
PB007 Software Engineering I — Getting Dynamic, State Machine Diagram1

Getting Dynamic,
State Machine Diagram

PB007 Software Engineering I

Lukáš Daubner

daubner@mail.muni.cz



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram2

State Machine Diagram

̶ Models the dynamic behavior (life cycle) of one subject
̶ Class instantiation (Object)

̶ Use Case

̶ System

̶ Subsystem

̶ Component

̶ …

̶ Main components are:
̶ States

̶ Transitions

̶ Events

State

Event

Transition



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram3

States

State Machine Diagram

̶ Represents semantically important situation

̶ In case of (OOP) object, it is determined by attribute values, 

relations with others, and performed activity.

Entry action
Performed when entering the state

Exit action
Performed when exiting the state

Internal activity
Ongoing behavior while

in the state

Deferrable Trigger
Event, which is registered but its

processing is left for other states

Internal Transition
Transition, which is processed

without exiting the sate



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram4

Transitions

State Machine Diagram

̶ Defines how to get from one state to another

̶ Syntax: event [guard condition] / action

̶ Semantics: At the occurrence of event, if the guard condition

holds, perform action and go to the new state.

Event Condition (bool) Action



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram5

Events

State Machine Diagram

̶ Stimulus on which the subject may react by changing the state or 

performing an operation.

̶ Types of events:
̶ Call event – Calling operation of the subject.

̶ Signal event – Asynchronous sending a receiving a signal between subjects

̶ Change event – Boolean expression. The event occurs when the value is changed from 

false to true.

̶ Time event – Event occur at a certain time t (when(t)) or after a certain time t (after(t)).



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram6

Events

State Machine Diagram

(excerpt from diagram)



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram7

Simple composite state

Composite States

̶ Useful for simplifying the diagram

̶ Capturing inheritance between states

̶ Consist of a single region



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram8

Orthogonal composite state

Composite States

̶ Capturing parallel behavior 

̶ Consist of a two and more regions



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram9

State Machine Diagram in OOP world

̶ In our case, state machine diagram is used to represent lifecycle 

of an object

̶ Context of the diagram is only the instance of a class from 

design class diagram
̶ All methods and events must be supported by the design class diagram

̶ Initial transition means calling the constructor

̶ Final transition means deleting the object from system

̶ Object saves its state even outside main memory (persistence)



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram10

State Machine Diagram in OOP world



PB007 Software Engineering I — Getting Dynamic, State Machine Diagram11

You gotta do what you gotta do

Task for this week

̶ Process the feedback

̶ Choose a suitable object for modeling
̶ Something with non-trivial lifecycle

̶ Create a state machine diagram for this object
̶ Revise design class diagram if needed

̶ Do your part in peer review


