PB173 Domain specific development: side-channel analysis

Seminar 6: Finalizing on First Steps

Łukasz Chmielewski chmiel@fi.muni.cz,

CRCS

Consultation: A406 Friday 9:00-11:00

Centre for Research on Cryptography and Security

SHORT EXAMPLE

Guessing entropy/Key rank

Lets assume we have the results of a key recovery experiment (DPA or CPA) with q queries/traces. We know that the correct value (e.g., a key byte) is v^* :

The result is the guess vector:

Position of the correct key candidate = 1

$$g_q = [g_1, g_2, g_3, \dots g_{|v|}]$$

Guessing entropy in the wild

Figure 8: Key rank evolution for hardware AES engine FCA attack.

Source for the figure: Albert Spruyt, Alyssa Milburn, Łukasz Chmielewski, *Fault Injection as an Oscilloscope:* Fault Correlation Analysis, CHES 2020;

Conclusion

- That is all ☺
- Last week DPA actually worked
 - We looked at 0th byte instead of first
- If we have time we will look at another notebook today (see IS)

ORGANIZATIONAL

Final Division

- Group 1: Tomas Re, Tomas Ro, Martin
 - Topic: Visualization
 - GitHub repository: https://github.com/reznakt/pb173-sca-visualization
- Group 2: Michael T, Lubomir, Richard
 - Topic: Standard Processing, Michael might touch also "Parallel computations with acquisition"
 - The group is 3 people since Vendelin left.
 - GitHub repository:
 https://github.com/LubJur/PB173_standard_signal_processing
- Group 3: Michal, Matus, Filip
 - Topic: Align
 - GitHub repository: https://github.com/mr-akiio/trs-alignment

Reminder: Colloquium

- To get the colloquium
 - You must be present at seminars (2 absences OK)
 - You must be active at seminars (+2 points given by me at the end)
 - You must submit and get:
 - 50%: 7 points in total (projects + presentation + activity = 14 points)

(Modified) Seminars Plan

- 7: today, no points
- 8: evaluation of first steps given last week: 3 points per group (personalized per person based on Github activity) + Giving new tasks
- 9: Checking Progress: helping & trying to run your tools
- 10: 4 points per group (personalized per person based on GitHub) + a short 5-10minuts progress presentation (1 point) + Giving new tasks
- 11: Checking Progress [Online]
- 12: Final seminar: final short 5-10minuts presentation (1 point) & grading + grading (2 points for final tasks) + 2 points for activity.

WHAT WAS DONE + GIVING NEW TASKS

Group 1: Standard Signal Processing

First Tasks:

- Implement easy modules: average, standard deviation, histogram, absolute value,
- You can have a look at SaveAs.py and correlation.py
- Try to implement computing spectrum, some inspiration: https://realpython.com/python-scipy-fft/
- GitHub:

Excluding merges, 3 authors have pushed 8 commits to main and 8 commits to all branches. On main, 24 files have changed and there have been 359 additions and 140 deletions.

Group 1: Main Goals

- Main Tasks:
 - Spectrogram
 - Incremental Correlation:https://eprint.iacr.org/2022/253.pdf
 - Pipelining
 - Signal-To-Noise Ratio and other metrics

Group 2: Visualization

- First Tasks: implement displaying traces using 2-3 different libraries
 - Matplotlib, bokeh, search for more
 - Someone did some work on that. Have a look here, but it might be chaotic: https://github.com/nilswiersma/pywf/tree/master
- GitHub:

Excluding merges, 3 authors have pushed 2 commits to main and 19 commits to all branches. On main, 3 files have changed and there have been 36 additions and 8 deletions.

Group 2: Main Goals

- I assume that displaying traces works
 - Multiple traces?
- Main Tasks:
 - Efficiency analysis compared to Matplotlib
 - Moving traces around?
 - Selecting part of the trace to run something (any code)?
 - Try another library?

Group 3: Alignment

- First tasks:
 - investigate cross-correlations in python
 - See all the uploaded scripts
 - Especially SaveAs.py and correlation.py
- GitHub:
 □ Insights are disabled so I cannot see

statistics. Please enable it!

However:

Find_min, created compressed graph + improved readability

Group 3: Main Goals

- I assume that some alignments works
- Main Tasks:
 - Finish Peak-based and Correlation-Based Alignments
 - Improve Efficiency
 - Two from:
 - Trace alignment algorithm for suppressing the clock jitter, see pages 45-50 of: https://ged.biu-montpellier.fr/florabium/jsp/win_main_biu.jsp?nnt=2014MON20039 &success=%2Fjsp%2Fwin_main_biu.jsp&profile=anonymous
 - Elastic alignment algorithm or
 - Round Based Alignment

Parallel computations with acquisition

Michael

• ?

WALK-AROUND + GRADING

CHIPWHISPER?

Reading

- For interested people
- Side-Channel Analysis blue book:
 - http://dpabook.iaik.tugraz.at/
 - The books is available at the uni.
 - Look online
- The Hardware Hacking Handbook:
 - https://nostarch.com/hardwarehacking
 - I have an epub version.

