Length of cryptographic keys

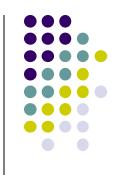
Zdeněk Říha

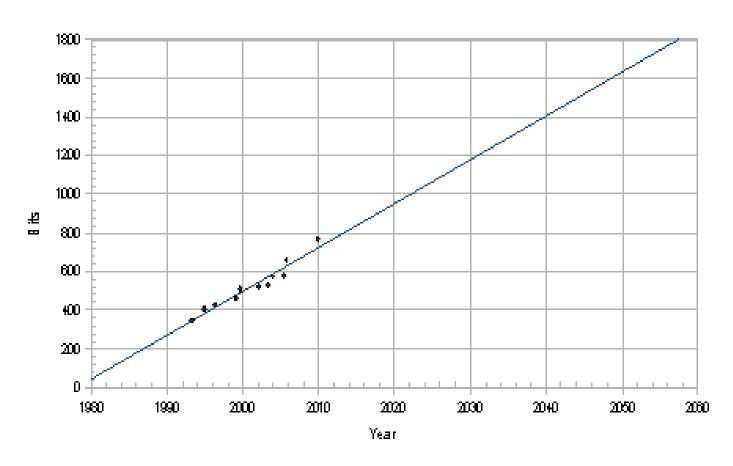
Security of RSA

- We choose randomly 2 primes and compute n and $\varphi(n)$:
 - p, q
 - $n = p \cdot q$
 - $\varphi(n) = (p-1)(q-1)$.
- **e** is chosen such that $gcd(e, \phi(n)) = 1$.
- We compute $d = e^{-1} \pmod{\varphi(n)}$.
- Public key: n, e.
 Private parameters: p, q, d.
 Private key: d.
- Security of RSA cryptosystem is based on the problem of factoring large numbers
- If public n can be factored into p and q, we can calculate φ(n) and derive d from e.
- Integer factorization is taught at primary schools
- But when integers are very big it takes very long time even for fast computers to factor the number

Computational Security

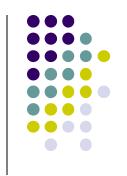
- Unconditional vs. computational security
- Security based on a hard problem
- The problem is solvable, but it takes impractically long time to solve
- The attacker cannot wait thousands/millions of years to break the encryption
- Our expectations can change:
 - Progress in the speed of HW
 - Progress in the efficiency of algorithms

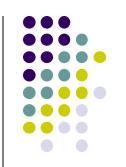

History of RSA Security


- RSA is considered secure
 - But the key size does matter
- 1977: published in "Scientific American"
 - RSA-129 (129 decimal digits of modulus n)
 - Challenge of 100 dollars
 - 40 quadrillion years estimated to factor ...
 - Factored in 1994
 - "The magic words are squeamish ossifrage."

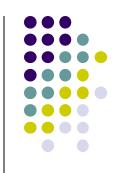
History of RSA Security II

- 1999
 - 512 bit integer was factored
- 2005
 - 663 bit integer was factored
- January 2010
 - 768 bit integer was factored
- February 2020
 - 829 bit integer (RSA-250) was factored
- 1024 bit integers are (probably) factorable at the moment by large organizations


Security of RSA


Source: P. Layland, RSA Security and Integer Factorization: The Thirty Years War from 1990 to 2020, IS2 2010, Praha

Key size


- Algorithms are public & keys must be secret
- Key must be large enough that a brute force attack is infeasible
- Depending on the algorithm used it is common to have different key sizes for the same level of security
 - Representing the level of security number of combinations needed for the brute force attack
 - E.g. 1024 bit RSA key equivalent to 80 bit symmetric encryption key

Comparable strengths of cryptosystems

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤ 80	2TDEA ²¹	L = 1024 $N = 160$	k = 1024	f= 160-223
112	3TDEA	L = 2048 $N = 224$	k = 2048	f= 224-255
128	AES-128	L = 3072 N = 256	k = 3072	f=256-383
192	AES-192	L = 7680 N = 384	k = 7680	f= 384-511
256	AES-256	L = 15360 N = 512	k = 15360	f= 512+

