
Collision detection

Jiří Chmelík, Marek Trtík

PA199

2

 Broad phase
 Sweep and prune algorithm

 Narrow phase
 Gilbert-Johnson-Keerthi (GJK) algorithm

 Caching collisions

 Computing collision time

Outline

3

Broad phase

4

 The goal is to quickly find pairs of potentially colliding rigid bodies.

 Used algorithm defines meaning of “potentially colliding”. Examples:

When AABBs of the bodies are colliding.

When both bodies are in the same area of space.

 We can use space partitioning data structures we already know:

 Octree, k-D tree, BSP

 Rigid bodies change their positions and orientations during simulation.

 => The data structure must be periodically updated.

 Utilize time coherence of frames (positions of bodies do not change

much between adjacent frames) to get an efficient update algorithm.

Broad phase

5

x

y

A

C

𝑥𝐴 𝑥𝐴

𝑦𝐴

𝑦𝐴

𝑥𝐶 𝑥𝐶

B

𝑥𝐵

𝑥𝐵

D

𝑥𝐷
𝑥𝐷

𝑦𝐷

𝑦𝐷

𝑦𝐵

𝑦𝐵

𝑦𝐶

𝑦𝐶

𝐿𝑥 = [𝑥𝐴, 𝑥𝐶, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐵, 𝑥𝐷, 𝑥𝐷]

𝐿𝑦 = [𝑦𝐶, 𝑦𝐴, 𝑦𝐶, 𝑦𝐷, 𝑦𝐵, 𝑦𝐴, 𝑦𝐵, 𝑦𝐷]
Use InsertSort

Sweep and prune algorithm

𝑊𝑥 = { }

𝑊𝑦 = { }

𝑊 = 𝑊𝑥 ∩ 𝑊𝑦 = { }

A, 𝐶 , {𝐵, 𝐶}

A, 𝐶 , {𝐵, 𝐷}{A, 𝐷}, {A, 𝐵},

{A, 𝐶}

6

 The presented version is easy to understand and implement.

 But it wastes time by recomputing 𝑊 from scratch each time step.

 In practice, we use an improved version:

 We start with the arrays 𝐿𝛼, 𝛼 ∈ {𝑥, 𝑦, 𝑧}, and 𝑊 from the previous frame.

 We incrementally update each 𝐿𝛼 and 𝑊 for each relocated object 𝐴.

foreach axis 𝛼 ∈ {𝑥, 𝑦, 𝑧} do:

Update 𝛼𝐴 in 𝐿𝛼 by the new lower bound of 𝐴 along the axis 𝛼.

 while ∃𝛼𝑋
𝑌 right before 𝛼𝐴 in 𝐿𝛼 s.t. 𝛼𝑋

𝑌 > 𝛼𝐴 do:

 Swap 𝛼𝐴 with 𝛼𝑋
𝑌 in 𝐿𝛼.

 if 𝑋 is None then Insert {𝐴, 𝑌} to 𝑊.

Sweep and prune algorithm

Moving 𝛼𝐴

“to the left”

7

Update 𝛼𝐴 in 𝐿𝛼 by the new upper bound of 𝐴 along the axis 𝛼.

 while ∃𝛼𝑋
𝑌 right after 𝛼𝐴 in 𝐿𝛼 s.t. 𝛼𝐴 > 𝛼𝑋

𝑌 do:

 Swap 𝛼𝐴 with 𝛼𝑋
𝑌 in 𝐿𝛼.

 if 𝑌 is None then Insert {𝐴, 𝑋} to 𝑊.

 while ∃𝛼𝑋
𝑌 right after 𝛼𝐴 in 𝐿𝛼 s.t. 𝛼𝐴 > 𝛼𝑋

𝑌 do:

 Swap 𝛼𝐴 with 𝛼𝑋
𝑌 in 𝐿𝛼.

 if 𝑋 is None then Erase {𝐴, 𝑌} from 𝑊.

 while ∃𝛼𝑋
𝑌 right before 𝛼𝐴 in 𝐿𝛼 s.t. 𝛼𝑋

𝑌 > 𝛼𝐴 do:

 Swap 𝛼𝐴 with 𝛼𝑋
𝑌 in 𝐿𝛼.

 if 𝑌 is None then Erase {𝐴, 𝑋} from 𝑊.

