Vícehodnotové logiky

Libor Běhounek

CE IT4Innovations, Division of the University of Ostrava Institute for Research and Applications of Fuzzy Modeling Ostrava, Czech Republic

> Logic Café Brno 2014 14. 3. 2013

Outline

- **Classical logic vs. many-valued logics**
- **Three-valued logics**
- **Finitely-valued logics** 3
- Infinitely-valued logics
- Many-valued first-order logics 5
- Metamathematics of many-valued logics 6

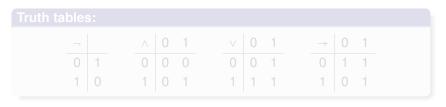
Outline

- 2 Three-valued logics
- 3 Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics
- 7 Discussion

Classical (two-valued) logic

Motivation:

Propositions are either true or false



Validates:

 $A \lor \neg A$, $\neg (A \land \neg A)$, $A = \neg \neg A$, $A, \neg A \vDash B$, ...

Classical (two-valued) logic

Motivation:

Propositions are either true or false

Truth tables	s:											
-		\wedge	0	1	V	0	1		\rightarrow	0	1	
0	1	0	0	0	0	0	1	-	0	1	1	
1	0	1	0	1	1	1	1		1	0	1	

Validates:

 $A \lor \neg A$, $\neg (A \land \neg A)$, $A = \neg \neg A$, $A, \neg A \vDash B$, ...

Classical (two-valued) logic

Motivation:

Propositions are either true or false

Truth tables:										
-	^	0	1	V	0	1	\rightarrow	0	1	
0	1 0	0	0	0	0	1	0	1	1	
1 () 1	0	1	1	1	1	1	0	1	

Validates:

$$A \lor \neg A$$
, $\neg (A \land \neg A)$, $A = \neg \neg A$, $A, \neg A \vDash B$, ...

Multiple-valued logics

Motivation:

Future contingents, undefined values, error states

- Truth-value gaps, gluts, degrees
- Mathematical generalization of classical logic

History:

Multiple-valued logics

Motivation:

- Future contingents, undefined values, error states
- Truth-value gaps, gluts, degrees
- Mathematical generalization of classical logic

History:

Multiple-valued logics

Motivation:

- Future contingents, undefined values, error states
- Truth-value gaps, gluts, degrees
- Mathematical generalization of classical logic

History:

Multiple-valued logics

Motivation:

- Future contingents, undefined values, error states
- Truth-value gaps, gluts, degrees
- Mathematical generalization of classical logic

History:

Outline

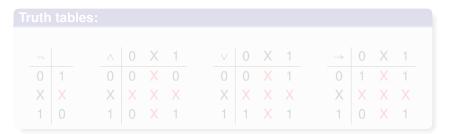
2 Three-valued logics

- 3 Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics
- 7 Discussion

Weak Kleene (aka Bochvar) three-valued logic

Motivation:

Undetermined/undefined truth values



No tautologies, but a distinct consequence relation (preserving the value 1 = the *designated* truth value)

・ロット (雪) ・ (日) ・ (日)

Weak Kleene (aka Bochvar) three-valued logic

Motivation:

Undetermined/undefined truth values

Truth tables: 0 X 1 0 X 1 0 X \wedge _ 0 0 X 0 0 X 1 0 1 X 1 X 1 0 x x x x Х Х 1 X 1 1 1 X 1 0 0 0 Х 1

No tautologies, but a distinct consequence relation (preserving the value 1 = the *designated* truth value)

・ロット (雪) (日) (日)

Weak Kleene (aka Bochvar) three-valued logic

Motivation:

Undetermined/undefined truth values

Truth tables: 0 X 1 ∨ 0 X 1 \rightarrow 0 X 1 $\wedge \mid$ _ 0 0 X 0 0 X 1 0 1 X 1 X 0 1 X 1 0 XX 1 X 1 1 0 X 1 1 0 0 X 1

No tautologies, but a distinct consequence relation (preserving the value 1 = the *designated* truth value)

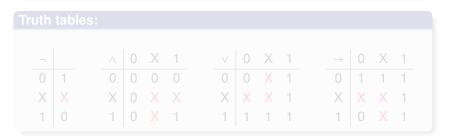
IRAFM

・ロット (雪) (日) (日)

Strong Kleene three-valued logic

Motivation:

Undetermined/undefined truth values, but $0 \land A = 0$ etc.



