Introduction

# Autotuning

Introduction to autotuning, overview of our research

Jiří Filipovič et al. Institute of Computer Science Masaryk University

2023



# Program development workflow

### Implementation questions

- which algorithm to use?
- how to implement the algorithm efficiently?
- how to set-up a compiler?

# Compiler's questions

Introduction

000000000000000

- how to map variables to registers?
- which unrolling factor to use for a loop?
- which functions should be inlined?
- and many others...

### Program development workflow

#### Execution

Introduction

000000000000000

- how many nodes and threads assign to the program?
- should accelerators be used?
- how to mix MPI and OpenMP threads?

### Program development workflow

#### Execution

Introduction

000000000000000

- how many nodes and threads assign to the program?
- should accelerators be used?
- how to mix MPI and OpenMP threads?

A compiler works with **heuristics**, people usually too.

# Tuning of the program

Introduction

We can empirically tune those possibilities

- use different algorithm
- change code optimizations
- use different compiler flags
- execute in a different number of threads
- etc.

# Tuning of the program

Introduction

0000000000000000

A tuning allows us to outperform heuristics – we just test what works better.

- however, we have to invest more time into development
- there are vertical dependencies, so we cannot perform tuning steps in isolation
- the optimum usually depends on hardware and input

# Autotuning

### The tuning can be automated

then we talk about autotuning

#### Autotuning

- in design time, we define the space of tuning parameters, which can be changed
- each tuning parameter defines some property of the tuned application
- a search method is used to traverse the space of tuning parameters efficiently
- performed according to some objective, usually performance



Evaluation

Evaluation

# Taxonomy of Autotuning

### Tuning scope

- what properties of the application are changed by autotuner
- e.g. compiler flags, number of threads, source code optimizations parameters

### Tuning time

- offline autotuning (performed once, e.g., after SW installation)
- dynamic autotuning (performed in runtime)

### Developer involvement

- transparent, or requiring only minor developer assist (e.g. compiler flags tuning)
- low-level, requiring an expert programmer to identify tunning opportunities (e.g. code optimizations parameters tuning)



00000000000000

Introduction

We target autotuning of code optimization parameters

- the source code is changed during a tuning process
- the user defines how tuning parameters influence the code
- very powerful (source code may control nearly everything)
- implementation is difficult
  - requires recompilation
  - runtime checks of correctness/precision
  - non-trivial expression of tuning parameters
  - we have no implicit assumptions about tuning space
- heterogeneous computing (we are tuning OpenCL or CUDA code)
- offline and dynamic autotuning



# Motivation Example

Introduction

000000000000000

Let's solve a simple problem – vectors addition

- we will use CUDA
- we want to optimize the code

Introduction

```
__global__ void add(float* const a, float* b) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
   b[i] += a[i];
}
```

It should not be difficult to write different variants of the code...

**Evaluation** 

# **Optimization**

```
__global__ void add(float4* const a, float4* b) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    b[i] += a[i];
}
```

Kernel has to be executed with n/4 threads.

**Evaluation** 

### Optimization

000000000000000

Introduction

```
__global__ void add(float2* const a, float2* b) {
   int i = blockIdx.x*blockDim.x + threadIdx.x;
   b[i] += a[i];
}
```

Kernel has to be executed with n/2 threads.

### **Optimization**

000000000000000

Introduction

```
__global__ void add(float* const a, float* b, const int n) {
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    for (; i < n; i += blockDim.x*gridDim.x)</pre>
        b[i] += a[i];
}
```

Kernel has to be executed with n/m threads, where m can be anything.

**Evaluation** 

# What to Optimize?

#### Mixture of:

- thread-block size
- vector variables
- serial work

i.e. 3D space – and this is trivial example...

### Autotuning

000000000000000

Introduction

Autotuning tools may explore code parameters automatically

```
__global__ void
add(VECTYPE* const a, VECTYPE* b, const int n) {
    int i = blockIdx.x*blockDim.x + threadIdx.x:
#if SERIAL WORK > 1
    for (; i < n; i += blockDim.x*gridDim.x)</pre>
#endif
         b[i] += a[i]:
}
```

The code executing kernel add has to configure parallelism according to values of VECTYPE and SERIAL\_WORK tuning parameters.

# Kernel Tuning Toolkit

Introduction

### We have developed a Kernel Tuning Toolkit (KTT)

- a framework allowing to tune code parameters for OpenCL and CUDA
- allows both offline and dynamic tuning
- enables cross-kernel optimizations
- mature implementation, documented, with examples
- https://github.com/HiPerCoRe/KTT

Introduction

### Typical workflow similar to CUDA/OpenCL

- initialize the tuner for a specified device
- create input/output of the kernel
- create kernel
- create a tuning space for the kernel
- assign input/output to the kernel
- execute or tune the kernel

KTT creates a layer between an application and OpenCL/CUDA.

# KTT Sample Code

```
// Initialize tuner and kernel
ktt::Tuner tuner(platformIndex, deviceIndex);
const ktt::DimensionVector ndRangeDimensions(inputSize);
const ktt::DimensionVector workGroupDimensions(128);
ktt::KernelId foo = tuner.addKernelFromFile(kernelFile, "foo",
  ndRangeDimensions, workGroupDimensions);
// Creation and assign of kernel arguments
ktt::ArgumentId a = tuner.addArgumentVector(srcA,
  ktt::ArgumentAccessType::ReadOnly);
ktt::ArgumentId b = tuner.addArgumentVector(srcB,
  ktt::ArgumentAccessType::WriteOnly);
tuner.setKernelArguments(foo,
  std::vector<ktt::ArgumentId>{a, b});
// Addition of tuning variables
tuner.addParameter(foo, "UNROLL", {1, 2, 4, 8});
tuner.tuneKernel(foo):
tuner.printResult(foo, "foo.csv", ktt::PrintFormat::CSV);
```