Sweep and prune algorithm

Moving 𝛼𝐴

“to the right”

Moving 𝛼𝐴

“to the right”

Moving 𝛼𝐴

“to the left”

8

 Possible memory representation of the lists 𝐿𝛼, 𝛼 ∈ {𝑥, 𝑦, 𝑧}:

struct Link {

 Link *next, *prev;

 float coord;

 char lohi : 1;

};

using AABB = Link[2][3];

Sweep and prune algorithm

𝐴𝐴𝐵𝐵
next

𝑥𝐴 in 𝐿𝑥

𝑦𝐴 in 𝐿𝑦

𝑧𝐴 in 𝐿𝑧

𝑥𝐴 in 𝐿𝑥

𝑦𝐴 in 𝐿𝑦

𝑧𝐴 in 𝐿𝑧

prev

Link[0][*]

Link[1][*]

Points to some

“red” link in the

previous AABB.

Represents

either 𝛼𝐴 or 𝛼𝐴.
If lohi == 0, then

“coord” is 𝛼𝐴

and 𝛼𝐴 otherwise.

9

 If “p” is a pointer to a “Link” of the list 𝐿𝛼, 𝛼 ∈ {0,1,2} (i.e., {𝑥, 𝑦, 𝑧}), then

we can convert it to a pointer to AABB using the pointer arithmetic:

 (AABB*)(p – (𝛼 + 3 * (int)p.lohi) * sizeof(Link))

 Represent the set 𝑊 as a dictionary of pairs of object IDs.

 Sort the pair s.t. the lower ID comes first and the other the second.

 Initialize the data structure to contain a single auxiliary AABB s.t:

 Values in the links are: 𝑥𝐴 = 𝑦𝐴 = 𝑧𝐴 = −∞ and 𝑥𝐴 = 𝑦𝐴 = 𝑧𝐴 = +∞.

 All 2*3 links are properly interconnected in the lists 𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧.

 This auxiliary AABB avoids the “nullptr” check in the algorithm (loops).

Sweep and prune algorithm

10

 Performance of the algorithm is sensitive to alignment of objects

along coordinate axes:

 A relocation of an object leads to a lot of swaps thought the “cluster”

in the array.

Sweep and prune algorithm

x

y

A C B D

“Cluster” of bounds
𝑦∗ and 𝑦∗ in 𝐿𝑦 due to

alignment of objects

along the x axis.

11

Narrow phase

12

 The goal is for each pair of potentially colliding shapes to:

 Decide whether the shapes really collide or not.

 Compute a finite model of the (infinite) set of

 all collision points.

 Example: Find finite and minimal number of points

 in ℋ whose convex hull contains ℋ.

 Requirement: The effect of collision forces computed at points of the

model must be equal to collision forces computed at all points in ℋ.

Narrow phase

Stack of two boxes

(top view)

ℋ
𝐴

𝐵

𝐷

𝐶

13

 Decides whether two convex shapes have empty intersection or not.

Convex shapes Concave shapes

 We can approximate a concave shape by a set of convex shapes.
 For the empty intersection we can obtain a pair of the closest points.

 We must first build a terminology:
 Minkowski sum and difference
 Simplex
 Support function

Gilbert-Johnson-Keerthi (GJK) algorithm

14

 Minkowski sum: 𝒜 + ℬ = 𝒂 + 𝒃; 𝒂 ∈ 𝒜 ∧ 𝒃 ∈ ℬ .

 How to draw Minkowski sum?
 Choose some points ෝ𝒂 ∈ 𝒜 ∧ ෡𝒃 ∈ ℬ.

 Then, ∀𝒂 ∈ 𝒜 ∃𝒂′ s.t. 𝒂 = ෝ𝒂 + 𝒂′.
 Therefore, for each 𝒂 ∈ 𝒜 ∧ 𝒃 ∈ ℬ

𝒂 + 𝒃 = ෝ𝒂 + ෡𝒃 + 𝒂′ + 𝒃′

 So, we draw 𝒜 + ℬ around ෝ𝒂 + ෡𝒃:
 Draw ℬ around ෝ𝒂 + ෡𝒃.
 Draw 𝒜 around ℬ’s perimeter.