Still no tautologies, a stronger consequence relation

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Strong Kleene three-valued logic

Motivation:

Undetermined/undefined truth values, but $0 \land A = 0$ etc.

Truth	tab	les:												
_		\wedge	0	х	1	\vee	0	Х	1	→	0	х	1	
0	1	0	0	0	0	0	0	Х	1	 0	1	1	1	
Х	X	Х	0	Х	Х	Х	Х	Х	1	х	Х	Х	1	
1	0	1	0	Х	1	1	1	1	1	1	0	Х	1	

Still no tautologies, a stronger consequence relation

ъ

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Strong Kleene three-valued logic

Motivation:

Undetermined/undefined truth values, but $0 \land A = 0$ etc.

Truth	tab	les:												
-		\wedge	0	х	1	\vee	0	х	1	\rightarrow	0	х	1	
0	1	0	0	0	0	0	0	Х	1	0	1	1	1	
Х	Х	Х	0	Х	Х	Х	Х	Х	1	Х	X	Х	1	
1	0	1	0	Х	1	1	1	1	1	1	0	Х	1	

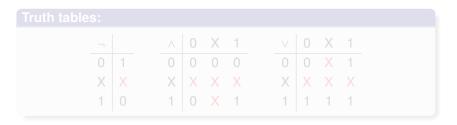
Still no tautologies, a stronger consequence relation

IKARM ひのの は よれやよけゃく 見ゃく ロッ

McCarthy three-valued logic

Motivation:

Undetermined truth value, sequential evaluation



No tautologies, non-commutative ∧,∨

McCarthy three-valued logic

Motivation:

Undetermined truth value, sequential evaluation

Truth tables:										
-		~	0	Х	1	\vee	0	Х	1	
0	1	0	0	0	0	0	0	Х	1	
Х	X	X	Х	Х	Х	Х	Х	Х	Х	
1	0	1	0	Х	1	1	1	1	1	

No tautologies, non-commutative \land,\lor

McCarthy three-valued logic

Motivation:

Undetermined truth value, sequential evaluation

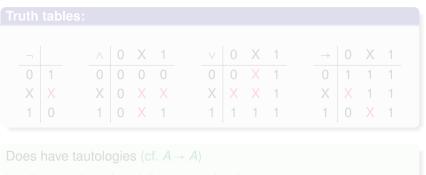
Truth tables:										
-		~	0	Х	1	\vee	0	Х	1	
0	1	0	0	0	0	0	0	Х	1	
Х	Х	X	Х	Х	Х	Х	Х	Х	Х	
1	0	1	0	Х	1	1	1	1	1	

No tautologies, non-commutative A,V

Łukasiewicz three-valued logic

Motivation:

Future contingents (failed), possibility (failed), half-truth



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

э

Invalidates: $A \lor \neg A$. Validates: $\neg \neg A = A$

Łukasiewicz three-valued logic

Motivation:

Future contingents (failed), possibility (failed), half-truth

Truth	tabl	es:												
_		\wedge	0	х	1	\vee	0	х	1	\rightarrow	0	х	1	
0	1	0	0	0	0	 0	0	Х	1	 0	1	1	1	
Х	Х	Х	0	Х	Х	Х	X	Х	1	Х	X	1	1	
1	0	1	0	Х	1	1	1	1	1	1	0	Х	1	

Does have tautologies (cf. $A \rightarrow A$)

Invalidates: $A \lor \neg A$. Validates: $\neg \neg A = A$

・ロット (雪) ・ (日) ・ (日)

Łukasiewicz three-valued logic

Motivation:

Future contingents (failed), possibility (failed), half-truth

Truth	tab	es:												
-		\wedge	0	Х	1	\vee	0	х	1	\rightarrow	0	Х	1	
0	1	0	0	0	0	0	0	Х	1	 0	1	1	1	
Х	Х	Х	0	Х	Х	Х	X	Х	1	Х	X	1	1	
1	0	1	0	Х	1	1	1	1	1	1	0	Х	1	

(日)

