
PV181 Laboratory of security

and applied cryptography

Introduction to Applied Cryptography
Part 2, seminar 3: Asymmetric cryptography & OpenSSL

Łukasz Chmielewski
chmiel@fi.muni.cz

| PV1811

Public vs private key cryptography

• Private (symmetric)

– both parties share secret (private)

– Pros: fast encryption

– Cons: key distribution requires secure channel

• Public (asymmetric)

– one key is public

– Pros - key distribution – insecure channel is OK

– Cons - slow encryption

• Practice - private + public:

– public used to establish key for private key system

2 | PV181

Asymmetric cryptography

• Two related keys – created by one party

– different inverse operations (encryption - decryption,

signing – signature verification)

• Properties - hard to compute private from public key

– based on hard mathematical problems

• Hard problems and cryptosystems:

– Integer factorization – RSA, Rabin, …

– Discrete logarithm problem (DLP): ElGamal, EC, DSA, …

– Others (DH, decoding,…) – Diffie-Helman, McElliece,…

3 | PV181

encryption decryption

message
Alice

Public key of Bob

Bob

Adapted Source: Network and

Internetwork Security (Stallings)

Private key of Bob

Encrypted
message

Decrypted
original

 message

| PV1814

Asymmetric cryptosystem

Asymmetric cryptosystem

• Bob generates both keys:

– Public is sent to Alice

– Private is kept secret

• Alice encrypts a message with her public key and

sends it to Bob

• Bob decrypts the ciphertext using his private key

• Are big messages encrypted?

– Usually not. Only symmetric keys are encrypted and

those are used to encrypt big messages. Why?

• Symmetric crypto is more efficient than asymmetric.

5 | PV181

Digital signature

• Asymmetric cryptography

– Private key – signature generation (usually only hash of

data is signed not data itself)

– Public key – a verification procedure

• Data integrity + data origin + non-repudiation:

• Non-repudiation - correct signatures can be
generated only by those with the private key –
differently than for MAC!

• The digital signature itself does not give any
guarantees concerning signing time.

6 | PV181

Digital signature scheme

7 | PV181

Signature

 algorithm

Verification

algorithmmessage signed
message

Alice

Public key of Alice

Bob

Source: Network and

Internetwork Security (Stallings)

verified
message

Private key of Alice

Digital signature

• Alice generates key pair

– Public key is published (sent to Bob) for verification of

signature

• Alice sign a document using her private key

• Bob use public key to verify the digital signature

• Classical examples: RSA, ECC

• PQC example: Dilithium

8 | PV181

RSA: mathematics

1. Secret primes 𝑝, 𝑞: 𝑛 = 𝑝 ∙ 𝑞

2. Public exponent 𝑒:

gcd 𝑒, (𝑝 − 1) = gcd 𝑒, (𝑞 − 1) = 1

3. Private exponent 𝑑: 𝑑 ∙ 𝑒 ≡ 1 𝑚𝑜𝑑 𝜑 𝑛

Encryption (public 𝑛, 𝑒): 𝐸 𝑚 = 𝑚𝑒 𝑚𝑜𝑑 𝑛 = 𝑐

Decryption (private 𝑛, 𝑑): 𝐷 𝑐 = 𝑐𝑑 𝑚𝑜𝑑 𝑛 = 𝑚

• RSA-1024: means 𝑛 has 1024 bits and 𝑚 < 𝑛
– Is 1024 bit secure?

9 | PV181

RSA: example

• Intentionally small numbers (not secure)

• We generate parameters:

– p = 17, q = 7, 𝑛 = 𝑝 ∙ 𝑞 = 119

• Public exponent is selected:

– e = 3 is wrong, because gcd 3, p − 1) ∙ (q − 1 = gcd 3,96 =3

– e = 5, because gcd 5,96 = 1

• Private exponent is computed:

– e ∙ d = 5 ∙ d = 1 mod 96 to have d = 77

• The public key is: (n = 119, e = 5)

• The private key is: (n = 119, d = 77)

• Encryption/decryption:

– Message m = "C" = 65

– Encryption m′ = 655
mod 119 = 46

– Decryption m = 4677 mod 119 =65

10 | PV181

RSA Padding example (PKCS#1 v1.5)

• Document
– “00 01 02 03 04 05 06 07 07 06 05 04 03 02 01”