 𝒜 + ℬ is the convex hull.

GJK: Minkowski sum

𝑂

𝒜

ℬ

෡𝒃

ෝ𝒂

ෝ𝒂

𝒜 + ℬ

𝒂

𝒂′

15

 Minkowski difference: 𝒜 − ℬ = 𝒜 + −ℬ ,

where −ℬ = −𝒃; 𝒃 ∈ ℬ

 Lemma: The shortest distance between

𝒜 and ℬ is equal to the distance of

𝒜 − ℬ to the origin.

Proof: It is a length of the shortest ෝ𝒂 − ෡𝒃,

s.t. ෝ𝒂 ∈ 𝒜 ∧ ෡𝒃 ∈ ℬ. But ෝ𝒂 − ෡𝒃 ∈ 𝒜 − ℬ.

 Consequence: Shapes 𝒜 and ℬ collide

if and only if 𝒜 − ℬ contains the origin.

GJK: Minkowski difference

ℬ

𝒜

−ℬ

𝒜 − ℬ

𝒜

𝒜 − ℬ

𝒜

𝒜 − ℬ

𝑂

16

 Lemma: If shapes 𝒜 and ℬ are convex, then 𝒜 − ℬ is also convex.

 Proof: For each 𝒖, 𝒗 ∈ 𝒜 − ℬ there exist 𝒂𝑢, 𝒂𝑣 ∈ 𝒜 and 𝒃𝑢, 𝒃𝑣 ∈ ℬ s.t.

 𝒖 = 𝒂𝑢 − 𝒃𝑢 and 𝒗 = 𝒂𝑣 − 𝒃𝑣. Then, for 𝑡 ∈ 0,1 , we get

 𝒖 + 𝑡 𝒗 − 𝒖 = 𝒂𝑢 − 𝒃𝑢 + 𝑡 𝒂𝑣 − 𝒃𝑣 − 𝒂𝑢 − 𝒃𝑢 =

 𝒂𝑢 − 𝒃𝑢 + 𝑡𝒂𝑣 − 𝑡𝒃𝑣 − 𝑡𝒂𝑢 + 𝑡𝒃𝑢 =

𝒂𝑢 + 𝑡 𝒂𝑣 − 𝒂𝑢 − 𝒃𝑢 + 𝑡 𝒃𝑣 − 𝒃𝑢 .

 𝒜 and ℬ are convex => 𝒂𝑢 + 𝑡 𝒂𝑣 − 𝒂𝑢 ∈ 𝒜, 𝒃𝑢 + 𝑡 𝒃𝑣 − 𝒃𝑢 ∈ ℬ =>

 𝒂𝑢 + 𝑡 𝒂𝑣 − 𝒂𝑢 − 𝒃𝑢 + 𝑡 𝒃𝑣 − 𝒃𝑢 ∈ 𝒜 − ℬ => 𝒜 − ℬ is convex.

 Consequence: If the origin lies in the convex hull of points 𝒂1, … , 𝒂𝑛 ∈
𝒜 − ℬ, then convex shapes 𝒜 and ℬ have non-empty intersection.

GJK: Minkowski difference

17

 A simplex is a convex hull of an affinely independent points.

point line triangle tetrahedron

 GJK searches for a simplex s.t. origin lies inside or prove that no such

simplex exists.

 Note: In 2D case we only need point, line and triangle.

GJK: Simplex

18

 Given a shape 𝒜 and a non-zero

vector 𝒅, a support function

𝑆𝒜 returns a point 𝑆𝒜 𝒅 ∈ 𝒜 s.t.

𝑆𝒜 𝒅 ⋅ 𝒅 = max 𝒙 ⋅ 𝒅; 𝒙 ∈ 𝒜 .

GJK: Support function

𝒅𝒅1

𝒅2

𝒜

𝑆𝒜(𝒅1)
𝑆𝒜(𝒅)

𝑆𝒜(𝒅2)

19

 A shape 𝒜 can be defined in a local system – body/model space.

 Therefore, this must be reflected in the computation of 𝑆𝒜 𝒅 .

GJK: Support function

𝑥′

𝑦′

𝑧′

Body space

𝑥

𝑦

𝑧

World space

𝒑′
𝑅

Rotation matrix

𝒙

Translation

vector
𝒑

𝒑 = 𝑅𝒑′ + 𝒙

𝒑′ = 𝑅⊤ 𝒑 − 𝒙

20

 When a convex shape 𝒜 is defined in body space (𝑅, 𝒙), then we

denote 𝑅𝒜 + 𝒙 the corresponding convex shape in the world space.

 More precisely: 𝑅𝒜 + 𝒙 = {𝑅𝒑′ + 𝒙 ; 𝒑′ ∈ 𝒜}.

 Lemma: 𝑆𝑅𝒜+𝒙 𝒅 = 𝑅𝑆𝒜 𝑅⊤𝒅 + 𝒙, for each world-space vector 𝒅 ≠ 𝟎.

Proof: First, we show that ∀𝒑′ ∈ 𝒜 the following equality (*) holds true

𝑅𝒑′ + 𝒙 ⋅ 𝒅 = 𝑅𝒑′ ⋅ 𝒅 + 𝒙 ⋅ 𝒅

= 𝒅⊤ 𝑅𝒑′ + 𝒙 ⋅ 𝒅

= 𝒅⊤𝑅 𝒑′ + 𝒙 ⋅ 𝒅

= 𝑅⊤𝒅 ⊤𝒑′ + 𝒙 ⋅ 𝒅

= 𝒑′ ⋅ 𝑅⊤𝒅 + 𝒙 ⋅ 𝒅.

GJK: Support function

21

 Now, 𝑆𝑅𝒜+𝒙 𝒅 ⋅ 𝒅 = max 𝒑 ⋅ 𝒅; 𝒑 ∈ 𝑅𝒜 + 𝒙

= max 𝑅𝒑′ + 𝒙 ⋅ 𝒅; 𝒑′ ∈ 𝒜

= max 𝒑′ ⋅ 𝑅⊤𝒅 + 𝒙 ⋅ 𝒅; 𝒑′ ∈ 𝒜 according to (*)

= max 𝒑′ ⋅ 𝑅⊤𝒅 ; 𝒑′ ∈ 𝒜 + 𝒙 ⋅ 𝒅

= 𝑆𝒜 𝑅⊤𝒅 ⋅ 𝑅⊤𝒅 + 𝒙 ⋅ 𝒅

= 𝑅𝑆𝒜 𝑅⊤𝒅 + 𝒙 ⋅ 𝒅 according to (*)

 Therefore, 𝑆𝑅𝒜+𝒙 𝒅 = 𝑅𝑆𝒜 𝑅⊤𝒅 + 𝑥.

GJK: Support function

22

 𝒜 is a sphere at the origin with the radius 𝑟:

𝑆𝒜 𝒅 = 𝑟
𝒅

𝒅

 𝒜 is an axis aligned bounding box (AABB) at the origin with sizes
2𝑠𝑥 , 2𝑠𝑦 , 2𝑠𝑧 along corresponding coordinate axes:

𝑆𝒜 𝒅 = sgn 𝒅𝑥 𝑠𝑥 , sgn 𝒅𝑦 𝑠𝑦 , sgn 𝒅𝑧 𝑠𝑧
⊤

 where sgn 𝑎 = ቊ
−1 if 𝑎 < 0

1 otherwise

GJK: Support function examples

23

 𝒜 is a cylinder at the origin with the central axis aligned with the z

coordinate axis, with the radius 𝑟 and with the top and bottom base
at z-coordinate ℎ and −ℎ, respectively:

𝑆𝒜 𝒅 = ൞

𝑟

𝜎
𝒅𝑥 ,

𝑟

𝜎
𝒅𝑦 , sgn 𝒅𝑧 ℎ

⊤

if 𝜎 > 0

0,0, sgn 𝒅𝑧 ℎ ⊤ otherwise

 where 𝜎 = 𝒅𝑥
2 + 𝒅𝑦

2 , and sgn(𝑎) was defined earlier.