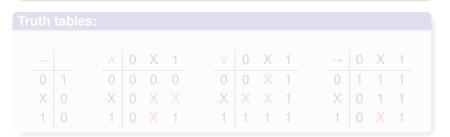
Does have tautologies (cf. $A \rightarrow A$)

Invalidates: $A \lor \neg A$. Validates: $\neg \neg A = A$

Gödel three-valued logic

Motivation:

Will be apparent later (a 3-valued instance of general Gödel logics)



Invalidates: $A \lor \neg A$, $A = \neg \neg A$. Validates: $\neg A \lor \neg \neg A$

(日)

Gödel three-valued logic

Motivation:

Will be apparent later (a 3-valued instance of general Gödel logics)

Truth	tab	es:												
7		\wedge	0	Х	1	\vee	0	Х	1	\rightarrow	0	Х	1	
0	1	0	0	0	0	 0	0	Х	1	 0	1	1	1	
Х	0	Х	0	Х	Х	Х	Х	Х	1	Х	0	1	1	
1	0	1	0	Х	1	1	1	1	1	1	0	Х	1	

Invalidates: $A \lor \neg A$, $A = \neg \neg A$. Validates: $\neg A \lor \neg \neg A$

ъ

Gödel three-valued logic

Motivation:

Will be apparent later (a 3-valued instance of general Gödel logics)

Trut	n t	abl	es:													
-				\wedge	0	х	1	\vee	0	Х	1	\rightarrow	0	х	1	
0		1	-	0	0	0	0	0	0	Х	1	 0	1	1	1	
Х	:	0		Х	0	Х	Х	Х	Х	Х	1	Х	0	1	1	
1		0		1	0	Х	1	1	1	1	1	1	0	Х	1	

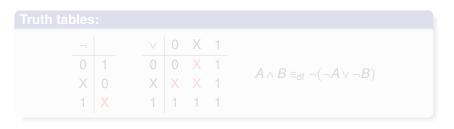
Invalidates: $A \lor \neg A$, $A = \neg \neg A$. Validates: $\neg A \lor \neg \neg A$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Post three-valued logic

Motivation:

Will be apparent later (a 3-valued instance of general Post logics)



Invalidates: $A \lor \neg A$, $\neg \neg A = A$

Post three-valued logic

Motivation:

Will be apparent later (a 3-valued instance of general Post logics)

Truth tables	:				
-		∨ 0	Х	1	
0	1	0 0	Х	1	$\mathbf{A} \cdot \mathbf{P} = (\mathbf{A} \cdot \mathbf{P})$
Х	0	XX	Х	1	$A \land B \equiv_{df} \neg (\neg A \lor \neg B)$
1	Х	1 1	1	1	

Invalidates: $A \lor \neg A$, $\neg \neg A = A$

Post three-valued logic

Motivation:

Will be apparent later (a 3-valued instance of general Post logics)

Truth tables	:				
_		v 0	Х	1	
0	1	0 0	Х	1	$A \cdot B = (A \cdot B)$
Х	0	XX	Х	1	$A \land B \equiv_{df} \neg (\neg A \lor \neg B)$
1	Х	1 1	1	1	

Invalidates: $A \lor \neg A$, $\neg \neg A = A$

Priest's Logic of Paradox

Motivation:

Paradoxical propositions (liar etc), dialetheism (true contradictions)

Truth tables: the same as in (strong) Kleene

But: both 0 and X are designated in LP

The same tautologies as in classical logic (incl. $A \lor \neg A$, $\neg (A \land \neg A)$), but a different consequence relation: eg, A, $\neg A \notin B$ (paraconsistency

Priest's Logic of Paradox

Motivation:

Paradoxical propositions (liar etc), dialetheism (true contradictions)

Truth tables: the same as in (strong) Kleene

_		\wedge							Х				Х	
0	1			0		_	0	0	Х	1	 0			
Х				Х			X	Х	Х	1			Х	
1	0	1	0	Х	1		1	1	1	1	1	0	Х	1

But: both 0 and X are designated in LP

The same tautologies as in classical logic (incl. $A \lor \neg A$, $\neg(A \land \neg A)$), but a different consequence relation: eg, A, $\neg A \neq B$ (paraconsistency)

Priest's Logic of Paradox

Motivation:

Paradoxical propositions (liar etc), dialetheism (true contradictions)