• Hash of the document (sha-1)
– “b3 39 90 4c d2 a0 10 e6 19 37 eb e5 b5 83 37 8c 5d 10

51 95”

• Padded hash
– “00 01 ff 00

30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 b3 39 90 4c
d2 a0 10 e6 19 37 eb e5 b5 83 37 8c 5d 10 51 95”

RSA in practice: Various Paddings

• (M) = 6b bb … bb ba || Hash(M) || 3x cc

 where x = 3 for SHA-1, 1 for RIPEMD-160
– ANSI X9.31

• (M) = 00 01 ff … ff 00 || HashAlgID || Hash(M)
– PKCS #1 v1.5

• (M) = 00 || H || G(H)  [salt || 00 … 00]

 where H = Hash(salt, M), salt is random, and G is a
mask generation function
– Probabilistic Signature Scheme (PSS)

Hard problems

14 | PV181

•

Digital Signature Standard (DSS)

16 | PV181

Digital Signature Algorithm (DSA)

• Proposed in 1991 by NIST

• In 1994 the selection procedure for Digital Signature Standard
(DSS) was concluded – DSA (Digital Signature Algorithm) was
selected.

• Modified version of ElGamal algorithm, based on discrete
logarithm in 𝑍𝑝.

• Became FIPS standard FIPS 186 in 1993.

• Slightly modified in 1996 as FIPS 186-1.

• Extended in 2000 as FIPS 186-2.

• Updated in 2009 as FIPS 186-3 (new key sizes).

• Now NIST FIPS 186-3 supports RSA & DSA & ECDSA.

17 | PV181

DSA: keys

• Key generation

– Choose random x, such that 0 < x < q.

– Calculate y = gx mod p.

• Private key: x.

• Public key: y & (p, q, g).

20 | PV181

DSA: math recall
• Signature generation

– Generate a random per-message value k such that 0 < k < q.

– Calculate r = (gk mod p) mod q

– Calculate s = (k−1(H(m) + x*r)) mod q

– The signature is (r, s).

• Signature verification

– w = (s)−1 mod q

– u1 = (H(m)*w) mod q

– u2 = (r*w) mod q

– v = ((gu1*yu2) mod p) mod q

– The signature is valid if v = r

• For DSA (1024,160) the signature size will be 2x160 bits.
21 | PV181

Elliptic curve DSA (ECDSA)

• Elliptic curves invented by Koblitz & Miller in 1985.

• ECDSA proposed in 1992 by Vanstone

• Became ISO standard (ISO 14888-3) in 1998

• Became ANSI standard (ANSI X9.62) in 1999

• ECDSA is a version of DSA based on elliptic

curves.

• More about this topic later…

23 | PV181

Digital certificate

28 | PV181

Digital certificate

• is used to prove ownership of the public key

• binds a public key to identity (identity, email,…)

• Public key certificate is signed by a trusted third

party – Certification Authority (CA)

• two models: centralized and decentralized

29 | PV181

Digital certificate – typical use case

• Two-way authentication Alice and Bob can verify each other’s public

key and identity with their corresponding certificates obtained from

CA.

• Alice and Bob get each other’s key through the corresponding

certificates and not directly.

• In practice, business transactions rely on one-way authentication

• Example

– When a client (my laptop) establishes a connection with Amazon, it is essential that

the client authenticates the website; The company does not really care who the

client is as long as the payment information is correct.

– The client will request Amazon's certificate, verify its validity and then send the

encrypted session key to Amazon's website.

30 | PV181

Trust models

• Public key infrastructure (PKI)
– centralized – hierarchy of CA’s

– cert signed by party

– used in web browsers

– standard X.509

• Web of trust
– decentralized model

– signed by many parties

– used in PGP, GPG

– standard OpenPGP

31 | PV181

Public Key Infrastructure (PKI)

• set of roles and procedures:
- issue, maintain, administer, revoke, suspend, reinstate, and

renew digital certificates

- create and manage a public key repository

• Certification Authority (CA) – stores, issues, signs
certs

• Registration Authority (RA) – verifies the identity, could
be part of CA

• Central directory– cert requests issued and revoked,

• Management system

• Cert policy

32 | PV181

X.509 PKI certificate

• Certification Authority – trusted third party

• Certificate revocation lists (CRL) – certificates no

longer be trusted (compromised key, CA,…)

