MUNI ally
|

Getting Dynamic,
State Machine Diagram
PB0O07 Software Engineering |

Lukas Daubner
daubner@mail.muni.cz

1 PBO0O07 Software Engineering | — Getting Dynamic, State Machine Diagram

la Sa r'lls ARE ARCHITECTURES
DDDDDDDDDDDDDDDDDDDDD

State Machine Diagram

— Models the dynamic behavior (life cycle) of one subject

— Class instantiation (Object)
— Use Case

— System Event
— Subsystem
— Component Light Bulb / \
~ turnOn -
- ... Off > On
.%£ turnOff }
: y, N
—Main components are: 7 % burnOut
— States tate
— Transitions .
— Events Transition

MUNI
ol

2 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

State Machine Diagram

States

— Represents semantically important situation

— In case of (OOP) object, it is determined by attribute values,

relations with others, and performed activity.
Entry action \ﬂ

Performed when entering the state

Internal activity /

Ongoing behavior while

Deferrable Trigger

Working Event, which is registered but its
entry / turn on busy light processing is left for other states
do / process job
pause /defer

exit / turn off busy light

in the state

Exit action
Performed when exiting the state

ventilation / start or stop ventilation

N

3 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

Internal Transition
Transition, which is processed
without exiting the sate

MUNI
F 1

State Machine Diagram

Transitions

— Defines how to get from one state to another

— Syntax: event [guard condition] / action

— Semantics: At the occurrence of event, if the guard condition
holds, perform action and go to the new state.

Event Condition (bool) Action

'event1, event2"[guard condition]‘!'actiom, action2

o)

4 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

MUNI
ol

State Machine Diagram

Events

— Stimulus on which the subject may react by changing the state or
performing an operation.

— Types of events:

— Call event — Calling operation of the subject.

— Signal event — Asynchronous sending a receiving a signal between subjects

— Change event — Boolean expression. The event occurs when the value is changed from
false to true.

— Time event — Event occur at a certain time t (when(t)) or after a certain time t (after(t)).

MUNI
ol

5 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

6

State Machine Diagram

Events
g? > OverdrawnAccount
close()
t InCredit '
deposit(m) / balance = balance + m
OverdrawnAccount >% balance >= 5000 / notifyManager() é Overdrawn N
balance < overdraftLimit / notifyManager()
{ | | J
withdraw(m) [balance < m] withdraw(m) [balance >= m] - ‘ -
[RejectingWithdrawal) (InCredit) after(3 months)

kentry / logRejectedWithdrawal()
v

entry / balance = balance - m J
o

Frozen

(excerpt from diagram)

PB007 Software Engineering | — Getting Dynamic, State Machine Diagram

M=
— =
=
e

Composite States

Simple composite state

— Useful for simplifying the diagram
— Capturing inheritance between states T

— Consist of a single region
[Idle

| startjob

)

abort

job finished

Active

!

[Initialization

|n|t|al|zed

[Processmg

job processed

(Sending Result

7 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

-

L

.

M=
— =

Composite States

Orthogonal composite state

— Capturing parallel behavior
— Consist of a two and more regions

8 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

M=
— =

State Machine Diagram in OOP world

— In our case, state machine diagram is used to represent lifecycle
of an object
— Context of the diagram is only the instance of a class from

design class diagram
— All methods and events must be supported by the design class diagram

— Initial transition means calling the constructor
— Final transition means deleting the object from system
— Object saves its state even outside main memory (persistence)

MUNI
ol

9 PBO007 Software Engineering | — Getting Dynamic, State Machine Diagram

State Machine Diagram in OOP world

Rental -
< . -pickupDate : dateTime <E)\/ approving
consisting -dropOffDate : dateTime N 0.1 Salesman
. : — : 0. < confirmingReturn
- 1. +Rental(customer : Customer, zeppelins : Zeppelin[]) k>
2CRRENECNS @ +getPickupDate() : dateTime 0.1

1 +setPickupDate(pickupDate : dateTime) : void
+getDropOffDate() : dateTime
+setDropOffDate(dropOffDate : dateTime) : void 1
+approve(salesman : Salesman) : void
+confirmReturn(salesman : Salesman) ; void

“ordering Customer

setPickupDate(date) / pickupDate = date

Ee pickupDate != null && dropOffDate = null r‘ Filled w approve(salesman) [Approved]

confirmReturn(salesman)

Q/ fter (2 years)
Returned) 2
e

setDropOffDate(date) / dropOffDate = date

10 PBO0O07 Software Engineering | — Getting Dynamic, State Machine Diagram

M=
— =
=
e

Task for this week

You gotta do what you gotta do
— Process the feedback

— Choose a suitable object for modeling
— Something with non-trivial lifecycle

— Create a state machine diagram for this object
— Revise design class diagram if needed

— Do your part in peer review

MUNI
ol

11 PBO0O07 Software Engineering | — Getting Dynamic, State Machine Diagram