Security strengths of hash functions

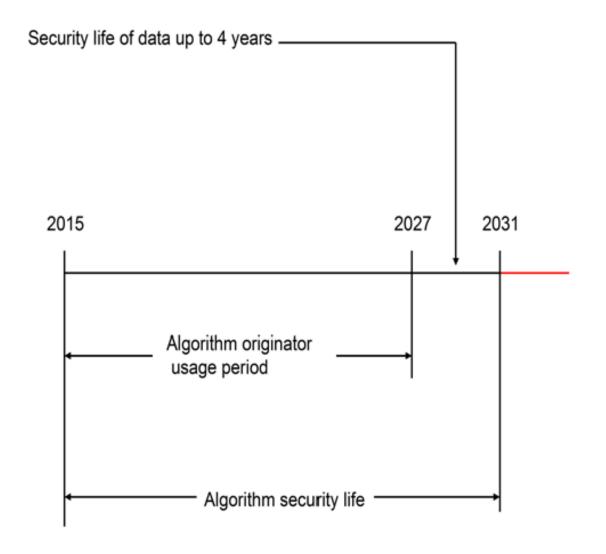
Security Strength	Digital Signatures and Other Applications Requiring Collision Resistance	HMAC, ⁷⁰ KMAC, ⁷¹ Key Derivation Functions, ⁷² Random Bit Generation ⁷³
≤ 80	SHA-1 ⁷⁴	
112	SHA-224, SHA-512/224, SHA3-224	
128	SHA-256, SHA-512/256, SHA3-256	SHA-1, KMAC128
192	SHA-384, SHA3-384	SHA-224, SHA-512/224, SHA3-224
≥ 256	SHA-512, SHA3-512	SHA-256, SHA-512/256, SHA-384, SHA-512, SHA3-256, SHA3-384, SHA3-512, KMAC256

Security Strength		Through 2030	2031 and Beyond
< 112	Applying	Disallowed	
112	Processing	Legacy-use	
112	Applying	Acceptable	Disallowed
	Processing	ricceptuoic	Legacy use

Security Strength		Through 2030	2031 and Beyond
128		Acceptable	Acceptable
192	Applying/Processing	Acceptable	Acceptable
256		Acceptable	Acceptable

- "Acceptable" indicates that the algorithm or key length is not known to be insecure.
- "Deprecated" means that the use of an algorithm or key length that provides the indicated security strength may be used if risk is accepted
- "Legacy use" means that an algorithm or key length may be used because of its use in legacy applications
- "Disallowed" means that an algorithm or key length shall not be used for applying cryptographic protection.

Crypto period


Originator Usage Period

Recipient Usage Period

Cryptoperiod

Crypto period example

Recommended crypto periods

	Crytoperiod		
Key Type	Originator-Usage Period (OUP)	Recipient-Usage Period	
1. Private Signature Key	1 to 3 years	-	
2. Public Signature-Verification Key	Several years (de	pends on key size)	
3. Symmetric Authentication Key	≤2 years	≤ OUP + 3 years	
4. Private Authentication Key	1 to 2	years	
5. Public Authentication Key	1 to 2 years		
6. Symmetric Data Encryption Keys	≤2 years	≤ OUP + 3 years	
7. Symmetric Key Wrapping Key	≤2 years	≤ OUP + 3 years	
8. Symmetric RBG Keys	See [SP800-90]	-	
9. Symmetric Master Key	About 1 year -		
10. Private Key Transport Key	≤2 y	ears ¹⁶	
11. Public Key Transport Key	1 to 2	years	
12. Symmetric Key Agreement Key	1 to 2	years ¹⁷	
13. Private Static Key Agreement Key	1 to 2	years ¹⁸	
14. Public Static Key Agreement Key	1 to 2 years		
15. Private Ephemeral Key Agreement Key	One key-agreement transaction		
16. Public Ephemeral Key Agreement Key	One key-agreement transaction		

