
PV181
LABORATORY OF SECURITY AND APPLIED CRYPTOGRAPHY

ALESSIA MICHELA DI CAMPI (543922@MAIL.MUNI.CZ) & ŁUKASZ CHMIELEWSKI (CHMIEL@FI.MUNI.CZ)

INTRODUCTION

Usability security Passwords Challenges

COMPUTER SECURITY

The National Institute of Standards and Technology (NIST) defines Computer Security as:

“Measures and controls that ensure confidentiality, integrity, and availability of the information processed,

stored (and communicated) by a computer”

The so-called “CIA” triad: Confidentiality, Integrity, Availability

Reference: https://csrc.nist.gov/glossary/term/computer_security

C.I.A

Confidentiality:

Definition: Confidentiality ensures that information is accessible only to those who have the

authorized permissions to access it.

Objective: The goal is to prevent unauthorized access, disclosure, or exposure of sensitive information.

This principle is crucial for protecting private or classified data.

C.I.A

Integrity:

Definition: Integrity focuses on maintaining the accuracy and reliability of information. It ensures

that data remains unaltered and trustworthy throughout its lifecycle.

Objective: The objective is to prevent unauthorized or accidental modifications, deletions, or alterations

to data. Integrity is essential for ensuring the trustworthiness of information.

C.I.A

Availability:

Definition: Availability ensures that information and resources are accessible and usable when

needed by authorized users.

Objective: The goal is to prevent disruptions to the availability of data or services. This includes

protection against denial-of-service attacks, system failures, or other events that could result in the

unavailability of critical resources.

SECURITY CHALLENGES DUE TO HUMANS

 Weak or Duplicate Passwords

 Lack of Security Awareness

 Phishing and Social Engineering

 Downloading Insecure Software

 Neglecting Patching and Updates

 Unauthorized Access

 Use of Insecure Devices

 Lack of Adequate Backups

 Privacy Violations

 Ignoring Security Indicators

USABLE SECURITY

Usable security refers to the practice of preventing
threats to user security and privacy that arise from
the interaction of humans (users) with computer
systems. Unlike traditional system and network
security, it focuses on users, analyzing their
behavior, mental models and decision-making
processes.

USABLE SECURITY AND PASSWORDS

Good security is important online. Passwords are widely used and need to be easy to use and understand.

 Challenges: Leakage and Guessing

• Preventing Leakage: Addressing unauthorized password disclosure through phishing awareness, secure

communication channels, encryption, and the implementation of multi-factor authentication (MFA).

• Thwarting Guessing Attacks: Countering unauthorized access attempts by promoting strong, unique

passwords, enforcing complexity requirements, encouraging passphrase usage, and implementing

account lockout mechanisms.

USABLE SECURITY AND PASSWORDS

 Usable Security Strategies:

• Intuitive Password Policies: Designing user-friendly password creation policies.

• Clear Guidance: Providing concise instructions on security best practices.

• Biometrics Integration: Leveraging biometric technology to streamline authentication.

A password is a string of characters used to

verify the identity of a user during

the authentication process. Passwords are

typically used in tandem with a username;

they are designed to be known only to the

user and allow that user to gain access to a

device, application or website. Passwords

can vary in length and can contain letters,

numbers and special characters.

WHAT IS A PASSWORD?

• A minimum length of eight characters and a maximum

between 16 to 64 characters. While there is no limit to the

length of a password, it does reach a point of diminishing

returns.

• Include both uppercase and lowercase letters with case

sensitivity. This increases the number of variables at play and,

therefore, its difficulty.

• Use at least one number.

• Use at least one special character.

• Avoid using easily guessed elements such as names of children,

pet names and birthdays.

• Consider using a password management tool.

HOW DO PEOPLE CREATE PASSWORDS?

To improve user-friendly security, we need to understand how people create and manage

passwords.

By studying their behavior, we can tailor security measures to fit natural inclinations, making it easier for

individuals to adopt best practices.

This involves promoting the use of secure and easy-to-remember passphrases, personalized security

measures, and accommodating user habits.

Ultimately, this approach empowers users to contribute to their own digital safety and fosters a more

resilient and user-friendly online landscape.

