
PB007 Software Engineering I — Design Class Diagram1

Design Class Diagram

PB007 Software Engineering I

Lukáš Daubner

daubner@mail.muni.cz



PB007 Software Engineering I — Design Class Diagram2

Design Class Diagram

̶ Focus on implementation details

̶ It goes further than capturing domain
̶ Solutions to more technical problems

̶ Extends and enrich the analytical

class diagram

̶ ADVANCED: Patterns (Design Patterns)



PB007 Software Engineering I — Design Class Diagram3

How should it look like?

Design Class Diagram

̶ All that you need for implementation
̶ Except method body (we will get to that)

̶ Detailed specification of analytical class

̶ Technology-related class (Service, Controller, DBContext, etc.)

̶ Visibility and types are specified
̶ Attributes

̶ Method arguments

̶ Return values

̶ Constructor

̶ Properties (Getters, Setters)

̶ Methods needed for implementation



PB007 Software Engineering I — Design Class Diagram4

Analytical VS. Design class

Design Class Diagram



PB007 Software Engineering I — Design Class Diagram5

Design Class Diagram – Example



PB007 Software Engineering I — Design Class Diagram6

Interface

̶ Defines set of public services
̶ Methods

̶ Attributes

̶ Relationships

̶ Does not contain implementation

̶ Defines so called “Contact”



PB007 Software Engineering I — Design Class Diagram7

Specialized Associations

̶ Specification of aggregation and composition (see following slides)
̶ There is a lot of confusion regarding this topic.

See https://bellekens.com/2010/12/20/uml-composition-vs-aggregation-vs-association/

̶ Names, navigability, and multiplicities
̶ Afterall, it is an important part of the specification 

̶ Decomposition of bidirectional associations

̶ Decomposition of M:N associations and association classes

https://bellekens.com/2010/12/20/uml-composition-vs-aggregation-vs-association/


PB007 Software Engineering I — Design Class Diagram8

Specialized Associations – Aggregation

̶ Whole-part relationship
̶ The whole may and may not exit without its parts

̶ Parts can exist independently from the whole

̶ The whole is in some sense incomplete if some parts are missing (but still valid)

̶ Parts can be shared by multiple wholes

̶ Transitive and asymmetrical (without cycles)



PB007 Software Engineering I — Design Class Diagram9

Specialized Associations – Composition

̶ “Stronger” form of aggregation
̶ The part belong to exactly one whole in the given time

̶ The part is not valid without the whole

̶ The whole is responsible for lifecycle of its parts

̶ When deleting, the whole must take care of its parts (delete or transfer them)

̶ Transitive and asymmetrical (without cycles)



PB007 Software Engineering I — Design Class Diagram10

Code comparison

Aggregation vs. Composition

public class Ship
{

private Engine _engine;

public Ship(Engine engine)
{

_engine = engine;
}

}

public class Ship
{

private Engine _engine;

public Ship()
{

_engine = new Engine();
}

}



PB007 Software Engineering I — Design Class Diagram11

Association Decomposition – M:N

̶ Analytical

̶ Design
̶ Decompose if there is

a need for additional attributes

̶ Someone must “own” it



PB007 Software Engineering I — Design Class Diagram12

Association Decomposition – Bidirectional

̶ Someone must “own” it
̶ To ensure consistency



PB007 Software Engineering I — Design Class Diagram13

You gotta do what you gotta do

Task for this week

̶ Process the feedback

̶ Copy and extend analytical class diagram to design class diagram
̶ Add all required methods, properties, constructors, etc.

̶ Specialize and decompose associations when suitable

̶ Type everything

̶ Add technology-related and service classes

̶ NB! Do not delete the original analytical class diagram 

̶ Do your part in peer review


