
Design class diagram

PB007 Software engineering I

Marián Macik
originally by Stanislav Chren

Week 08

Software engineering I (PB007) Design class diagram Week 08 1 / 17



Design class diagram

Class diagram represents a static view of classes, their attributes,
operations and relationships.

Analytical class diagram

Models the business domain of the system - focus on main concpets
and relationships

Attempts to maintain clarity and simplicity without the
implementation details

Design class diagram

Extends the analytical class diagram with implementation classes and
details

Software engineering I (PB007) Design class diagram Week 08 2 / 17



Design classes

Design class provides such a level of abstraction so that it can be easily
implemented
Design classes can originate from:

Business domain - more detailed specification of analytical classes
(decomposition, inclusion of implementation details) .

Solution domain - technology-related classes (classes for working with
GUI, DB, . . .)

Implementation details include:

Visibility and types of attributes.

Visibility, arguments and return types of methods.

Methods decomposed from analytical operations, constructors
(destructors), getter/setter methods, implementation methods.

Software engineering I (PB007) Design class diagram Week 08 3 / 17



Design class - Example

Software engineering I (PB007) Design class diagram Week 08 4 / 17



Revision of analytical associations

Specification of aggregation/composition association types.

Definition of names, navigability and multiplicities.

Decomposition of bidirectional associations.

Revision of 1:1, 1:M and M:1 associations.

Decomposition of M:N associations.

Decomposition of association classes.

Software engineering I (PB007) Design class diagram Week 08 5 / 17



Aggregation

Aggregation is a whole-part type of relationship.

The whole usually may or may not exist without its parts.

Parts can usually exist independently from the whole.

The whole is in a sense incomplete if some parts are missing.

Part can be in theory shared by multiple whole classes.

Aggregation is transitive and asymmetrical (without cycles).

Software engineering I (PB007) Design class diagram Week 08 6 / 17



Composition

Composition is a stronger form of aggregation

At any given time, parts can belong to exactly one whole.

The whole is usually responsible for managment of its parts.

If the whole is deleted, it has to either delete its parts or the parts
have to be associated with another whole.

Composition is transitive and asymmetrical (without cycles).

Software engineering I (PB007) Design class diagram Week 08 7 / 17



Revision of 1:1 associations

Analysis:

Design:

Software engineering I (PB007) Design class diagram Week 08 8 / 17



Revision of M:1 associations

Analysis:

Design:

Software engineering I (PB007) Design class diagram Week 08 9 / 17



Revision of 1:M associations

Analysis:

Design:

Software engineering I (PB007) Design class diagram Week 08 10 / 17



Decomposition of M:N associations
Analysis:

Design:

Note.: This decomposition is suitable only in cases when the allocation class has

additional attributes. Otherwise, the M:N association does not have to be decomposed.
Software engineering I (PB007) Design class diagram Week 08 11 / 17



Decomposition of association classes

Analysis:

Design:

Software engineering I (PB007) Design class diagram Week 08 12 / 17



Decomposition of bidirectional associations

Analysis:

Design:

Software engineering I (PB007) Design class diagram Week 08 13 / 17



Interfaces

Interface is a special element that defines a set of public services,
attributes and relationships but it does not implement them. They are
used to define the contract for implementing classes.

Software engineering I (PB007) Design class diagram Week 08 14 / 17



Tasks

Extend a copy of analytical class diagram into design class diagram.

Specify visibility and type of all attributes.

Add methods that originated from decomposition of analytical
operations, implementation and helper methods (constructors,
getters/setters, . . .) and determine their visibility, arguments and
return types.
The getters/setters should be added only if it is necessary.

Further specify the associations (names, multipicity navigability,
modifiesrs, determine the aggregation/composition and decompose
the association classes).

Add dependency relationships.

If necessary, add other implmentation classes, enums and interfaces.

Generate a PDF report and upload it to the homework vault
(Week 08).

Software engineering I (PB007) Design class diagram Week 08 15 / 17



Rules for report submission

1 Submit the PDF report, not the VP source file and not an exported image.
2 PDF report must be created using the procedure shown on the seminars

including the report settings.
3 The name of the PDF report file should be lastname1-lastname2-lastname3

of the team members.
4 PDF report must contain all diagrams modelled until now.
5 PDF report must be uploaded to the homework vault by the specified

deadline.
6 PDF report must be uploaded to the correct homework vault. The name of

the homework vault is always specified on the slides.
7 Each team uploads only a single PDF report for the whole team.
8 Submitted diagrams must be clear and readable.
9 Submitted diagrams should not contain serious mistakes. At least, they

should not contain mistakes mentioned in the Catalogue of common
mistakes.

Software engineering I (PB007) Design class diagram Week 08 16 / 17



VP report settings

Software engineering I (PB007) Design class diagram Week 08 17 / 17