Truth tables: the same as in (strong) Kleene

-		\wedge				V						Х	
0				0		0	0	Х	1	-		1	
Х				Х		Х	Х	Х	1			Х	
1	0	1	0	Х	1	1	1	1	1	1	0	Х	1

But: both 0 and X are designated in LP

The same tautologies as in classical logic (incl. $A \lor \neg A$, $\neg (A \land \neg A)$), but a different consequence relation: eg, A, $\neg A \notin B$ (paraconsistency)

Dunn–Belnap's four-valued logic

Motivation:

Accommodate both underdetermined and conflicting data Caution: not epistemic states (truth-functionality)

Truth tables:

			В	N	1
	1				
В	В	В	В		В
N	Ν	Ν		Ν	Ν
1		1	В	Ν	1

 $1 = \{t\}, 0 = \{t\}, B = \{t, f\}, N = \emptyset$ Bilattice (information/truth order) No good implication connective known

Dunn–Belnap's four-valued logic

Motivation:

Accommodate both underdetermined and conflicting data Caution: not epistemic states (truth-functionality)

Truth tables:

-		\wedge	0	В	Ν	1
0	1 <i>B</i> <i>N</i> 0	0	0	0	0 0 N N	0
В	В	В	0	В	0	В
Ν	N	Ν	0	0	Ν	Ν
1	0	1	0	В	Ν	1

\wedge	0	В	Ν	1
0	0 <i>B</i> <i>N</i> 1	В	Ν	1
В	В	В	1	1
Ν	Ν	1	Ν	1
1	1	1	1	1

$$1 = \{t\}, 0 = \{f\}, B = \{t, f\}, N = \emptyset$$

Bilattice (information/truth order)
No good implication connective know

Dunn–Belnap's four-valued logic

Motivation:

Accommodate both underdetermined and conflicting data Caution: not epistemic states (truth-functionality)

Truth tables:

-		\wedge	0	В	Ν	1
0	1 B N	0	0	0	0 0 N N	0
В	В	В	0	В	0	В
Ν	N	Ν	0	0	Ν	Ν
1	0	1	0	В	Ν	1

\wedge	0 0 <i>B</i> <i>N</i> 1	В	Ν	1
0	0	В	Ν	1
В	В	В	1	1
Ν	Ν	1	Ν	1
1	1	1	1	1

 $1 = \{t\}, 0 = \{f\}, B = \{t, f\}, N = \emptyset$ Bilattice (information/truth order) No good implication connective known

Dunn–Belnap's four-valued logic

Motivation:

Accommodate both underdetermined and conflicting data Caution: not epistemic states (truth-functionality)

Truth tables:

-		\wedge	0	В	Ν	1
0	1 B N	0	0	0	0 0 N N	0
В	В	В	0	В	0	В
Ν	N	Ν	0	0	Ν	Ν
1	0	1	0	В	Ν	1

\wedge	0	В	Ν	1
0	0 B N	В	Ν	1
В	В	В	1	1
Ν	Ν	1	Ν	1
1	1	1	1	1

 $1 = \{t\}, 0 = \{f\}, B = \{t, f\}, N = \emptyset$ Bilattice (information/truth order) No good implication connective known

() 시대 (지 문) 시문) 문 (

Features of three-valued logics

Classical logic = restriction to $\{0, 1\}$, many possible connectives

Truth functionality = algebraic matrix semantics

Additional connectives:

Δ			Х	1			Х	1
								1
Х		Х			Х		1	1
1	1	1		1	1	1	1	1

Łukasiewicz logic invalidates $A \land (A \rightarrow B) \rightarrow B$ and $A \lor \neg A$ but does validate $A \otimes (A \rightarrow B) \rightarrow B$ and $A \oplus \neg A$

Features of three-valued logics

Classical logic = restriction to $\{0, 1\}$, many possible connectives

Truth functionality = algebraic matrix semantics

Additional connectives:

1	Δ			Х	1			Х	1
									1
	Х		Х			Х		1	1
	1	1	1		1	1	1	1	1

Łukasiewicz logic invalidates $A \land (A \rightarrow B) \rightarrow B$ and $A \lor \neg A$ but does validate $A \otimes (A \rightarrow B) \rightarrow B$ and $A \oplus \neg A$