Introduction

# In practise, we usually need more functionality

- tuning parameters can affect parallelism configuration (e.g. block and grid size in CUDA)
  - by pre-defined functions (e.g. multiply specified block/grid dimmension)
  - by lambda function provided by programmer
- some combinations of tuning parameters can be discarded a priori
  - lambda functions constraining tuning space
- KTT can check, if tuned kernel runs successfully
  - automatic check of successful execution
  - user can provide reference kernel, or reference class, and comparing function, KTT compares results automatically



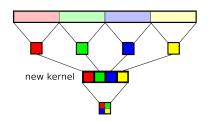
### Advanced features of KTT

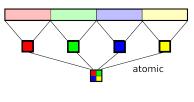
Introduction

#### Cross-kernel optimizations

- the user can add specific code for kernels execution into launchComputation method
- the code may query tuning parameters
- the code may call multiple kernels
- allows tuning code parameters with wider influence, as tuned kernels do not need to be functionally equivalent

### Reduction





### Advanced features of KTT

#### Dynamic autotuning

- dynamic tuning performs autotuning during application runtime
- KTT can execute the best kernel known so far to perform kernel's task
- or try different combination of tuning parameters before the execution
- tuning is transparent for the application
- tuning can be queried in any time

Introduction

```
// Main application loop
while(application_run) {
  if (tuningRequired)
    tuner.tuneKernelByStep(foo, {b});
  else {
    ktt::ComputationResult best =
      tuner -> getBestComputationResult(foo);
    tuner.runKernel(compositionId,
      best.getConfiguration(), {b});
```

**Evaluation** 

# Dynamic tuning

### Dynamic autotuning is challenging

- when the kernel is executed, there must be no significant performance drop
- automatic memory management has to move only necessary data
- KTT has to support asynchronous execution of
  - memory copy, host and device code execution
  - simultaneous execution of multiple kernels

#### Parallelism in KTT

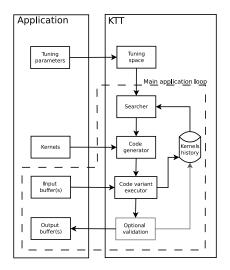
- intra-manipulator: parallelism inside launchComputation method
- global parallelism: asynchronous execution of multiple launchComputation instances

During autotuning, global parallelism is disabled.



### KTT Architecture

Introduction



### Benchmark set

| Benchmark    | dimensions | configurations |
|--------------|------------|----------------|
| BiCG         | 11         | 5,122          |
| Convolution  | 10         | 5,248          |
| Coulomb 3D   | 8          | 1,260          |
| GEMM         | 15         | 241,600        |
| GEMM batched | 11         | 424            |
| Hotspot      | 6          | 480            |
| Transpose    | 9          | 10,752         |
| N-body       | 8          | 9,408          |
| Reduction    | 5          | 175            |
| Fourier      | 6          | 360            |

Table: A list of the benchmarks and the size and dimensionality (i.e., the number of tuning parameters) of their tuning spaces.



# Testbed setup

| Device             | Architecture   | SP perf. | BW  |
|--------------------|----------------|----------|-----|
| 2× Xeon E5-2650    | Sandy Bridge   | 512      | 102 |
| Xeon Phi 5110P     | Knights Corner | 2,022    | 320 |
| Tesla K20          | Kepler         | 3,524    | 208 |
| GeForce GTX 750    | Maxwell        | 1,044    | 80  |
| GeForce GTX 1070   | Pascal         | 5,783    | 256 |
| Radeon RX Vega 56  | GCN 5          | 8,286    | 410 |
| GeForce RTX 2080Ti | Turing         | 11,750   | 616 |

**Evaluation** 

000000000

Table: Devices used in our benchmarks. Arithmetic performance (SP perf.) is measured in single-precision GFlops, memory bandwidth (BW) is measured in GB/s.

### Performance

Introduction

| Benchmark    | 2080Ti | 1070  | 750   | K20   | Vega56 | E5-2650 | 5110P |
|--------------|--------|-------|-------|-------|--------|---------|-------|
| BiCG         | 88.3%  | 84.7% | 81.7% | 50.4% | 75.6%  | 46.0%   | 6.45% |
| Coulomb 3D   | 91.8%  | 91.4% | 84.3% | 43.2% | 65.3%  | 74.2%   | 22.2% |
| GEMM         | 79.8%  | 80.6% | 91.1% | 51.3% | 96.3%  | 37.5%   | 19.7% |
| GEMM batched | 86.8%  | 81.4% | 90.0% | 49.6% | 86.0%  | 27.7%   | 20.9% |
| Transpose    | 87.1%  | 80.2% | 86.3% | 64.2% | 86.1%  | 62.5%   | 10.0% |
| N-body       | 89.7%  | 86.6% | 87.7% | 40.6% | 82.2%  | 77.7%   | 29.9% |
| Reduction    | 68.7%  | 87.5% | 89.4% | 64.1% | 71.6%  | 33.9%   | 10.1% |
| Hotspot      | 1.35×  | 1.94× | 2.06× | 1.4×  | 2.88×  | 1.2×    | 12.8× |

Table: Performance of benchmarks autotuned for various hardware devices. The performance relative to the theoretical peak of devices.

**Evaluation** 

0000000000

# Performance portability

|              | GPU→GPU            |       |        |  |
|--------------|--------------------|-------|--------|--|
| Benchmark    | avg±stdev          | worst | failed |  |
| BiCG         | 89.0%±12.3%        | 57%   | 1      |  |
| Convolution  | 79.4%±14.9%        | 55%   | 3      |  |
| