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Classical logic vs. many-valued logics

Classical (two-valued) logic

Motivation:
Propositions are either true or false

Truth tables:

¬

0 1
1 0

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

→ 0 1
0 1 1
1 0 1

Validates:
A ∨ ¬A, ¬(A ∧ ¬A), A = ¬¬A, A,¬A ⊧ B, . . .
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Classical logic vs. many-valued logics

Multiple-valued logics

Motivation:

Future contingents, undefined values, error states

Truth-value gaps, gluts, degrees

Mathematical generalization of classical logic

History:

Chrysippus, Peirce (unpublished), Łukasiewicz (1913), Post, Kleene,
Tarski, . . . Goguen, . . . , Pavelka, Novák, Hájek, . . .
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Three-valued logics

Weak Kleene (aka Bochvar) three-valued logic

Motivation:
Undetermined/undefined truth values

Truth tables:

¬

0 1
X X
1 0

∧ 0 X 1
0 0 X 0
X X X X
1 0 X 1

∨ 0 X 1
0 0 X 1
X X X X
1 1 X 1

→ 0 X 1
0 1 X 1
X X X X
1 0 X 1

No tautologies, but a distinct consequence relation (preserving the
value 1 = the designated truth value)
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Three-valued logics

Priest’s Logic of Paradox

Motivation:
Paradoxical propositions (liar etc), dialetheism (true contradictions)

Truth tables: the same as in (strong) Kleene
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X 0 X X
1 0 X 1

∨ 0 X 1
0 0 X 1
X X X 1
1 1 1 1

→ 0 X 1
0 1 1 1
X X X 1
1 0 X 1

But: both 0 and X are designated in LP

The same tautologies as in classical logic (incl. A ∨ ¬A, ¬(A ∧ ¬A)),
but a different consequence relation: eg, A,¬A /⊧ B (paraconsistency)
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Three-valued logics

Dunn–Belnap’s four-valued logic

Motivation:
Accommodate both underdetermined and conflicting data
Caution: not epistemic states (truth-functionality)

Truth tables:

¬

0 1
B B
N N
1 0

∧ 0 B N 1
0 0 0 0 0
B 0 B 0 B
N 0 0 N N
1 0 B N 1

∧ 0 B N 1
0 0 B N 1
B B B 1 1
N N 1 N 1
1 1 1 1 1

1 = {t},0 = {f},B = {t , f},N = ∅

Bilattice (information/truth order)
No good implication connective known



Vícehodnotové logiky

Three-valued logics

Dunn–Belnap’s four-valued logic

Motivation:
Accommodate both underdetermined and conflicting data
Caution: not epistemic states (truth-functionality)

Truth tables:

¬

0 1
B B
N N
1 0

∧ 0 B N 1
0 0 0 0 0
B 0 B 0 B
N 0 0 N N
1 0 B N 1

∧ 0 B N 1
0 0 B N 1
B B B 1 1
N N 1 N 1
1 1 1 1 1

1 = {t},0 = {f},B = {t , f},N = ∅

Bilattice (information/truth order)
No good implication connective known



Vícehodnotové logiky

Three-valued logics

Dunn–Belnap’s four-valued logic

Motivation:
Accommodate both underdetermined and conflicting data
Caution: not epistemic states (truth-functionality)

Truth tables:

¬

0 1
B B
N N
1 0

∧ 0 B N 1
0 0 0 0 0
B 0 B 0 B
N 0 0 N N
1 0 B N 1

∧ 0 B N 1
0 0 B N 1
B B B 1 1
N N 1 N 1
1 1 1 1 1

1 = {t},0 = {f},B = {t , f},N = ∅

Bilattice (information/truth order)
No good implication connective known



Vícehodnotové logiky

Three-valued logics

Dunn–Belnap’s four-valued logic

Motivation:
Accommodate both underdetermined and conflicting data
Caution: not epistemic states (truth-functionality)

Truth tables:

¬

0 1
B B
N N
1 0

∧ 0 B N 1
0 0 0 0 0
B 0 B 0 B
N 0 0 N N
1 0 B N 1

∧ 0 B N 1
0 0 B N 1
B B B 1 1
N N 1 N 1
1 1 1 1 1

1 = {t},0 = {f},B = {t , f},N = ∅

Bilattice (information/truth order)
No good implication connective known



Vícehodnotové logiky

Three-valued logics

Features of three-valued logics

Classical logic = restriction to {0,1}, many possible connectives

Truth functionality = algebraic matrix semantics

Additional connectives:

∆

0 0
X 0
1 1

⊗ 0 X 1
0 0 0 0
X 0 0 X
1 0 X 1

⊕ 0 X 1
0 0 X 1
X X 1 1
1 1 1 1

. . .

Łukasiewicz logic invalidates A ∧ (A→ B)→ B and A ∨ ¬A
but does validate A⊗ (A→ B)→ B and A⊕ ¬A
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Finitely-valued logics

Lukasiewicz finitely-valued logics

Truth values:

{0, 1
n−1 ,

2
n−1 , . . . ,1}

Truth tables:

¬A = 1 −A
A ∧B = min(A,B)

A ∨B = max(A,B)

A→ B = max(1 −A +B,1)
A⊗B = max(A +B − 1,0)
A⊕B = min(A +B,1)
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Post finitely-valued logics

Truth values:

{0, 1
n−1 ,

2
n−1 , . . . ,1}

Truth tables:

¬A = A −
1

n−1 if A ≠ 0, otherwise 1

A ∨B = max(A,B)

A ∧B = ¬(¬A ∨ ¬B)

Invalidates: ¬ . . .¬
´¹¹¹¹¹¸¹¹¹¹¹¶

n−1

A = A
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Gödel finitely-valued logics

Truth values:

{0, 1
n−1 ,

2
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Truth tables:

¬A = 1 if A = 0, otherwise 0
A ∧B = min(A,B)

A ∨B = max(A,B)

A→ B = 1 if A ≤ B, otherwise B
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Frequently employed principles

Lattice or linear order of truth values

Implication internalizes order: A→ B = 1 iff A ≤ B

Residuation: A⊗B ≤ C iff A ≤ B → C

Restriction on truth functions of connectives
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Infinitely-valued logics

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

Commutativity: A⊗B = B ⊗A

Associativity: (A⊗B)⊗C = A⊗ (B ⊗C)

Monotony: if A ≤ A′, then A⊗B ≤ A′
⊗B

Neutral element: A⊗ 1 = A (consequently, A⊗ 0 = 0)

Continuity: ⊗ is a continuous function

= Continuous t-norms
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Continuous t-norms

Salient examples on [0,1]:

All continuous t-norms are ordinal sums of these three:

A⊗G B = min(A,B) Gödel t-norm
A⊗Π B = A ⋅B product t-norm
A⊗Ł B = max(A +B − 1,0) Łukasiewicz t-norm
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The residua of continuous t-norms

Their residua (uniquely defined by the residuation condition):

A→ B = 1 if A ≤ B, otherwise:

A→G B = B
A→Π B = B/A
A→Ł B = min(1 −A +B,1)
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Logic:

Tautologies = always evaluated to 1
Entailment = preservation of the truth degree 1
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Prelinearity: (A→ B) ∨ (B → A) = 1 (G = Int + prelinearity)

Logics suitable for graduality
(vs vagueness = graduality + indeterminacy)

Axiomatization: tautologies finitely axiomatizable, entailment seldom
(finitary companions only)

Intended vs general semantics (semilinearity)

Standard vs linear vs general completeness
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Lattice quantifiers

∀, ∃ = infimum, supremum (in the lattice of truth values)

Rasiowa’s axioms for quantifiers: specification, dual specification,
quantifier shifts, generalization

First-order t-norm fuzzy logics: G∀,Ł∀,Π∀,BL∀, . . .

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (most, almost all, . . . )

Can be modeled in higher-order fuzzy logics, partly an open problem
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