ATTACKS ON PASSWORDS

1. Brute Force Attack: In this type of attack, an assailant attempts to guess the password by trying all possible combinations of
characters. This is a straightforward approach and often requires a considerable amount of time unless the password is weak.

2. Dictionary Attack: Attackers use a list of common words or a dictionary of words to try to guess the password. This is more
efficient than brute force, as it relies on words that are more likely to be used as passwords.

3. Phishing: Phishing attacks involve deceiving users to obtain their login credentials. This can occur through emails, text messages,
or fraudulent websites that appear authentic.

4. Keylogging: In a keylogging attack, an assailant secretly records all keystrokes made by the user, thereby capturing their login
credentials.

5. Rainbow Table Attack: This attack involves using precomputed tables of password hashes. Attackers try to match stolen
password hashes with those present in the rainbow table to obtain a match.

6. Credential Stuffing: Attackers use stolen credentials from one website on another site, taking advantage of the fact that many
people reuse the same passwords across multiple platforms.

7. Social Engineering: This type of attack involves manipulating individuals through psychological means to divulge confidential
information, such as passwords.

Hashing is the process of converting an

alphanumeric string into a fixed-size string by

using a hash function. A hash function is a

mathematical function that takes in the input

string and generates another alphanumeric string.

PASSWORD HASHING

DIFFERENT HASHES

SALTS

Password hashing and why salting is required

Hashing prevents passwords from being exposed or stolen by threat actors, since they are not stored as

plaintext. For example, when users create an account with a username and password on a website, their

password is hashed and stored in an internal file system in an encrypted form.

Although hashing is a safe way to store passwords compared to storing them in plaintext, the process is

not without problems. One limitation is that, if two passwords are the same -- which is quite common

because people tend to use common passwords, like "123456" and "password" -- the hashes generated

are also identical.

SALTS

This makes it easier for a bad actor to crack the passwords by brute-force attacks, dictionary attacks or

rainbow attacks and compromise the accounts of multiple users, steal their data or cause other problems.

To address this challenge, salting is required.

With password salting, a random piece of data is added

to the password before it runs through the hashing

algorithm, making it unique and harder to crack.

When using both hashing and salting, even if two users

choose the same password, salting adds random

characters to each password when the users enter

them.

User Password 1 – orange

Salt 1 – y3Unz

Salt added to password 1 – orangey3Unz

Hash ("orange" + salt) 1 -

024ca8e38b33f9116c151123eb432d20

User Password 2 – orange

Salt 2 – 1Hx$

Salt added to password 2 – orange1Hx$

Hash ("orange" + salt) 2 -

5d41402abc4b2a76b9719d911017c592

Hashcat is a fast password recovery tool that helps break complex password hashes. It is a flexible and

feature-rich tool that offers many ways of finding passwords from hashes.

CRACKING PASSWORD

Hashca t o f f e r s mu l t i p l e a t t a ck modes fo r ob t a i n i n g e f f e c t i ve and comp lex coverage over a h a sh ' s key space . These

modes a re :

•Bru te - fo rce a t t a ck

•Comb ina tor a t t a ck

•Dic t i ona r y a t t a ck

•F i n gerp r i n t a t t a ck

•Hybr i d a t t a ck

•Mask a t t a ck

•Permuta t i on a t t a ck

•Ru l e -b a sed a t t a ck

•Tab l e - Lookup a t t a ck (CPU on l y)

•Togg l e -Case a t t a ck

•PR INCE a t t a ck (i n CPU ver s i on 0 . 48 and h i gher on l y)

https://hashcat.net/hashcat/

LAB

Installation:

1. hashcat inside docker

2. hashcat natively

3. hashcat inside virtualbox (or any virtual machine)

See the email from yesterday.

Did everyone do it? Any issues?

TASK 1: GENERATING ONE-WAY HASHES

As studied in class, passwords are stored in hashed form, using particular cryptographic one-way hash functions. This

functions are easy to compute but infeasible to invert: given a hash z there’s no efficient algorithm to find a message

m such that h(m) is z. Popular one-way hash functions are: sha1, sha2, md5

It is easy to hash passwords “by hand” from the linux shell:

$ echo -n 'pwd' | md5sum | tr -d ' -'

9003d1df22eb4d3820015070385194c8

Explanation:

• echo -n 'pwd' prints pwd omitting the trailing newline;

• | md5sum takes the output of previous command and

computes md5 hash on it;

• | tr -d ' -' removes the trailing ' -' produced by md5sum,

leaving just the hash

TASK 1: GENERATING ONE-WAY HASHES

Exercise 1

1. Try yourself with other passwords

2. Try to run the single commands to see what happens

3. Compute the md5 hash of the md5 hash of let_me_go_to_the_next_level . In other

words compute md5(md5(let_me_go_to_the_next_level)) . This will give you the

password for task 2!

