} \text{ distribution}
$$
\n
$$
y(3) = \left(\frac{10}{33}\right)^2 - 2.3y(3) \implies y(3) = \left(\frac{10}{33}\right)^2 \cdot \frac{10}{33} = \left(\frac{10}{33}\right)^3 \qquad \text{43} \text{ iteration}
$$
\n
$$
y(4) = \left(\frac{10}{33}\right)^3 - 2.3y(4) \implies y(4) = \left(\frac{10}{33}\right)^4 \qquad \text{44} \text{ iteration}
$$

Note: Observe the geometric progression $y_{k+1} = q y_k$, $q = \frac{10}{33}$ $\frac{10}{33}$ => $y_k = q^k y_0$.

▶ We can plot out result and compare it with forward Euler's method:

IVP: $\dot{y} = -2.3y, y(0) = 1$. Backward Euler: $\Delta t = 1$. Forward Euler: $\Delta t = 1$. Exact solution: $y(t) = e^{-2.3t}$

Properties of backward Euler's method

- Hard to implement.
- Requires solving an equation or a system of equations.
- \triangleright $\mathcal{O}(\Delta t^2)$ error in each iteration.
- \blacktriangleright Stable for large time step Δt .
- ▶ Choice between forward/backward Euler's method depends on a problem. "Rule of thumb":
	- Prefer forward method for "stable" problems.
	- **Prefer backward method for "stiff" problems.**

- Let's try to approximate y by P_2 at t_0 : $y(t_0 + \Delta t) = y(t_0) + \Delta t \dot{y}(t_0) +$ Δt^2 2! $\ddot{y}(t_0) + \mathcal{O}(\Delta t^3)$ $= y(t_0) + \Delta t F(y(t_0), t_0) +$ Δt^2 2 $\dot{F}(y(t_0), t_0) + O(\Delta t^3)$
- How to compute \dot{F} ? Using the chain rule, we get: $\dot{F} = \frac{\partial F}{\partial t}$ ∂t $+$ ∂F ∂y $\dot{y} =$ ∂F $\frac{\partial F}{\partial t} +$ ∂F $\frac{\partial F}{\partial y}F$

Not much better, because we still do not know $\frac{\partial F}{\partial t}$ $\frac{\partial F}{\partial t}$, $\frac{\partial F}{\partial y}.$

 \blacktriangleright So, let's try to approximate F using P_1 ... Note: We must use a 2-variables version of Taylor's theorem.

(*)

$$
F(y(t_0) + \Delta y, t_0 + \Delta t) = F(y(t_0), t_0) + \Delta y \frac{\partial F}{\partial y} (y(t_0), t_0) + \Delta t \frac{\partial F}{\partial t} (y(t_0), t_0) + \mathcal{O}(\Delta y^2 + \Delta t^2)
$$
\n
$$
\triangleright \text{ Let's substitute: } \Delta y \to \frac{\Delta t}{2} F(y(t_0), t_0), \Delta t \to \frac{\Delta t}{2}
$$
\n
$$
F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) = F(y(t_0), t_0) + \frac{\Delta t}{2} F(y(t_0), t_0) \frac{\partial F}{\partial y} (y(t_0), t_0) + \frac{\Delta t}{2} \frac{\partial F}{\partial t} (y(t_0), t_0) + \mathcal{O}(\Delta t^2) \frac{\Delta t}{2} F(y(t_0), t_0)
$$
\n
$$
F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) = F(y(t_0), t_0) + \frac{\Delta t}{2} F(y(t_0), t_0) + \mathcal{O}(\Delta t^2)
$$
\n
$$
\frac{\Delta t}{2} F(y(t_0), t_0) + \mathcal{O}(\Delta t^2) = F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) - F(y(t_0), t_0)
$$
\n
$$
\frac{\Delta t^2}{2} F(y(t_0), t_0) + \mathcal{O}(\Delta t^3) = \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) - \Delta t F(y(t_0), t_0)
$$

27

$$
y(t_0 + \Delta t) = y(t_0) + \Delta t F(y(t_0), t_0) + \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right) - \Delta t F(y(t_0), t_0)
$$

$$
y(t_0 + \Delta t) = y(t_0) + \Delta t F\left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}\right)
$$