 𝒜 is any convex polytope (e.g., point, line, triangle, convex polygon,
tetrahedron, box, …) with vertices V = {𝒗1, … , 𝒗𝑛}:

𝑆𝒜 𝒅 = 𝒗𝑘 s. t. 𝒗𝑘 ⋅ 𝒅 = max{𝒗𝑖 ⋅ 𝒅 ; 𝒗𝑖 ∈ V}

GJK: Support function examples

24

 Lemma: 𝑆𝒜−ℬ 𝒅 = 𝑆𝒜 𝒅 − 𝑆ℬ −𝒅 .
Proof: 𝑆𝒜−ℬ 𝒅 ⋅ 𝒅 = max 𝒂 − 𝒃 ⋅ 𝒅; 𝒂 ∈ 𝒜 ∧ 𝒃 ∈ ℬ

= max 𝒂 ⋅ 𝒅; 𝒂 ∈ 𝒜 − min 𝒃 ⋅ 𝒅; 𝒃 ∈ ℬ
= 𝑆𝒜 𝒅 ⋅ 𝒅 + max 𝒃 ⋅ −𝒅 ; 𝒃 ∈ ℬ
= 𝑆𝒜 𝒅 ⋅ 𝒅 + 𝑆ℬ −𝒅 ⋅ −𝒅
= (𝑆𝒜 𝒅 − 𝑆ℬ −𝒅) ⋅ 𝒅.

 We therefore do not have to construct 𝒜 − ℬ and 𝑆𝒜−ℬ. We work with

the given shapes 𝒜 and ℬ and their support functions.

GJK: Support function

25

GJK: The algorithm – intuition (2D case)

𝑆 ={ }

ℬ

𝒜

𝒜 − ℬ

𝑂

𝒅1

𝐬0,
𝐬1

𝐬2𝐬1,

𝐬2

𝐬0 𝐬1

𝐬0

𝐬1

𝐬2

𝒔0

𝒅2

𝐬2=
𝐬1 = 𝑆𝒜−ℬ 𝒅1 = 𝑆𝒜 𝒅1 − 𝑆ℬ −𝒅1 = 𝐬𝟏 − 𝐬𝟏

𝐬𝟎, 𝐬𝟎 – closest points from the

previous round (or random)

𝐬2 = 𝑆𝒜−ℬ 𝒅2 = 𝑆𝒜 𝒅2 − 𝑆ℬ −𝒅2 = 𝐬𝟐 − 𝐬𝟐

𝐬0 = 𝐬𝟎 − 𝐬𝟎

𝒅3

𝐬3=

𝐬3=

𝐬3=

𝐬1 ⋅ 𝒅1 ≥ 0 => continue

𝐬3 = 𝑆𝒜−ℬ 𝒅3 = 𝑆𝒜 𝒅3 − 𝑆ℬ −𝒅3 = 𝐬𝟑 − 𝐬𝟑

𝐬2 ⋅ 𝒅2 ≥ 0 => continue

𝐬3 ⋅ 𝒅3 < 0 => NO INTERSECTION!

26

 Since 𝒜 and ℬ have empty intersection, we can compute a pair of closest

points:

 First, we find the closest point 𝑋 of the simplex 𝑆 = {𝐬1, 𝐬2} to the origin. That is

𝑋 = 𝐬1 + 𝑡 𝐬2 − 𝐬1 for some 𝑡 ∈ 0,1 s.t. 𝑋 − 𝑂 2 = 𝐬1 + 𝑡 𝐬2 − 𝐬1
2 is minimal.

So, solve the equation:
𝑑

𝑑𝑡
𝐬1 + 𝑡 𝐬2 − 𝐬1

2 = 0

𝑑

𝑑𝑡
𝐬1 ⋅ 𝐬1 + 𝑡2𝐬1 ⋅ 𝐬2 − 𝐬1 + 𝑡2 𝐬2 − 𝐬1

2 = 0

2𝐬1 ⋅ 𝐬2 − 𝐬1 + 2𝑡 𝐬2 − 𝐬1
2 = 0

𝑡 = −
𝐬1 ⋅ 𝐬2 − 𝐬1

𝐬2 − 𝐬1
2

GJK: The algorithm – intuition (2D case)

Also clip 𝑡 to 0,1 .

