PB173 Domain specific development: side-channel analysis

Course organization

Łukasz Chmielewski chmiel@fi.muni.cz,

Consultation: A406 Friday 9:00-11:00

Course info

- First seminar of this type
- Practical focus (hands-on):
 - 1. Learning what side-channel analysis is
 - 2. Working with ready tools and libraries
 - 3. Implementing your own tooling/scripts
- Style of seminars is usually:
 - small intro at the beginning of every seminar with materials and tasks
 - individual (Step 1-2)/team work (Step 3)
- Discussion:
 - ask (me) when stucked (within the seminar),
 - IS discussion group if everybody might be interested

Course info cont'd

Today is different, lecture called:

"Introduction to side-channel analysis"

- Look at one trace set (if we do not manage to do it today – look at that at home and give me an answer on the next seminar)
- We have to start somewhere

Seminars overview (12 seminars)

- First 1-3/4 seminars: "Introduction to side-channel analysis":
 - Lecture
 - Inspecting Traces
 - Exercises with ChipWhisperer Acquisition
 - Implementing CPA and DPA
 - Inspecting More Traces
- Seminar 4/5 choosing project topic and the team
 - Which kind of side-channel tool you would like to implement?
- Seminar 5/6-12 implementing tooling
- Seminars 11-12 utilization

Project

- Second part of the semester
 - 3 people, 5 teams
- Implementing on your own or using existing tools (+10 points)
 - Present your tool script and its usefulness (+2 points)
- For your code:
 - Github repository + individual commits
- Trace sets:
 - From me or
 - Find on your own
- Possible Topics:
 - Trace Alignment
 - Manual Analysis of Traces: displaying, zooming, etc.
 - Implementing Classical Attacks: Differential/Correlation Power Analysis, Mutual Information Analysis, etc.
 - Filtering techniques: bandpass filters, etc.
 - Compression Techniques: windowed compression, frequency-based compression
 - More difficult, dimension reductions: Linear Regression and Principal Component Analysis
 - **—** ...

Assignments

- Homeworks/assignments
 - 10 points maximum
 - 10 assignments (100 points)
 - There will be some extra points
 - 65 % required (i.e. 65 points or 50 points)
 - Submit files into is.muni.cz:
 - code + write-ups (word, pdf, or txt with markups)
 - Points for your HW within one week in is.muni.cz
 - Deadline: usually until the next seminar (approx. 1 week)
 - plagiarism is strictly forbidden:
 - The source of the copied code must be cited

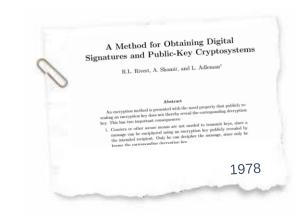
Colloquium

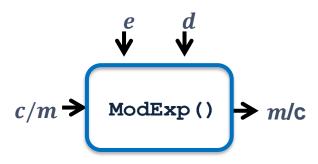
- To get the colloquium
 - You must be present at seminars (2 absences OK)
 - You must be active at seminars (+2 points given by me at the end)
 - You must submit and get:
 - 50%: 7 points in total
 (projects + presentation + activity = 14 points)

People

- Main contact: Łukasz Chmielewski (CRoCS@FI MU)
 - Office hours (consultation): Friday 9:00-11:00, A406
 - chmiel@fi.muni.cz,
 - https://keybase.io/grasshoppper

Exercise: SPA on RSA


CR©CS


RSA

- Two primes p and q
- N = pq
- $\varphi(N) = (p-1)(q-1)$
- $e = 3, 5, 7, 17, 257, 65537 \rightarrow \gcd(e, \varphi(N)) = 1$
- $d = e^{-1} \mod \varphi(N)$

Modular Exponentiation:

- Encryption / Verification: $c = m^e \mod N$
- Decryption / Signature: $m = c^d \mod N$