- This is an **explicit** method.
- \blacktriangleright This method is more accurate than Euler's method:
	- Euler: $\mathcal{O}(\Delta t^2)$
	- \blacktriangleright Midpoint: $\mathcal{O}(\Delta t^3)$

$$
y(t_0 + \Delta t) = y(t_0) + \Delta t F \left(y(t_0) + \frac{\Delta t}{2} F(y(t_0), t_0), t_0 + \frac{\Delta t}{2} \right)
$$

$$
y \triangleq \text{Slope: } F(y(t_0), t_0) \text{ Slope: } F(y(t_0 + \frac{\Delta t}{2}), t_0 + \frac{\Delta t}{2})
$$

$$
y(t_0 + \Delta t/2) \triangleq \text{Folve: } \text{P(x(t_0 + \frac{\Delta t}{2}), t_0 + \frac{\Delta t}{2})}
$$

$$
y(t_0 + \Delta t)
$$

$$
y(t_0)
$$

 $IVP: \dot{y} = \frac{3-4y}{2t}$ $2t$, $y(1) = -4$. Midpoint method: $\Delta t = \frac{1}{2}$ 2 Forward Euler: $\Delta t = \frac{1}{2}$ Exact solution: $y(t) = \frac{3}{4}$ 4 19 $4t^2$

IVP: $\dot{y} = -2.3y, y(0) = 1.$ Midpoint method: $\Delta t = 1$. Forward Euler: $\Delta t = 1$. Exact solution: $y(t) = e^{-2.3t}$

There is also **implicit** version of the midpoint method.

From the fundamental theorem of the calculus:

$$
y(t_0 + \Delta t) = y(t_0) + \int_{t_0}^{t_0 + \Delta t} F(y(t), t) dt.
$$

We can approximate the integral by "midpoint" rectangle: \mathbf{I} t_{0} $t_0+\Delta t$ $F(y(t), t)dt \approx \Delta t F$ $y(t_0) + y(t_0 + \Delta t)$ 2 , $t_0 + (t_0 + \Delta t)$ 2

Therefore, we get

$$
y(t_0 + \Delta t) = y(t_0) + \Delta t F\left(\frac{y(t_0) + y(t_0 + \Delta t)}{2}, t_0 + \frac{\Delta t}{2}\right)
$$

In general, we can approximate the integral as follows: \mathbf{I} t_{0} $t_0+\Delta t$ $F(y(t), t)dt \approx \Delta t$) $i=1$ \boldsymbol{n} $b_i F(y(t_0 + c_i \Delta t), t_0 + c_i \Delta t)$

The problem is that values $y(t_0 + c_i \Delta t)$ are **unknown!**

Runge-Kutta methods solve the issue by this **substitution**:

$$
k_1 = F(y(t_0), t_0)
$$

\n
$$
k_i = F\left(y(t_0) + \Delta t \sum_{j=1}^{i-1} a_{i,j} k_j, t_0 + c_i \Delta t\right), \qquad s, t, \sum_{j=1}^{i-1} a_{i,j} = c_i
$$

\n
$$
\int_{t_0}^{t_0 + \Delta t} F(y(t), t) dt \approx \Delta t \sum_{i=1}^n b_i k_i
$$

 \blacktriangleright Therefore, Runge-Kutta of order n is defined as:

$$
y(t_0 + \Delta t) = y(t_0) + \Delta t \sum_{i=1}^{n} b_i k_i,
$$

where terms k_i were defined on the previous slide.

 \blacktriangleright However, we must **compute** the numbers $a_{i,j}$, b_i , c_i so that resulting expression yields an approximation by **Taylor's polynomial** P_n .

Example: Runge-Kutta method of order 1 (i.e. $n = 1$):

 $k_1 = F(y(t_0), t_0)$

 $y(t_0 + \Delta t) = y(t_0) + \Delta t b_1 k_1 = y(t_0) + \Delta t b_1 F(y(t_0), t_0)$

What value we should choose for b_1 ? We compare $y(t_0 + \Delta t)$ with P_1 .

 $P_1(t_0 + \Delta t) = y(t_0) + \Delta t \dot{y}(t_0) = y(t_0) + \Delta t F(y(t_0), t_0)$

Therefore, b_1 must be 1.

Observation: Euler's method is Runge-Kutta method of order 1.

