Solving differential equations

Jiří Chmelík, <u>Marek Trtík</u> PA199

Outline

- ▶ Initial value problem for ordinary differential equations.
- Forward Euler's method.
- Backward Euler's method.
- Midpoint method.
- Runge-Kutta methods.

Initial value problem

Initial value problem

Initial value problem

Direction field

Numerical solution

Taylor theorem

- For a k-times differentiable function y: R → R at a point t₀ ∈ D(y) there exists a polynomial P_K: R → R and a functions R: R → R s.t.
 y(t₀ + Δt) = P_K(t₀ + Δt) + Δt^KR(t₀ + Δt)
 - $P_{1}(c_{0} + \Delta t) = y(c_{0}) + \Delta t y(c_{0}) + \frac{\Delta t^{2}}{2}y(c_{0}) + \dots + \frac{\Delta t^{2}}{2}y^{(D)}(c_{0})$
 - $\lim_{M\to 0} R(t_0 + \Delta t) = 0$

Numerical solution

Examples (Taylor approximation):

"O" error notation

- What is the error from the approximation using P_{k^2}
- It is a distance from the exact value $P_{k+1}(t_0 + \Delta t) + \Delta t^{k+1}R(t_0 + \Delta t)$: $error = P_{k+1}(t_0 + \Delta t) + \Delta t^{k+1}R(t_0 + \Delta t) P_k(t_0 + \Delta t)$ Δt^{k+1}
 - $=\frac{\Delta t}{(k+1)!} \gamma^{(k+1)}(t_0) + \Delta t^{k+1} R(t_0 + \Delta t)$
- For small At the error is proportional to the term At^{k+1}. Therefore,

 $y(t_0 + \Delta t) = P_k(t_0 + \Delta t) + O(\Delta t^{k+1})$

- Low accuracy issue:
 - O(hr²) error in each iteration.
- Example:

 $\Delta t = \frac{1}{2}, \Delta t = \frac{1}{4}$ $y(t) = \frac{3}{4} - \frac{19}{4t^2}$

- ► Instability issue:
 - ▶ The iteration process may diverge.
- **Example:**

$$\Delta t = 1, \Delta t = \frac{1}{2}$$
$$y(t) = e^{-2.3t}$$

We can plot out result and compare it with forward Euler's method:

$$\Delta t = \frac{1}{2}$$

$$\Delta t = \frac{1}{2}$$

$$y(t) = \frac{3}{4} - \frac{19}{4t^2}$$

▶ We can plot out result and compare it with forward Euler's method:

$$\Delta t = 1$$

$$\Delta t = 1$$

$$y(t) = e^{-2.3t}$$

$$\Delta t = \frac{1}{2}$$

$$\Delta t = \frac{1}{2}$$

$$y(t) = \frac{3}{4} - \frac{19}{4t^2}$$

$$\Delta t = 1$$

$$\Delta t = 1$$

$$y(t) = e^{-2.3t}$$

Schema of numerical methods

References

- [1] A. Witkin, D. Baraff; *Differential Equation Basics*; Physically Based Modeling: Principles and Practice, 1997
- [2] J.C.Butcher; Numerical methods for ordinary differential equations; 3rd edition, Wiley, 2016.
- [3] https://tutorial.math.lamar.edu/Classes/DE/DE.aspx