Recommended crypto periods

	Crytoperiod		
Кеу Туре	Originator-Usage Period (OUP)	Recipient-Usage Period	
17. Symmetric Authorization Key	≤2 years		
18. Private Authorization Key	≤2 years		
19. Public Authorization Key	≤ 2 years		

ETSI recommendation (RSA)

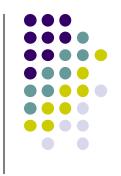


Table 6: Recommended parameters for RSA for a resistance during X years

Parameter	1 year	3 years	6 years
Key size $(\log_2(n)$	≥ 1 900	≥ 1 900	≥ 3 000

- Source: ETSI TS 119 312 V1.4.3 (2023-08)
- Recommended key sizes for RSA for a resistance during X years
- Starting date: 2023

ETSI recommendation (DSA)

Parameter	1 year	3 years	6 years
pLen	2 048	2 048	3 072

- Source: ETSI TS 119 312 V1.4.3 (2023-08)
- Recommended key sizes for DSA
- Starting date: 2023

ETSI recommendation (ECDSA)

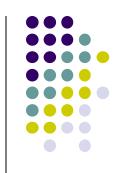


Table 8: Recommended parameters for EC-DSA and EC-SDSA-opt for a resistance during X years

Parameter	1 year	3 years	6 years
pLen = qLen	256, 384 or 512	256, 384 or 512	256, 384 or 512

- Source: ETSI TS 119 312 V1.4.3 (2023-08)
- Recommended key sizes for ECDSA
- Starting date: 2023


ETSI recommendation (hash functions)

Entry name of the hash function	1 year	3 years	6 years
SHA-224	usable	usable	unusable
SHA-256	usable	usable	usable
SHA-384	usable	usable	usable
SHA-512	usable	usable	usable
SHA3-256	usable	usable	usable
SHA3-384	usable	usable	usable
SHA3-512	usable	usable	usable

- Source: ETSI TS 119 312 V1.4.3 (2023-08)
- Recommended hash functions
- Starting date: 2023

Entry name of the signature suite	1 year	3 years	6 years
sha256-with-rsa	≥ 1 900	≥ 1 900	not recommended
sha384-with-rsa	≥ 1 900	≥ 1 900	not recommended
sha512-with-rsa	≥ 1 900	≥ 1 900	not recommended
rsa-pss with mgf1SHA-256Identifier	≥ 1 900	≥ 1 900	≥ 3 000
rsa-pss with mgf1SHA-384Identifier	≥ 1 900	≥ 1 900	≥ 3 000
rsa-pss with mgf1SHA-512Identifier	≥ 1 900	≥ 1 900	≥ 3 000
rsa-pss with mgf1SHA3-Identifier	≥ 1 900	≥ 1 900	≥ 3 000
sha256-with-dsa	2 048	2 048	3 072
sha512-with-dsa	2 048	2 048	3 072
sha224-with-ecdsa	legacy not recommended		
sha2-with-ecdsa	recommended		led
sha2-with-ecsdsa	recommended		led
sha3-with-ecdsa	recommended		led
sha3-with-ecsdsa	recommended		

- Source: ETSI TS 119 312 V1.4.3 (2023-08)
- Recommended signature suites
- Starting date: 2023

ICAO recommendation

- International Civil Aviation Organization
 - Electronic passports
 - Data signed by the issuing country to protect integrity
 - One CA per country, certificates issued for entities producing passports (so called Document Signers).
 - Standard validity of passports: 10 years

ICAO recommendations

- RSA (UK, CZ, France, ...)
 - Padding: PKCS#1 v1.5, PSS (recommended)
 - For CA: min 3072 bits
 - For DS: min 2048 bits
- DSA
 - For CA: min 3072/256 bits
 - For DS: min 2048/224 bits

"Issuing States or organizations SHALL choose appropriate key lengths offering protection against attacks."

8th edition of ICAO9303

- ECDSA (Germany, Switzerland, ...)
 - For CA: min 256 bits
 - For DS: min 224 bits
- Hash functionsSHA-2

Source: ICAO Doc. 9303