Example: Runge-Kutta method of order 2 (i.e. $n = 2$):

 $k_1 = F(y(t_0), t_0)$ $k_2 = F(y(t_0) + \Delta t a_{2,1} k_1, t_0 + c_2 \Delta t)$ $y(t_0 + \Delta t) = y(t_0) + \Delta t b_1 k_1 + \Delta t b_2 k_2$ We compute $a_{2,1}$, b_1 , b_2 by comparison of $y(t_0 + \Delta t)$ with P_2 . $P_2(t_0 + \Delta t) = y(t_0) + \Delta t \dot{y}(t_0) +$ Δt^2 $\frac{d}{2!}\ddot{y}(t_0)$ $= y(t_0) + \Delta t F(y(t_0), t_0) +$ Δt^2 2 $\dot{F}(y(t_0),t_0)$ $= y(t_0) + \Delta t F(y(t_0), t_0) +$ Δt^2 2 ∂F $\frac{\partial}{\partial t}$ + ∂F $\left(\frac{\partial f}{\partial y}\right)$ $(y(t_0),t_0)$

For the comparison let's approximate k_2 by P_1 : $k_2 = F(y(t_0) + \Delta t a_{2,1} k_1, t_0 + c_2 \Delta t)$ $\approx F(y(t_0), t_0) + \Delta t (c_2)$ ∂F $\frac{\partial F}{\partial t} + a_{2,1}k_1$ ∂F $\frac{\partial F}{\partial y}$) (y(t₀), t₀ $= F(y(t_0), t_0) + \Delta t (c_2)$ ∂F $\frac{\partial F}{\partial t} + a_{2,1}F$ ∂F $\frac{\partial F}{\partial y}$) $(y(t_0), t_0)$ When we substitute the approximated k_2 we get: $y(t_0 + \Delta t) = y(t_0) + \Delta t b_1 F(y(t_0), t_0)$ $+\Delta t b_2(F(y(t_0), t_0) + \Delta t(c_2))$ ∂F $\frac{\partial F}{\partial t} + a_{2,1}F$ ∂F $\frac{\partial F}{\partial y}$ $(y(t_0), t_0)$ $= v(t_0) + \overline{\Delta t (b_1 + b_2) F (y(t_0), t_0)}$ $+\Delta t^2 b_2 \left(c_2 \frac{\partial F}{\partial t}\right)$ $\frac{\partial r}{\partial t} + a_{2,1}$ ∂F $\left(\frac{\partial F}{\partial y}F\right)(y(t_0),t_0)$

So, we must solve this system of equations:

$$
b_1 + b_2 = 1
$$
, $b_2 c_2 = \frac{1}{2}$, $b_2 a_{2,1} = \frac{1}{2}$.

One possible solution is: $b_1 = 0$, $b_2 = 1$, $c_2 = \frac{1}{2}$ $\frac{1}{2}$, $a_{2,1} =$ 1 2

(Note: Another solution is: $b_1 = \frac{1}{2}$ $\frac{1}{2}$, $b_2 = \frac{1}{2}$ $\frac{1}{2}$, $c_2 = 1$, $a_{2,1} = 1$

We get the result:

$$
k_1 = F(y(t_0), t_0)
$$

\n
$$
k_2 = F(y(t_0) + \frac{\Delta t}{2}k_1, t_0 + \frac{\Delta t}{2})
$$

\n
$$
y(t_0 + \Delta t) = y(t_0) + \Delta t k_2 = y(t_0) + \Delta t F(y(t_0) + \frac{\Delta t}{2}F(y(t_0), t_0), t_0 + \frac{\Delta t}{2}).
$$

Observation: Midpoint method is Runge-Kutta method of order 2.

Example: Runge-Kutta method of order 4:

$$
k_1 = F(y(t_0), t_0)
$$

\n
$$
k_2 = F\left(y(t_0) + \frac{k_1}{2}, t_0 + \frac{\Delta t}{2}\right)
$$

\n
$$
k_3 = F\left(y(t_0) + \frac{k_2}{2}, t_0 + \frac{\Delta t}{2}\right)
$$

\n
$$
k_4 = F(y(t_0) + k_3, t_0 + \Delta t)
$$

\n
$$
y(t_0 + \Delta t) = y(t_0) + \Delta t \left(\frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4\right)
$$

Schema of numerical methods

References

[1] A. Witkin, D. Baraff; *Differential Equation Basics*; Physically Based Modeling: Principles and Practice, 1997

[2] J.C.Butcher; Numerical methods for ordinary differential equations; 3rd edition, Wiley, 2016.

[3] https://tutorial.math.lamar.edu/Classes/DE/DE.aspx