Features of three-valued logics

Classical logic = restriction to $\{0, 1\}$, many possible connectives

Truth functionality = algebraic matrix semantics

Additional connectives:

				Х			0			
	0			0		 0	0	Х	1	•
	0			0		Х	Х	1	1	
1	1	1	0	Х	1	1	1	1	1	

Łukasiewicz logic invalidates $A \land (A \rightarrow B) \rightarrow B$ and $A \lor \neg A$ but does validate $A \otimes (A \rightarrow B) \rightarrow B$ and $A \oplus \neg A$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Features of three-valued logics

Classical logic = restriction to $\{0, 1\}$, many possible connectives

Truth functionality = algebraic matrix semantics

Additional connectives:

Δ				Х				Х		
0				0				Х		-
	0				Х			1		
1	1	1	0	Х	1	1	1	1	1	

Łukasiewicz logic invalidates $A \land (A \rightarrow B) \rightarrow B$ and $A \lor \neg A$ but does validate $A \otimes (A \rightarrow B) \rightarrow B$ and $A \oplus \neg A$

・ロット (雪) (日) (日)

Outline

- Classical logic vs. many-valued logics
- 2 Three-valued logics
- Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

7 Discussion

Lukasiewicz finitely-valued logics

Truth values:

 $\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$

Truth tables:

$$\neg A = 1 - A$$

$$A \land B = \min(A, B)$$

$$A \lor B = \max(A, B)$$

$$A \rightarrow B = \max(1 - A + B, 1)$$

$$A \otimes B = \max(A + B - 1, 0)$$

$$A \oplus B = \min(A + B, 1)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Lukasiewicz finitely-valued logics

Truth values:

 $\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$

Truth tables:

$$\neg A = 1 - A$$

$$A \land B = \min(A, B)$$

$$A \lor B = \max(A, B)$$

$$A \rightarrow B = \max(1 - A + B, 1)$$

$$A \otimes B = \max(A + B - 1, 0)$$

$$A \oplus B = \min(A + B, 1)$$

IRAEN.

э

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Post finitely-valued logics

Truth values:

 $\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$

Truth tables:

$$\neg A = A - \frac{1}{n-1} \text{ if } A \neq 0, \text{ otherwise } 1$$
$$A \lor B = \max(A, B)$$
$$A \land B = \neg(\neg A \lor \neg B)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Invalidates: $\underline{\neg \dots \neg}_{n-1} A = A$

Post finitely-valued logics

Truth values:

 $\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$

Truth tables:

$$\neg A = A - \frac{1}{n-1} \text{ if } A \neq 0, \text{ otherwise } 1$$
$$A \lor B = \max(A, B)$$
$$A \land B = \neg(\neg A \lor \neg B)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Post finitely-valued logics

Truth values:

 $\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$

Truth tables:

$$\neg A = A - \frac{1}{n-1} \text{ if } A \neq 0, \text{ otherwise } 1$$
$$A \lor B = \max(A, B)$$
$$A \land B = \neg(\neg A \lor \neg B)$$

・ロット (雪) ・ (日) ・ (日)

ъ

Invalidates:
$$\underbrace{\neg \dots \neg}_{n-1} A = A$$

Gödel finitely-valued logics

Truth values:

$$\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$$

Truth tables:

 $\neg A = 1$ if A = 0, otherwise 0 $A \land B = \min(A, B)$ $A \lor B = \max(A, B)$ $A \to B = 1$ if $A \le B$, otherwise B

Gödel finitely-valued logics

Truth values:

$$\{0, \tfrac{1}{n-1}, \tfrac{2}{n-1}, \ldots, 1\}$$

Truth tables:

 $\neg A = 1 \text{ if } A = 0, \text{ otherwise } 0$ $A \land B = \min(A, B)$ $A \lor B = \max(A, B)$ $A \to B = 1 \text{ if } A \le B, \text{ otherwise } B$

Outline

- Classical logic vs. many-valued logics
- 2 Three-valued logics
- 3 Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics

・ ロ ト ・ 雪 ト ・ 目 ト ・

э

7 Discussion

Frequently employed principles

Lattice or linear order of truth values

- Implication internalizes order: A → B = 1 iff A ≤ B
- Residuation: $A \otimes B \leq C$ iff $A \leq B \rightarrow C$
- Restriction on truth functions of connectives