• RFC5280 – defines format and semantics of certs

and CRLs

• X.509 versions 1,2,3

33 | PV181
33 | PV181

X.509 PKI certificate content

Serial Number: unique ID of cert

Subject: ID of entity

Signature algorithm:

Signature:

Issuer: verifier of info and issued cert

Valid–From: date cert is first valid from

Valid–To: expiry date

Key-Usage: purpose of PK (signature, cert signing, …)

Public Key:

Thumbprint algorithm: to compute hash of PK cert

Thumbprint (fingerprint): hash of abbreviated PK cert

34 | PV181

Certificate issuing

https://help.bizagi.com/process-modeler/en/index.html?cloud_auth_certificates.htm

36 | PV181

Types of Certificate

• Extended Validation (EV)

– Issued only after rigorous identity verification to check the legitimacy of the

applicant (organization). It may include the verification of the legal and

physical existence of the organization; cross verification from other records

(govt. and other public/private records).

– Most expensive certificate and it may take several days to issue the

certificate.

• Organization Validation(OV)

– Less rigorous; only the existence and domain of the organization are

verified.

• Domain Validation (DV)

– Lowest level validation; Least expensive and issued in few minutes

– Confirmed that an applicant has the right to use a specific domain name

38 | PV181

Certificate verification

Checking single cert:

• current date against validity period

• current validity of CA public key

• signature of CA on cert

• check whether the certificate is revoked

• policies

39 | PV181

Certificates hierarchy

• root CA (trust anchor) - self-signed certificate

• Intermediate CA’s

• End entity – user certificate

40 | PV181

Chain of trust

43 | PV181

https://en.wikipedia.org/wiki/Chain_of_trust

https://en.wikipedia.org/wiki/Chain_of_trust

Certificate validation path

Input: cert path, trust anchor

Path validation:

1. Check all certs if still valid

2. Check revocation status of certs

3. Check issuer = of previous cert subject

4. Check policy constraints

5. …

45 | PV181

Revocation

• Reasons for revocation

– key compromise (most common), CA compromise,

affiliation change,…

• Two states:

– revoked – irreversibly for compromised private key

– hold – unsure user about key compromising, can be

reinstalled

• Checked using:

– CRL – list of revoked certs

– Online Certificate Status Protocol – on demand

46 | PV181

Seminar Tasks

• After you do an exercise discuss the result in pairs.

• Try to explain what is happening.

• Two parts:

– OpenSSL command line tool

– python

• Good luck! ☺

48 | PV181

OpenSSL and public-key crypto

• A command line tool for using various cryptographic

functions

• Can be used for (within this course)

– Create and manage public and private keys

– Calculation of Message digest

– Public-key cryptographic operations

– Encryption and decryption with Ciphers

– Creation of X.509 certificates, CSRs and CRLs

50 | PV181

Public Key Encryption / Decryption

• Generate key pairs:
openssl genrsa -aes128 -out alice_private.pem 1024

• Extract the public key
openssl rsa -in alice_private.pem -pubout >
alice_public.pem

• Encrypt with Alice's public key
openssl pkeyutl -encrypt -inkey alice_public.pem -pubin
-in alice.txt -out outfile.enc

• Decrypt with Alice's private key
openssl pkeyutl -decrypt -inkey alice_private.pem -in
outfile.enc > test.txt

• Try it with 2048 bit RSA key. Try to generate DSA key pair with
3DES. How does it compare to RSA?

51 | PV181

OpenSSL: CSR and self-signed certificate

• Create a certificate signing request (CSR)
openssl req -key alice_private.pem -new -out alice_domain.csr

• Create both key and CSR with one command
openssl req -newkey rsa:4096 -keyout alice_private.pem -out
alice_domain.csr

• Create a self-signed certificate
openssl x509 -signkey alice_private.pem -in alice_domain.csr -req
-days 365 -out alice_domain.crt

• You can verify your CSR (this checks the signature of the file)
openssl req -text -in alice_domain.csr -noout -verify
What happens when you modify the signature or any field of the certificate?

• Create a CSR with the key you have generated and self-sign it.
– Which fields do you identify?