TASK 2: CRACKING HASHES

We can use hashcat to crack the hash. For example: we easily manage to crack

hash 9003d1df22eb4d3820015070385194c8 from the previous example:

$ hashcat -m 0 -a 3
9003d1df22eb4d3820015070385194c8
Session..........: hashcat
Status...........: Cracked
Hash.Type........: MD5
Hash.Target......:
9003d1df22eb4d3820015070385194c8
Time.Started.....: Wed Sep 25 15:36:23
2019 (0 secs) Time.Estimated...: Wed Sep
25 15:36:23 2019 (0 secs)
Guess.Mask.......: ?1?2?2 [3]
Guess.Charset....: -1 ?l?d?u, -2 ?l?d, -
3 ?l?d*!$@_, -4 Undefined ...

Explanation:

•-m 0 indicates that the hash is MD5

•-a 3 use Brute-Force mode, in which hashcat tries

different guesses with fixed shapes

Note: run hashcat -h to see all the options, supported

hashes and modes.

TASK 2: CRACKING HASHES

From the output we can see what shape (mask) was used:

Mask is ?1?2?2 where 1 is ?l?d?u (lowercase,digit,uppercase)

and 2 is ?l?d (lowercase,digit).Hashcat is brute-forcing all

the possible passwords with this shape, such as our

password pwd .

Guess.Mask.......: ?1?2?2
[3] Guess.Charset....: -1
?l?d?u, -2 ?l?d, -3
?l?d*!$@_, -4 Undefined

Note: hashcat stores the cracked hashes in the .local/share/hashcat/hashcat.potfile file (in some systems it is simply .hashcat/hashcat.potfile).

To see the cracked password it is necessary to run the program again with the --show option or to run cat

.local/share/hashcat/hashcat.potfile

TASK 2: CRACKING HASHES

Exercises

• Find a password of length 4 that is easily cracked by simple brute-force (hint: check the masks used by hashcat);

• Find a password of length 4 that is NOT cracked by simple brute-force (hint: check that hashcat does not break the

password with masks of length 4). Observe the increasing expected time when the mask length increases. Time

depends on the hardware you are using, compare it with mates that have installed hashcat natively, so to observe the

speedup using GPUs;

• You can specify on the command line a mask as in hashcat -m 0 -a 3 9003d1df22eb4d3820015070385194c8

?u?l?l?l?l?l?d?s . This will try all the passwords of length 8 composed of 1 uppercase letter, 5 lowercase, 1 digit and 1

symbol. Charsets are available from hashcat help (option -h)

TASK 2: CRACKING HASHES

Crack hash ad3f3432a2edf66b5d370958322652c5 exploiting the fact the the password

“policy” requires 8 chars of this type: symbol, lowercase, digit, lowercase, uppercase, 3 digits (in this

order!).This will give you the password for task 3!

TASK 3

We can save many hashes in a file and ask hashcat to crack them all. We use >> to redirect and append

hashes file hashes.txt :

$ echo -n ‘hello' | md5sum | tr -d ' -' >> hashes.txt
$ echo -n '1234' | md5sum | tr -d ' -' >> hashes.txt
$ echo -n 'nice' | md5sum | tr -d ' -' >> hashes.txt
$ echo -n '$password$' | md5sum | tr -d ' -' >> hashes.txt
$ echo -n 'r5g3EF%er' | md5sum | tr -d ' -' >> hashes.txt
$ echo -n 'pwd$' | md5sum | tr -d ' -' >> hashes.txt
$ cat hashes.txt 9003d1df22eb4d3820015070385194c8
81dc9bdb52d04dc20036dbd8313ed055 7c6483ddcd99eb112c060ecbe0543e86
666e549b95a5d5f8963cc7d5145347e0 7fd42a41096c71fc69fc0edc38ec4797
5342cd726d90d1e80e13cc5ec9358560 4684773b5d4e81256fae19e2cb799874

TASK 3

The hashcat invocation is the same as before. We just pass the filename instead of the hash. If we stop it

after a few seconds we see that hashcat is able to immediately break the short passwords.