Frequently employed principles

- Lattice or linear order of truth values
- Implication internalizes order: $A \rightarrow B = 1$ iff $A \le B$
- Residuation: $A \otimes B \leq C$ iff $A \leq B \rightarrow C$
- Restriction on truth functions of connectives

Frequently employed principles

- Lattice or linear order of truth values
- Implication internalizes order: $A \rightarrow B = 1$ iff $A \le B$
- Residuation: $A \otimes B \leq C$ iff $A \leq B \rightarrow C$
- Restriction on truth functions of connectives

Frequently employed principles

- Lattice or linear order of truth values
- Implication internalizes order: $A \rightarrow B = 1$ iff $A \le B$
- Residuation: $A \otimes B \leq C$ iff $A \leq B \rightarrow C$
- Restriction on truth functions of connectives

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

• Commutativity: $A \otimes B = B \otimes A$

- Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
- Monotony: if $A \le A'$, then $A \otimes B \le A' \otimes B$
- Neutral element: $A \otimes 1 = A$ (consequently, $A \otimes 0 = 0$)
- Continuity: \otimes is a continuous function

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

- Commutativity: $A \otimes B = B \otimes A$
- Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
- Monotony: if $A \le A'$, then $A \otimes B \le A' \otimes B$
- Neutral element: $A \otimes 1 = A$ (consequently, $A \otimes 0 = 0$)
- Continuity: \otimes is a continuous function

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

- Commutativity: $A \otimes B = B \otimes A$
- Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
- Monotony: if $A \leq A'$, then $A \otimes B \leq A' \otimes B$
- Neutral element: $A \otimes 1 = A$ (consequently, $A \otimes 0 = 0$)
- Continuity: \otimes is a continuous function

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

- Commutativity: $A \otimes B = B \otimes A$
- Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
- Monotony: if $A \leq A'$, then $A \otimes B \leq A' \otimes B$
- Neutral element: $A \otimes 1 = A$ (consequently, $A \otimes 0 = 0$)
- Continuity: \otimes is a continuous function

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

- Commutativity: $A \otimes B = B \otimes A$
- Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
- Monotony: if $A \leq A'$, then $A \otimes B \leq A' \otimes B$
- Neutral element: $A \otimes 1 = A$ (consequently, $A \otimes 0 = 0$)

Continuity: ⊗ is a continuous function

T-norm conjunctions

Reasonable restrictions on the truth function of conjunction:

- Commutativity: $A \otimes B = B \otimes A$
- Associativity: $(A \otimes B) \otimes C = A \otimes (B \otimes C)$
- Monotony: if $A \leq A'$, then $A \otimes B \leq A' \otimes B$
- Neutral element: $A \otimes 1 = A$ (consequently, $A \otimes 0 = 0$)
- Continuity: ⊗ is a continuous function

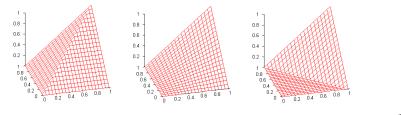
Continuous t-norms

Salient examples on [0, 1]:

All continuous t-norms are ordinal sums of these three:

$$A \otimes_{G} B = \min(A, B)$$
$$A \otimes_{\Pi} B = A \cdot B$$
$$A \otimes_{L} B = \max(A + B - 1, 0)$$

Gödel t-norm product t-norm Łukasiewicz t-norm

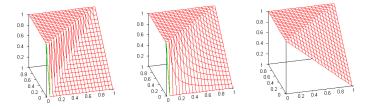


The residua of continuous t-norms

Their residua (uniquely defined by the residuation condition):

 $A \rightarrow B = 1$ if $A \leq B$, otherwise:

$$A \rightarrow_G B = B$$
$$A \rightarrow_\Pi B = B/A$$
$$A \rightarrow_L B = \min(1 - A + B, 1)$$



Logics of continuous t-norms

Connectives:

- Conjunction = a continuous t-norm
- Implication = its residuum
- Negation = $A \rightarrow 0$ (reductio ad absurdum)
- Disjunction = max
- Min-conjunction = min

Logic:

Tautologies = always evaluated to 1 Entailment = preservation of the truth degree 1

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Logics of continuous t-norms

Connectives:

- Conjunction = a continuous t-norm
- Implication = its residuum
- Negation = $A \rightarrow 0$ (reductio ad absurdum)
- Disjunction = max
- Min-conjunction = min

Logic:

Tautologies = always evaluated to 1 Entailment = preservation of the truth degree 1

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

э

Logics of continuous t-norms

Connectives:

- Conjunction = a continuous t-norm
- Implication = its residuum
- Negation = $A \rightarrow 0$ (reductio ad absurdum)
- Disjunction = max
- Min-conjunction = min

Logic:

Tautologies = always evaluated to 1 Entailment = preservation of the truth degree 1

э

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Logics of continuous t-norms

Connectives:

- Conjunction = a continuous t-norm
- Implication = its residuum
- Negation = $A \rightarrow 0$ (reductio ad absurdum)
- Disjunction = max
- Min-conjunction = min

Logic:

Tautologies = always evaluated to 1 Entailment = preservation of the truth degree 1

Logics of continuous t-norms

Connectives:

- Conjunction = a continuous t-norm
- Implication = its residuum
- Negation = $A \rightarrow 0$ (reductio ad absurdum)
- Disjunction = max
- Min-conjunction = min

Logic:

Tautologies = always evaluated to 1 Entailment = preservation of the truth degree 1

・ロット (雪) (日) (日)

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under all continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms) Fuzzy logic BL = truth under *all* continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

Standard vs linear vs general completeness

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under all continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under *all* continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

・ロット (雪) (日) (日)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under *all* continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under all continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

・ロット (雪) (日) (日)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

Infinitely-valued logics

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under *all* continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

Standard vs linear vs general completeness

-Infinitely-valued logics

T-norm fuzzy logics

Gödel, Łukasiewicz, product fuzzy logic (of respective t-norms)

Fuzzy logic BL = truth under all continuous t-norms

Variations: discarding conditions (MTL), adding conditions, adding connectives

Prelinearity: $(A \rightarrow B) \lor (B \rightarrow A) = 1$ (G = Int + prelinearity)

Logics suitable for graduality

(vs vagueness = graduality + indeterminacy)

Axiomatization: tautologies finitely axiomatizable, entailment seldom (finitary companions only)

Intended vs general semantics (semilinearity)

Standard vs linear vs general completeness

Outline

- Classical logic vs. many-valued logics
- 2 Three-valued logics
- 3 Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics
- 7 Discussion

Quantifiers

Lattice quantifiers

\forall , \exists = infimum, supremum (in the lattice of truth values)

Rasiowa's axioms for quantifiers: specification, dual specification, quantifier shifts, generalization

First-order t-norm fuzzy logics: $G \forall, E \forall, \Pi \forall, BL \forall, \dots$

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (most, almost all, ...)

Can be modeled in higher-order fuzzy logics, partly an open problem

・ロト ・ 四ト ・ ヨト ・ ヨト

Quantifiers

Lattice quantifiers

 \forall , \exists = infimum, supremum (in the lattice of truth values)

Rasiowa's axioms for quantifiers: specification, dual specification, quantifier shifts, generalization

First-order t-norm fuzzy logics: $G \forall, E \forall, \Pi \forall, BL \forall, \dots$

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (most, almost all, ...)

Can be modeled in higher-order fuzzy logics, partly an open problem

RAFM

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Quantifiers

Lattice quantifiers

 \forall , \exists = infimum, supremum (in the lattice of truth values)

Rasiowa's axioms for quantifiers: specification, dual specification, quantifier shifts, generalization

First-order t-norm fuzzy logics: $G \forall, E \forall, \Pi \forall, BL \forall, \dots$

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (most, almost all, ...)

Can be modeled in higher-order fuzzy logics, partly an open problem

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Quantifiers

Lattice quantifiers

 \forall , \exists = infimum, supremum (in the lattice of truth values)

Rasiowa's axioms for quantifiers: specification, dual specification, quantifier shifts, generalization

First-order t-norm fuzzy logics: $G \forall, E \forall, \Pi \forall, BL \forall, \dots$

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (*most, almost all,* ...)