RSA Exponentiation (1)

```
\label{eq:modexp} \begin{array}{l} \text{ModExp(c) } \{ \\ A = 1 \\ \text{for ( } i = n\text{-}1; \ i \geq 0; i\text{--}) \\ A = A^2 \ \text{mod N} \\ \text{if (} d_i = =1) \\ A = A^*c \ \text{mod N} \\ \text{end if} \\ \text{end for} \\ \text{return } A = c^d \ \text{mod N} \\ \} \end{array}
```

```
d=(101)=5

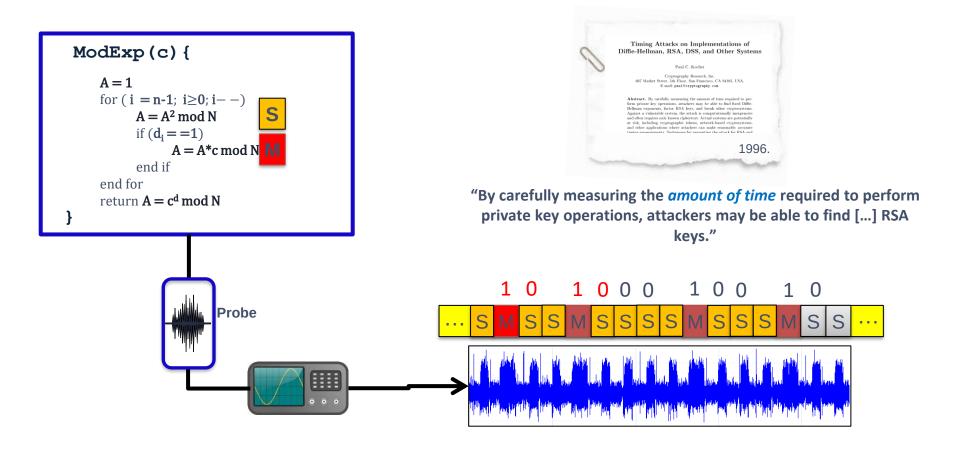
A = 1,

d<sub>2</sub>=1

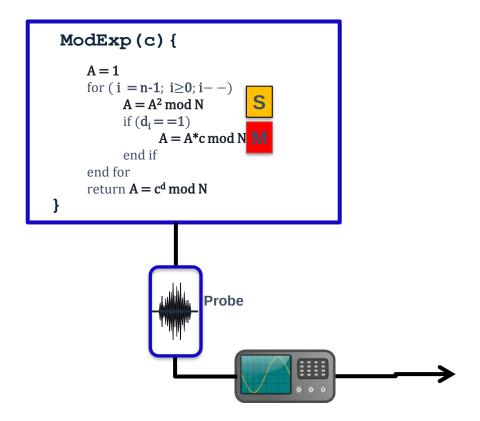
A = A<sup>2</sup> mod N=1

A = A*c mod N=c

d<sub>1</sub>=0


A = A<sup>2</sup> mod N=c<sup>2</sup>

d<sub>0</sub>=1


A = A<sup>2</sup> mod N=c<sup>4</sup>

A = A*c mod N=c<sup>5</sup>
```

Simple Power Analysis on RSA

Simple Power Analysis on RSA

This SPA matching does not always need to look this way! One pattern might correspond multiple operations etc.