• An OpenSSL cook book (for quick reference):
https://www.feistyduck.com/books/openssl-cookbook/

52 | PV181

https://www.feistyduck.com/books/openssl-cookbook/

OpenSSL: CSR and certificate cont’d

• Check the (SSL) key and verify the consistency
openssl rsa -in alice-private.key -check -noout
(without printing the key)

• The hash values of the certificate and key; hash values can be compared
to verify the certificate and key match

• openssl x509 -noout -modulus -in alice_domain.crt | openssl sha256

• openssl rsa -noout -modulus -in alice_private.pem | openssl sha256

• Try it with your key and self-signed certificate.

53 | PV181

Python – RSA (hazmat)

• Let’s play first a bit with python.

• Have a look at demo.py.

– There are tasks to be done. The goal is to do them till 3.

• Task 6 & 7 are only for enthusiast ☺

• Use:
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/

• Good luck!

54 | PV181

https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/

Assignment 3

• This is a programming assignment. Please upload your

scripts/code via the course webpage.

• The deadline for submission is October 11th, 8:00 (then -3

points per each started 24h).

• Please name the submission file as

<uco_number>_hw3.zip. Put there both the python code

and the openssl commands (e.g., in the readme file). If

you have more files pack them together to the zip file.

• The code must contain comments so that it is reasonably

easy to understand how to run the script for evaluating

each answer.

55 | PV181

Assignment 3 - Tasks

1. Use the openssl command tool to encrypt alice.txt with AES128 in OFB mode (with

cryptographically secure IV and key). Do the same (with the same key and IV) using the python

cryptography library (like in Assignment 1). Give the two outputs in two different files and attach

them to your solution. Also, attach the openssl command that you used.

Remark: make sure that your code would work for large files. [3 points]

2. Test that step 1 works fine with openssl (for decryption). Attach the command to your solution.

[1.5 point]

3. Suppose you are a trusted CA and you receive Bob’s CSR. Write a python script to generate

Bob’s certificate. Write a script that checks that the certificate and the key match. [3 points]

4. Suppose Alice wants to verify Bob’s certificate issued by you (from step 3). Write a python

function that takes the necessary inputs and verifies the validity of Bob’s certificate. Your

function must raise an error in case the certificate is not issued by you. [2.5 points]

5. Extra:
Generate and send me an email (lukchmiel@gmail.com) encrypted with my public key and signed with your private key.

For the sake of simplicity, I posted the public key in the study materials for the seminar (Lukasz Chmielewski

lukchmiel@gmail.com-(0xF077D43514C58924)-public.asc).

Make sure that I can learn your public key (e.g., attach it to the email).

Describe briefly how you performed Step 5 in the email. [1 point]

Note: do not use keys generated by third parties (e.g., websites)

 Good luck!!!

56 | PV181

	Slide 1: PV181 Laboratory of security and applied cryptography
	Slide 2: Public vs private key cryptography
	Slide 3: Asymmetric cryptography
	Slide 4
	Slide 5: Asymmetric cryptosystem
	Slide 6: Digital signature
	Slide 7: Digital signature scheme
	Slide 8: Digital signature
	Slide 9: RSA: mathematics
	Slide 10: RSA: example
	Slide 12: RSA Padding example (PKCS#1 v1.5)
	Slide 13: RSA in practice: Various Paddings
	Slide 14: Hard problems
	Slide 16: Digital Signature Standard (DSS)
	Slide 17: Digital Signature Algorithm (DSA)
	Slide 20: DSA: keys
	Slide 21: DSA: math recall
	Slide 23: Elliptic curve DSA (ECDSA)
	Slide 28: Digital certificate
	Slide 29: Digital certificate
	Slide 30: Digital certificate – typical use case
	Slide 31: Trust models
	Slide 32: Public Key Infrastructure (PKI)
	Slide 33: X.509 PKI certificate
	Slide 34: X.509 PKI certificate content
	Slide 36: Certificate issuing
	Slide 38: Types of Certificate
	Slide 39: Certificate verification
	Slide 40: Certificates hierarchy
	Slide 43: Chain of trust
	Slide 45: Certificate validation path
	Slide 46: Revocation
	Slide 48: Seminar Tasks
	Slide 50: OpenSSL and public-key crypto
	Slide 51: Public Key Encryption / Decryption
	Slide 52: OpenSSL: CSR and self-signed certificate
	Slide 53: OpenSSL: CSR and certificate cont’d
	Slide 54: Python – RSA (hazmat)
	Slide 55: Assignment 3
	Slide 56: Assignment 3 - Tasks