Can be modeled in higher-order fuzzy logics, partly an open problem

IRAFM

・ロット (雪) (日) (日)

Quantifiers

Lattice quantifiers

 \forall , \exists = infimum, supremum (in the lattice of truth values)

Rasiowa's axioms for quantifiers: specification, dual specification, quantifier shifts, generalization

First-order t-norm fuzzy logics: $G \forall, E \forall, \Pi \forall, BL \forall, \dots$

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (most, almost all, ...)

Can be modeled in higher-order fuzzy logics, partly an open problem

・ ロ ト ・ 雪 ト ・ 目 ト

Quantifiers

Lattice quantifiers

 \forall , \exists = infimum, supremum (in the lattice of truth values)

Rasiowa's axioms for quantifiers: specification, dual specification, quantifier shifts, generalization

First-order t-norm fuzzy logics: $G \forall, E \forall, \Pi \forall, BL \forall, \dots$

Higher-order fuzzy logics (fuzzy type theory)

Generalized quantifiers

Strong quantifiers (corresponding to strong conjunction)

Linguistic quantifiers (most, almost all, ...)

Can be modeled in higher-order fuzzy logics, partly an open problem

IRAFM

Outline

- Classical logic vs. many-valued logics
- 2 Three-valued logics
- 3 Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics

Discussion

Metatheorems of interest

Axiomatization, completeness

- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic
- Functional completeness, functional representation
- Decidability, computational complexity
- Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In \mathbb{L}_3 : $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Metatheorems of interest

- Axiomatization, completeness
- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic
- Functional completeness, functional representation
- Decidability, computational complexity
- Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In Ł₃: $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Metatheorems of interest

- Axiomatization, completeness
- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic
- Functional completeness, functional representation
- Decidability, computational complexity

Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In \mathbb{L}_3 : $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

Metatheorems of interest

- Axiomatization, completeness
- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic
- Functional completeness, functional representation
- Decidability, computational complexity

Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In \mathbb{L}_3 : $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

Metatheorems of interest

- Axiomatization, completeness
- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic
- Functional completeness, functional representation
- Decidability, computational complexity
- Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In \mathbb{L}_3 : $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

Metatheorems of interest

- Axiomatization, completeness
- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic

・ロット (雪) (日) (日)

- Functional completeness, functional representation
- Decidability, computational complexity
- Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In \pounds_3 : $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

Metatheorems of interest

- Axiomatization, completeness
- Matrix semantics ⇒ Algebraic Logic, Abstract Algebraic Logic

・ロット (雪) (日) (日)

- Functional completeness, functional representation
- Decidability, computational complexity
- Metatheorems analogous to classical logic (deduction, compactness, interpolation, etc)

Example: the Deduction–Detachment Theorem

In classical logic: $\Gamma, A \vdash B$ iff $\Gamma \vdash A \rightarrow B$

In \mathbb{L}_3 : $\Gamma, A \vdash B$ iff $\Gamma \vdash (A \otimes A) \rightarrow B$

Outline

- Classical logic vs. many-valued logics
- 2 Three-valued logics
- 3 Finitely-valued logics
- Infinitely-valued logics
- 5 Many-valued first-order logics
- 6 Metamathematics of many-valued logics

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel is crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics (Int/modal/.../Bool_{2ⁿ}

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel *is* crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics (Int/modal/.../Bool_{2ⁿ}

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel *is* crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics $(Int/modal/.../Bool_{2^n})$

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel *is* crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics $(Int/modal/.../Bool_{2^n})$

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel *is* crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics $(Int/modal/.../Bool_{2^n})$

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel *is* crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics $(Int/modal/.../Bool_{2^n})$

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

Discussion

Philosophical objections

Aristotle's puzzled paragraph, classical metatheory Some answers: usefulness, extension, the metalevel *is* crisp

Delimitation

Single intended matrix semantics vs other kinds of semantics $(Int/modal/.../Bool_{2^n})$

- Comp. science and programming: (error states: K₃ in SQL, etc)
- Engineering (fuzzy logic)
- Philosophy (analysis of paradoxes etc)
- Logical analysis of natural language (non-denoting terms etc)

- Standford Encyclopedia of Philosophy
- Handbook of Philosophical Logic
- Gottwald: A Treatise on Many-Valued Logic
- Mleziva: Neklasické logiky
- Peregrin: Logika a logiky