27

 Then, find the corresponding points in the shapes 𝒜 and ℬ.

𝐬1 + 𝑡 𝐬2 − 𝐬1 = 𝐬𝟏 − 𝐬𝟏 + 𝑡(𝐬𝟐 − 𝐬𝟐 − (𝐬𝟏 − 𝐬𝟏))

 = 𝐬𝟏 + 𝑡(𝐬𝟐 − 𝐬𝟏) − 𝐬𝟏 + 𝑡 𝐬𝟐 − 𝐬𝟏

GJK: The algorithm – intuition (2D case)

∈ 𝒜 ∈ ℬ

28

Choose some 𝒑 ∈ 𝒜 − ℬ. // Usually, 𝒑 comes from the previous frame.

𝑆 = ∅ // We start with the empty simplex.

𝒔 = 𝑆𝒜−ℬ −𝒑 // NOTE: Our direction vector 𝒅 to the origin is just −𝒑.

while 𝒑 2 − 𝒑 ⋅ 𝒔 > 𝜖2 do: // Proving termination condition: see [4].

// 𝒑 is still far from the closest point of 𝒜 − ℬ to the origin.

𝒑 = closest_to_origin convex_hull(𝑆 ∪ {𝒔})

𝑆 = smallest 𝑋 ⊆ 𝑆 ∪ 𝒔 s.t. 𝒑 ∈ convex_hull(𝑋) // Reduce the simplex.

𝒔 = 𝑆𝒜−ℬ −𝒑

return 𝒂 ∈ 𝒜, 𝒃 ∈ ℬ s.t. 𝒑 = 𝒂 − 𝒃. // |𝒑| is the closest distance.

GJK: The algorithm

Point, line, triangle,

or tetrahedron.

Can be computed quickly for shapes

29

Caching collisions

30

 Efficiency of the PGS algorithm for a constraint system depends on

the initial value 𝝀0.

 It is likely that 𝜆 computed for a collision constraint at current frame

would be “almost valid” for the next frame (if the collision persists).

 Therefore, caching 𝜆 values for collision (and other types of)

constraints amongst frames can bring considerable speed boost.

 How to match collisions computed in different frames?

Caching collisions

31

 There are several possibilities:

 Distance between collision points in world space:

 Distance between collision points in body space:

Caching collisions

𝑡𝑡 + Δ𝑡

𝑎𝑏 𝑐𝑑

Correct mapping:

𝑎 → 𝑐, 𝑏 → 𝑑
Word distance mapping:

𝑏 → 𝑐 (wrong), 𝑎 → ? , ? → 𝑑

Imprecise.

Precise in

space of

the box

𝑡𝑡 + Δ𝑡

𝑎𝑏 𝑐𝑑

𝑡𝑡 + Δ𝑡

𝑎𝑏 𝑐𝑑

Imprecise

in space

of ground

32

 Identify collisions by geometrical properties of collision shapes:

enum GTYPE { VERTEX, EDGE, FACE };

struct CollisionID {

int body_index_1; // The index of ℛ𝑖: 𝑖

GTYPE feature_type_1; // The type of colliding geometry in ℛ𝑖

int feature_index_1; // Index of the colliding geometry in ℛ𝑖

int body_index_2; // The index of ℛ𝑗: 𝑗

GTYPE feature_type_2; // The type of colliding geometry in ℛ𝑖

int feature_index_2; // Index of the colliding geometry in ℛ𝑖

};

Define also comparison and hashing of CollisionID instances.

Caching collisions

33

 The cache should be a map from CollisionID instance to values 𝜆:

using collision_cache = std::unordered_map<CollisionID,float>;

 And how to use the cache?

Caching collisions

𝑡𝑡 + Δ𝑡

𝑎𝑏 𝑐𝑑

We get precise mapping:

id 𝑎 = id 𝑐 ⇒ 𝑎 → 𝑐
id 𝑏 = id 𝑑 ⇒ 𝑏 → 𝑑

Recommended

approach

34

 Before solving the constraint system initialize 𝝀0 s.t.