RSA Exponentiation (2)

```
ModExp(c) {
        A = c
        i=-1
                                                   for (i = j-1; i \ge 0; i--)
        for ( i = n-1; i \ge 0; i--)
                                                        A = A^2 \mod N
                                                         if (d_i = =1):
               if (d_i == 1):
                                                               A = A*c \mod N
                     i = i
                     break
                                                         end if
              end if
                                                  end for
                                                  return A = c^d \mod N
        if j==-1:
              return 1
        end if
```

```
d=(0101)=5

j-1=1

A = c

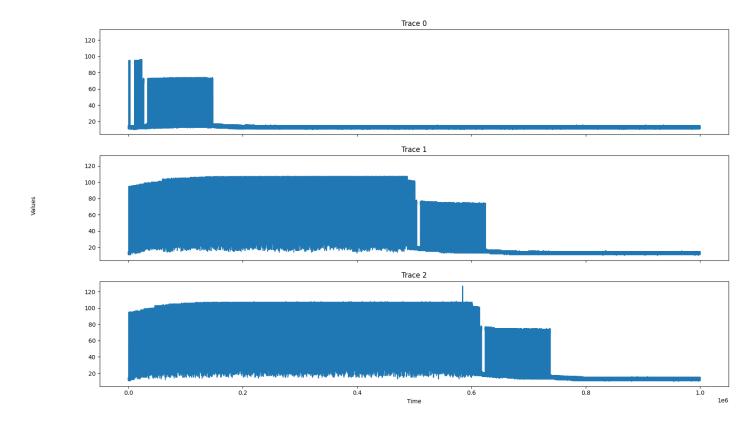
d_1=0

A = A^2 \mod N = c^2

d_0=1

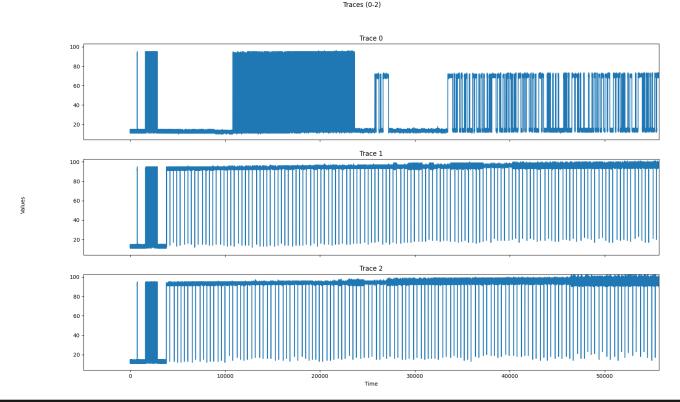
A = A^2 \mod N = c^4

A = A^*c \mod N = c^5
```


Excercise

- RSA_unprotected.trs
- visualize.py
 - python3
 - Install matplotlib (e.g., pip)
 - Install trsfile (available on pip)
 - Feel free to modify the code and ask me questions about that.
- Three different traces
 - Tell me first 20 most significant bits of each exponent.
- Take your time, good luck!
 - I will give some hints during the exercise ©

Exercise


SPA with operation leakage
Traces (0-2)

Exercise

 Try to zoom in and find the RSA exponentiation and then get the exponent!

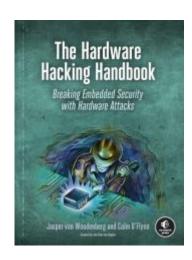
Exercise

How the visualization script works?

```
File Edit Selection Find View Goto Tools Project Preferences Help

visualize.py x

7 parameters = TraceSetParameterMap()
8 #print(parameters)
9
10 zoomS=0
11 zoomE=1000000
12 start = 0
13 number = 1
14 displayLabels = 4
15 displayData = False
16 dataStart=0
17 dataEnd=8
18 repeat = 3
19 together = True
```



Homework

- TODOs before the next seminar:
 - Install ChipWhisperer:
 https://chipwhisperer.readthedocs.io/en/latest/linux-install.html
 - Read the website in general. I am using CW in a linux
 VM under Windows but do as you prefer ©
- Watch
 - "PV204 Security technologies: Trust, trusted element, usage scenarios, side-channel attacks"
 - I will provide you with a link in a separate email in the coming days.

Reading

- For interested people
- Side-Channel Analysis blue book:
 - http://dpabook.iaik.tugraz.at/
 - The books is available at the uni.
 - Look online
- The Hardware Hacking Handbook:
 - https://nostarch.com/hardwarehacking
 - I have an epub version.