$ hashcat -m 0 -a 3 hashes.txt
... ctrl-C
$ hashcat -m 0 -a 3 hashes.txt --show
7c6483ddcd99eb112c060ecbe0543e86:nice
9003d1df22eb4d3820015070385194c8:pwd
81dc9bdb52d04dc20036dbd8313ed055:1234

Explanation:

pwd fits the mask ?1?2?2 where 1 is ?l?d?u (lowercase,

digit, uppercase) and 2 is ?l?d (lowercase, digit);

1234 and nice fit the similar, longer mask ?1?2?2?2 ;

$password$, r5g3EF%er , riccardo123 are too

complex to find quickly by simple brute-force;

Interestingly, pwd$ even if simple and short is not

found because it does not fit the above mask ?1?2?2?2 .

TASK 3

The file hashes.txt contains one weak password that will let you access Task 4!

wget https://secgroup.dais.unive.it/wp-content/uploads/2019/09/hashes2.txt

TASK 4

Password cracking becomes much more effective when combined with dictionaries of know/easy passwords. A famous

one is the rockyou list that came from the SQLi attack on rockyou.com.

The ~32M passwords were stored in the clear instead of hashed! File is available here

(https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt) but is already in the docker

image, if you are using it.

We can run again the

cracking using the

rockyou.txt

dictionary as follows:

$ hashcat -m 0 -a 0 hashes.txt rockyou.txt ...
INFO: Removed 3 hashes found in potfile. ...
$ hashcat -m 0 -a 0 hashes.txt rockyou.txt --show
666e549b95a5d5f8963cc7d5145347e0:$password$
7c6483ddcd99eb112c060ecbe0543e86:nice
9003d1df22eb4d3820015070385194c8:pwd
81dc9bdb52d04dc20036dbd8313ed055:1234
5342cd726d90d1e80e13cc5ec9358560:riccardo123

Explanation:

Option -a 0 is used to run a dictionary attack: the dictionary

file rockyou.txt is specified on the command line;

hashcat remembers the hashes already cracked in file

.hashcat/hashcat.potfile and does not try to crack them in

next invocations. This is why it outputs INFO: Removed 3

hashes found in potfile . This is an important feature that

allows for incremental cracking using different techniques;

Using the dictionary we are able to crack two of the longer

passwords: $password$, riccardo123 but not yet

r5g3EF%er and pwd$.

https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt
https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt

TASK 4

Exercise

• Remove .hashcat/hashcat.potfile and run again the dictionary attack to see what passwords are cracked;

• As done for previous task, you can specify on the command line a mask as in hashcat -m 0 -a 3

hashes.txt ?u?l?l?l?l?l?d?s . This will try all the passwords of length 8 composed of 1 uppercase letter, 5

lowercase, 1 digit and 1 symbol. Try to crack the missing passwords r5g3EF%er and pwd$ by specifying

a suitable mask. (For r5g3EF%er you will might need a GPU to crack it fast. Look at the estimated

time in the hashcat status to have an idea of the worst case. In our experiments we could crack it in a

matter of minutes in Docker.)

TASK 4

Since you have root privileges in Docker you can create test users with weak/strong passwords and try to

crack them. Use adduser to create a few users and then try cracking their passwords with brute-force

and dictionary:

(... after users have been added you will find their hashed passwords in
/etc/shadow) $ cat /etc/shadow ...
paperino:6wClZL8Ij$T5o95har.hxfeBd3vtQCj/ivuVQPdfLxEnNhX3rhoYkK7irQVv/imbGPD9
rBhApTKj3c41hZ9cqC68Xo7eLNi1:18165:0:99999:7:::
pippo:$6$1KwvveJV$czDJksVHD2Ix56mN0HFsQdLWiEm811cuxrk9RCYWtUdFGnxXpJ27e3isdphgY
n3LZvWRQy7X33v4QEaI0phTE1:18165:0:99999:7:::
zio:6MSdL2emp$CHuArXopoKct6VWB7YXTO1q0VGpuWaUWEYzrI641QcxZFqZFKx7kAR8DQJIq/gR
tnQJOHqtrDvLuuGZqF.Ule/:18165:0:99999:7:::
$ hashcat -m 1800 -a 3 /etc/shadow # brute-force
$ hashcat -m 1800 -a 0 /etc/shadow rockyou.txt # dictionary

