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Motivation
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 Euler approach:

 Fluid is modelled by a vector field, representing the velocity of the fluid.

 Lagrange approach:

 Fluid is modelled by set of particles.

 Smoothed Particle Hydrodynamics:

 Fluid is modelled by set of particles moved via a velocity vector field.

 Hight-field surface approximation:

 Suitable for simulation of only fluid’s surface, e.g., lake or ocean surface.

Outline
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Euler approach



5

 Assumptions:

 Incompressible fluid:

 Volume of any subregion of the fluid is constant over time.

 Represented by an incompressible constraint.

 Homogeneous fluid:

 The density of fluid is the same and constant in every region of the fluid and over 

time.

 Navier-Stokes equations model a fluid:

 Fluid velocity (motion) represented by a vector field 𝒖 𝒙, 𝑡 .

 Fluid pressure represented by a scalar field 𝑝 𝒙, 𝑡 .

 Partial differential equations define changes in the vector field 𝒖 over time.

Fluid Model
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 The momentum equations (for each coordinate one):

𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈

 The incompressibility constraint:

∇ ⋅ 𝒖 = 0
 Where (let  𝒙 = 𝑥, 𝑦, 𝑧 ⊤ be a position in space and 𝑡 be simulation time):

 𝒖 𝒙, 𝑡 = 𝑢 𝒙, 𝑡 , 𝑣 𝒙, 𝑡 , 𝑤 𝒙, 𝑡
⊤

is the velocity vector field of the fluid. (computed)

 𝑝(𝒙, 𝑡) is a pressure scalar field of the fluid; used to preserve incompressibility. (computed)

 𝜌 is the density of the fluid, e.g., water 𝜌 = 103
𝑘𝑔

𝑚3.

 𝜈 is the viscosity (resistance to deformation) of the fluid, e.g., honey – high viscosity, water – low 
viscosity.

 𝒈(𝒙, 𝑡) is the acceleration vector field of forces acting on the fluid, e.g., gravity 𝒈(𝒙, 𝑡) = 0,0, −10 ⊤ 𝑚

𝑠2
.

 ⋅ is the dot product.

Navier-Stokes Equations

advection pressure diffusion external
accel.
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 Operator of spatial partial derivatives: ∇ =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

⊤
.

 Identifies a direction of a maximum increase of a function at a given time.

 Example: ∇𝑝 =
𝜕𝑝

𝜕𝑥
,
𝜕𝑝

𝜕𝑦
,
𝜕𝑝

𝜕𝑧

⊤
.

 Divergence operator: ∇ ⋅ 𝒖 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

⊤
⋅ 𝑢, 𝑣, 𝑤 ⊤ =

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
.

 Can only be applied to a vector field.

Gradient, Divergence and Laplacian

∇ ⋅ 𝒖 < 0 ∇ ⋅ 𝒖 > 0 ∇ ⋅ 𝒖 = 0
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 Directional derivative:  𝒖 ⋅ ∇ = 𝑢, 𝑣, 𝑤 ⊤ ⋅
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

⊤
= 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
.

 Therefore, 𝒖 ⋅ ∇ 𝒖 = 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
𝑢, 𝑣, 𝑤 ⊤ =

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

.

 Laplacian operator: ∇2 = ∇ ⋅ ∇ =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
.

 Example:  ∇2𝒖 = ∇ ⋅ ∇ 𝒖 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
𝑢, 𝑣, 𝑤 ⊤ =

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2

.

Gradient, Divergence and Laplacian
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 Beside the fluid we also simulate other quantities, e.g., smoke density, 
temperature.

 Represent any such quantity 𝑞 as another scalar/vector field.

 Add a related equation, how 𝑞 changes in time:
𝜕𝑞

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝑞 + 𝜈𝛻2𝑞 + 𝑆

 Observe the similarity with the momentum equation:

 Advection: − 𝒖 ⋅ ∇ 𝑞

 Diffusion: 𝜈𝛻2𝑞

 We do not have pressure term.

 𝑆 can be used to simulate constant inflow of 𝑞 into the fluid.

=> Methods for solving the momentum equation can be also applied for 
𝑞 equation.

Adding Custom Quantities
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 The fluid can collide with:

 Static solid objects, like walls.

 Freely moveable solid objects, like piece of wood in water.

 Another fluid, like oil stain on water surface. (not covered in this lecture)

 Our goal is to prevent the fluid to flow into the solid objects.

 Let 𝒏 𝒙, 𝑡 , 𝒖𝑠 𝒙, 𝑡 be the normal and velocity of the solid surface.

 The boundary constraint for:

 Low viscosity fluid:     𝒖 𝒙, 𝑡 ⋅ 𝒏 𝒙, 𝑡 = 𝒖𝑠 𝒙, 𝑡 ⋅ 𝒏 𝒙, 𝑡

 High viscosity fluid:    𝒖 𝒙, 𝑡 = 𝒖𝑠 𝒙, 𝑡

 We can use boundary condition to model fluid source and/or sink.

Boundary Conditions
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 Discretize the space into a regular grid.                                                  

For each cell 𝑖, 𝑗, 𝑘 we store:

 Fluid velocity: 𝒖𝑖,𝑗,𝑘

 Pressure: 𝑝𝑖,𝑗,𝑘

 Any other field: 𝑞𝑖,𝑗,𝑘

 Discretize boundary conditions:

 Mark cells filled by solid objects, e.g., walls.

Discretize fields

Δx

Δ𝑦

2D grid
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 Use finite differences to approximate partial derivatives.

 Examples:

∇𝑝𝑖,𝑗,𝑘 =
𝑝𝑖+1,𝑗,𝑘 − 𝑝𝑖−1,𝑗,𝑘

2Δ𝑥
,
𝑝𝑖,𝑗+1,𝑘 − 𝑝𝑖,𝑗−1,𝑘

2Δ𝑦
,
𝑝𝑖,𝑗,𝑘+1 − 𝑝𝑖,𝑗,𝑘−1

2Δ𝑧

⊤

∇ ⋅ 𝒖𝑖,𝑗,𝑘 =
𝒖𝑖+1,𝑗,𝑘 − 𝒖𝑖−1,𝑗,𝑘

2Δ𝑥
+

𝒖𝑖,𝑗+1,𝑘 − 𝒖𝑖,𝑗−1,𝑘

2Δ𝑦
+

𝒖𝑖,𝑗,𝑘+1 − 𝒖𝑖,𝑗,𝑘−1

2Δ𝑧

∇2𝑞𝑖,𝑗,𝑘 =
𝑞𝑖+1,𝑗,𝑘 −2𝑞𝑖,𝑗,𝑘+ 𝑞𝑖−1,𝑗,𝑘

Δ𝑥2
+

𝑞𝑖,𝑗+1,𝑘 −2𝑞𝑖,𝑗,𝑘+ 𝑞𝑖,𝑗−1,𝑘

Δ𝑦2
+

𝑞𝑖,𝑗,𝑘+1 −2𝑞𝑖,𝑗,𝑘+ 𝑞𝑖,𝑗,𝑘−1

Δ𝑧2

Discretize derivatives
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 Method of splitting:

 Solve a complex equation by a sequence numerical integrations.
𝑑𝑞

𝑑𝑡
= 𝑓 𝑞 + 𝑔 𝑞 →

ො𝑞 = 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡)

𝑞𝑡+Δ𝑡 = ො𝑞 + Δ𝑡𝑔(ො𝑞)

 The result is equivalent to a single integration:

𝑞𝑡+Δ𝑡 = ො𝑞 + Δ𝑡𝑔 ො𝑞

= 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡) + Δ𝑡𝑔 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡)

= 𝑞𝑡 + Δ𝑡𝑓(𝑞𝑡) + Δ𝑡(𝑔(𝑞𝑡) + 𝒪(Δ𝑡))

= 𝑞𝑡 + Δ𝑡(𝑓(𝑞𝑡) + 𝑔(𝑞𝑡)) + 𝒪(Δ𝑡2)

= 𝑞𝑡 + Δ𝑡
𝑑𝑞

𝑑𝑡
+ 𝒪(Δ𝑡2)

Solving Equations 
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 We solve the momentum equation using the splitting method:
𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈

 Start in the current state:

𝒘𝟎 𝒙 = 𝒖 𝒙, 𝑡

 Apply external accelerations 𝒈:

𝒘1 𝒙 = 𝒘0 𝒙 + Δ𝑡𝒈

(forward Euler)

 Apply fluid advection − 𝒖 ⋅ ∇ 𝒖:

𝒘2 𝒙 = 𝒘1 𝐩(𝒙,−Δ𝑡)

(method of characteristics)

Solving Equations 

The new velocity at 𝒙 is the velocity that the 

particle had a time Δ𝑡 ago at the location 

𝐩(𝒙, −Δ𝑡) (going backward in time along 𝐩).
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 We solve the momentum equation using the splitting method:
𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈

 Apply fluid viscosity 𝜈∇2𝒖:

𝒘3 𝒙 = 𝒘2 𝒙 + Δ𝑡𝜈∇2𝒘3 𝒙

(backward Euler)

 Lastly, we must compute the pressure −
1

𝜌
∇𝑝 acceleration s.t. we 

remove divergence from 𝒘3, i.e., to satisfy the incompressibility:

∇ ⋅ 𝒖 = 0

Solving Equations 
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 Helmholtz-Hodge Decomposition: Any vector field 𝒘 can be uniquely 

decomposed to a vector field 𝒖 and a scalar field 𝑝 satisfying:
𝒘 = 𝒖 + ∇𝑝

where 𝒖 is a divergence free, i.e., ∇ ⋅ 𝒖 = 0.

 When we apply divergence operator to both sides of the equation:

∇ ⋅ 𝒘 = ∇2𝑝

we get a Poisson equation.

 Due to discretization, we get a sparse system of linear equations

=> Use, for example, Jacobi method.

 We use the computed pressure field to get the resulting fluid velocity:

𝒖(𝒙, 𝑡 + Δt) = 𝒘3(𝒙) − ∇𝑝

Solving Equations 
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Euler approach

DEMO!

https://paveldogreat.github.io/WebGL-Fluid-Simulation/

http://haxiomic.github.io/projects/webgl-fluid-and-particles/

https://paveldogreat.github.io/WebGL-Fluid-Simulation/
http://haxiomic.github.io/projects/webgl-fluid-and-particles/
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Lagrange approach
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 The fluid is represented by 𝑛 particles {𝒫0, … , 𝒫𝑛−1}.

 Each particle 𝒫𝑖 is defined by:

 Mass: 𝑚𝑖

 Position vector: 𝒑𝑖

 Velocity vector: 𝒖𝑖

 Total external force: 𝒇𝑖

 Newton’s equations of motion for moving particles:



𝑑𝒑𝑖

𝑑𝑡
= 𝒖𝑖 (3 equations in 3D space)



𝑑𝒖𝑖

𝑑𝑡
=

𝒇𝑖

𝑚𝑖
(3 equations in 3D space)

Particles Simulation
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 The attribute 𝒇𝑖 of a particle 𝒫𝑖 is a sum of all forces acting on the particle.

 We usually want Earth’s gravity to act on particles:

 Force of a homogenous field:   𝑚𝑖𝒈

 Typically:  𝒈 = 0,0,−10 ⊤

 Interaction between particles 𝒫𝑖 and 𝒫𝑗 via                                                                            
Lennard-Jones force:

 Let 𝑑𝑖,𝑗 = |𝒑𝑖 − 𝒑𝑗| and 𝒅𝑖,𝑗 =
𝒑𝑖−𝒑𝑗

𝑑𝑖,𝑗
.

 𝑭𝑖,𝑗 =
𝑘1

𝑑𝑖,𝑗
𝑚 −

𝑘2

𝑑𝑖,𝑗
𝑛 𝒅𝑖,𝑗 , 𝑭𝑗,𝑖 = −𝑭𝑖,𝑗

 where typically 𝑘1 = 𝑘2, 𝑚 = 4 and 𝑛 = 2.

External Forces

|𝑭𝑖,𝑗| for 𝑘1 = 𝑘2 = 10,𝑚 = 4, 𝑛 = 2.
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Lagrange approach

DEMO!
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Smoothed Particle Hydrodynamics
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 Simulate fluid using a set of 𝑛 particles, i.e., Lagrange approach.

 Compute forces acting on the particles by Euler approach. How?

 Smooth properties of particles into continuous fields.

 Use a smoothing kernel 𝑊(𝑥), e.g., poly6:

𝑊 𝑥 =
315

64𝜋𝑑9
ቊ 𝑑2 − 𝑥2 3 if 0 ≤ 𝑥 ≤ 𝑑
0 otherwise

 Let 𝐴 be a property of particle. Then continuous

field 𝐴(𝒙) is:

𝐴 𝒙 = 

𝑗=0

𝑛−1

𝑚𝑗

𝐴𝑗

𝜌𝑗
𝑊(|𝒙𝑗 − 𝒙|) .

 Example: 𝜌 𝒙 = σ𝑗=0
𝑛−1𝑚𝑗

𝜌𝑗

𝜌𝑗
𝑊(|𝒙𝑗 − 𝒙|) = σ𝑗=0

𝑛−1𝑚𝑗𝑊(|𝒙𝑗 − 𝒙|).

Smoothed Particle Hydrodynamics

𝑊 𝑥 for 𝑑 = 1.
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 With the fields defined we can use momentum and incompressibility

equations:
𝜕𝒖

𝜕𝑡
= − 𝒖 ⋅ ∇ 𝒖 −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈, ∇ ⋅ 𝒖 = 0.

 We simulate particles => mass is conserved => ∇ ⋅ 𝒖 = 0 is not needed.

 Particles automatically move with the fluid => − 𝒖 ⋅ ∇ 𝒖 is not needed.

 So, we only solve:  
𝜕𝒖

𝜕𝑡
= −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝒈.

 Recall second Newton’s equation of motion: 
𝑑𝒖𝑖

𝑑𝑡
=

𝒇𝑖

𝑚𝑖
.

 Therefore, 
𝒇𝑖

𝑚𝑖
= −

1

𝜌(𝒙𝑖)
∇𝑝(𝒙𝑖) + 𝜈∇2𝒖(𝒙𝑖) + 𝒈.

Smoothed Particle Hydrodynamics
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 The pressure field 𝑝 can be obtained from density field 𝜌 by law of ideal gas:

 𝑝 𝒙 = 𝑘(𝜌 𝒙 − 𝜌0), where 𝑘 is a gas constant and 𝜌0 is the environment pressure.

 Derivatives of any field 𝐴(𝒙):

∇𝐴 𝒙 = 

𝑗=0

𝑛−1

𝑚𝑗

𝐴𝑗

𝜌𝑗
∇𝑊(|𝒙𝑗 − 𝒙|) , ∇2𝐴 𝒙 = 

𝑗=0

𝑛−1

𝑚𝑗

𝐴𝑗

𝜌𝑗
∇2𝑊(|𝒙𝑗 − 𝒙|)

where ∇𝑊(|𝒙𝑗 − 𝒙|) = 𝑊′(|𝒙𝑗 − 𝒙|)
𝒙𝑗−𝒙

𝒙𝑗−𝒙
, ∇2𝑊(|𝒙𝑗 − 𝒙|) = 𝑊′′(|𝒙𝑗 − 𝒙|) +

2𝑊′(|𝒙𝑗−𝒙|)

𝒙𝑗−𝒙
.

 Forces between two particles generated by fields ∇𝑝, ∇2𝒖 should be 

symmetric => we usually modify their computation:

∇𝑝 𝒙𝑖 = 

𝑗=0

𝑛−1

𝑚𝑗

𝑝𝑖 + 𝑝𝑗

2𝜌𝑗
∇𝑊(|𝒙𝑗 − 𝒙𝑖|) , ∇2𝒖 𝒙𝑖 = 

𝑗=0

𝑛−1

𝑚𝑗

𝒖𝑗 − 𝒖𝑖

𝜌𝑗
∇2𝑊 𝒙𝑗 − 𝒙𝑖 .

Smoothed Particle Hydrodynamics
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Height-field surface approximation
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 We model a fluid surface by a function ℎ(𝑥, 𝑦, 𝑡).

 At a point (𝑥, 𝑦) in the XY plane and in time 𝑡 the function defines fluid height z =
ℎ(𝑥, 𝑦, 𝑡).

 Change of ℎ in time is given by:
𝜕2ℎ

𝜕𝑡2
= 𝑣2∇2ℎ

where 𝑣 is the speed of waves in the fluid.

 How to solve the equation?

 Introduce an auxiliary function 𝑞 =
𝜕ℎ

𝜕𝑡
.

 Rewrite the equation into this system:
𝜕𝑞

𝜕𝑡
= 𝑣2∇2ℎ,

𝜕ℎ

𝜕𝑡
= 𝑞.

 Discretize (next slide).

Fluid Surface Model
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 We discretize the functions ℎ, 𝑞 by 2D arrays:

ℎ(𝑥0 + 𝑖Δ𝑥, 𝑦0 + 𝑗Δ𝑦, 𝑡0 + 𝑘Δ𝑡) => ℎ𝑖,𝑗
𝑘

𝑞(𝑥0 + 𝑖Δ𝑥, 𝑦0 + 𝑗Δ𝑦, 𝑡0 + 𝑘Δ𝑡) => 𝑞𝑖,𝑗
𝑘

    where

 𝑖, 𝑗 are indices to the arrays.

 Δ𝑥, Δ𝑦 are distances between grid cells in X,Y axes.

 𝑘 simulation step number.

 𝛥𝑡 simulation time step.

 NOTE: Usually, 𝑥0 = 𝑦0 = 𝑡0 = 0.

 We solve the discretized system numerically, e.g., using forward Euler method:

𝑞𝑖,𝑗
𝑘+1 = 𝑞𝑖,𝑗

𝑘 + Δ𝑡𝑣2
ℎ𝑖+1,𝑗
𝑘 −2ℎ𝑖,𝑗

𝑘 +ℎ𝑖−1,𝑗
𝑘

Δ𝑥2
+

ℎ𝑖,𝑗+1
𝑘 −2ℎ𝑖,𝑗

𝑘 +ℎ𝑖,𝑗−1
𝑘

Δ𝑦2
,

ℎ𝑖,𝑗
𝑘+1 = ℎ𝑖,𝑗

𝑘 + Δ𝑡𝑞𝑖,𝑗
𝑘+1.

Discretize Model

𝑥0, 𝑦0 Δ𝑥

Δ𝑦

𝑖Δ𝑥

𝑗Δ𝑦
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Hight-field surface approximation

DEMO!
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