 For each computed collision 𝑐 and the corresponding element 𝝀𝑖
0:

 Build the CollisionID instance 𝑖𝑑 from 𝑐.

 If 𝑖𝑑 is present in the cache, then set 𝝀𝑖
0 to the value 𝜆 in the cache.

Otherwise, set 𝝀𝑖
0 to 0.

 Once new solution 𝝀 is computed updated the cache as follows:

 Clear the cache.

 For each collision 𝑐 and the corresponding computed value 𝜆:

 Build the CollisionID instance 𝑖𝑑 from 𝑐.

 Insert the mapping 𝑖𝑑 → 𝜆 to the cache.

Caching collisions

35

Computing collision time

36

Tunnelling and penetration

PenetrationTunnelling

37

 The simplest approach is to subdivide the game time step Δ𝑡 of into

several small internal time steps.

 For broad phase:

 Approximate collision shapes of bodies

 by “moving spheres”:

 Use the adaptive time step:

 For each pair of potentially colliding shapes compute the nearest

collision time.

 Move the bodies only to the minimum of all nearest collision times.

Dealing with tunnelling and penetration

We move all bodies in

each internal time step.
Δ𝑡𝒗

38

 Binary search for Ƹ𝑡 ∈ 𝑡, 𝑡 + ∆t

 There are 4D collision algorithms – they consider translations and
rotations of tested objects.

Computing collision time

𝜀

𝑡 + ∆t/2

(2)

𝑡

Start position

𝑡 +
3

4
∆𝑡

(3)

Ƹ𝑡

Ƹ𝜀

(1)

𝑡 + ∆t

39

[1] Erin Catto; Iterative Dynamics with Temporal Coherence; Crystal

Dynamics, Menlo Park, California, 2005

[2] E. G. Gilbert, D. W. Johnson and S. S. Keerthi; A fast procedure for

computing the distance between complex objects in three-

dimensional space; Journal on Robotics and Automation, vol. 4, no. 2,

pp. 193-203, April 1988

[3] G. Bergen; A Fast and Robust GJK Implementation for Collision

Detection of Convex Objects; Eindhoven University of Technology. 1999

[4] G.v.d. Bergen; Collision detection in interactive 3D environments;

ISBN: 1-55860-801-X, Elsevier, 2004.

References

	Slide 1: Collision detection
	Slide 2: Outline
	Slide 3: Broad phase
	Slide 4: Broad phase
	Slide 5: Sweep and prune algorithm
	Slide 6: Sweep and prune algorithm
	Slide 7: Sweep and prune algorithm
	Slide 8: Sweep and prune algorithm
	Slide 9: Sweep and prune algorithm
	Slide 10: Sweep and prune algorithm
	Slide 11: Narrow phase
	Slide 12: Narrow phase
	Slide 13: Gilbert-Johnson-Keerthi (GJK) algorithm
	Slide 14: GJK: Minkowski sum
	Slide 15: GJK: Minkowski difference
	Slide 16: GJK: Minkowski difference
	Slide 17: GJK: Simplex
	Slide 18: GJK: Support function
	Slide 19: GJK: Support function
	Slide 20: GJK: Support function
	Slide 21: GJK: Support function
	Slide 22: GJK: Support function examples
	Slide 23: GJK: Support function examples
	Slide 24: GJK: Support function
	Slide 25: GJK: The algorithm – intuition (2D case)
	Slide 26: GJK: The algorithm – intuition (2D case)
	Slide 27: GJK: The algorithm – intuition (2D case)
	Slide 28: GJK: The algorithm
	Slide 29: Caching collisions
	Slide 30: Caching collisions
	Slide 31: Caching collisions
	Slide 32: Caching collisions
	Slide 33: Caching collisions
	Slide 34: Caching collisions
	Slide 35: Computing collision time
	Slide 36: Tunnelling and penetration
	Slide 37: Dealing with tunnelling and penetration
	Slide 38: Computing collision time
	Slide 39: References