From hashcat help (-h option) we find the suitable

mode to pass to -m , in this case 1800,

corresponding to sha512crypt:

1800 | sha512crypt 6, SHA512 (Unix)

| Operating Systems

Recall that the hash is iterated. This will make

cracking much slower. Moreover, since there are

salts, each hash needs to be recomputed for each

given salt (no precomputation is possible).

TASK 4

If you didn’t do it yet and you have a GPU, you can install hashcat natively

and re-run the experiments to appreciate the speedup you can gain with

highly parallelised hardware. In fact, brute-forcing amounts to repeating the

same task many many times, which fits very well GPU parallelism!

ASSIGNMENT 10 - RULES

This is a programming assignment. Please upload your scripts/code and the required analysis via

the course webpage.

The deadline for submission is Dec. 28, 2023, 23:59.
-3 points for each started 24h after the deadline.

Your commands/scripts should be contained in reported in one text file with explanations. Please

name the submission file as <uco_number>_hw10.zip. Put there both the commands/scripts, the

analysis document, and all data produced during analysis (as long as the size is reasonable).

The scripts/code must contain comments so that it is reasonably easy to understand how to run

the script for evaluating each answer.

ASSIGNMENT 10 - TASKS

Hashcat allows a so-called rule-based attack.

• What we ask you to do is to perform the attack on a hashes file (choose one, maybe Battlefield) with a

set of rules (for at least 5 sets of rules available), use the --debug-file=matched.rule (as stated in this

guide https://www.4armed.com/blog/hashcat-rule-based-attack/, you can change the name of the output

file). Analyse the time taken and the percentage of cracked passwords. [4 points]

• You can also create a script and send to hashcat a signal to have the information about the cracked

percentage over the time and create a graph to show the behaviour. [BONUS +2]

• Report an analysis on how the output changes depending on the size of the rules file. [2 point]

• Create for each analysis most used rules file (for each rules set used). [2 point]

• Try to create your own rule set that intelligently uses the most used rules files (it does not have to

perform better) and analyse the behaviour. [2 points]

• [SUPER BONUS! +2] What will happen if you try to combine attacks? Rules and masks for example.

• Any improvements or ideas are welcome!

https://www.adeptus-mechanicus.com/codex/hashpass/hashpass.php
https://github.com/hashcat/hashcat/tree/master/rules
https://www.4armed.com/blog/hashcat-rule-based-attack/

THAT’S ALL! WE HOPE

YOU ENJOYED

PASSWORD CRACKING!

	Slide 1: PV181
	Slide 2: introduction
	Slide 3: Computer security
	Slide 4: C.I.A
	Slide 5: C.I.A
	Slide 6: C.I.A
	Slide 7: Security challenges due to humans
	Slide 8: Usable security
	Slide 9: Usable security and passwords
	Slide 10: Usable security and passwords
	Slide 11: What is a password?
	Slide 12: How DO people create passwordS?
	Slide 13: Attacks on passwords
	Slide 14: Password hashing
	Slide 15: Different Hashes
	Slide 16: Salts
	Slide 17: Salts
	Slide 18: Cracking password
	Slide 23: LAB
	Slide 24: Task 1: Generating one-way hashes
	Slide 25: Task 1: Generating one-way hashes
	Slide 26: Task 2: Cracking hashes
	Slide 27: Task 2: Cracking hashes
	Slide 28: Task 2: Cracking hashes
	Slide 29: Task 2: Cracking hashes
	Slide 30: Task 3
	Slide 31: Task 3
	Slide 32: Task 3
	Slide 33: Task 4
	Slide 34: Task 4
	Slide 35: Task 4
	Slide 36: Task 4
	Slide 37: Assignment 10 - Rules
	Slide 38: Assignment 10 - Tasks
	Slide 39: That’s all! We hope you enjoyed password cracking!

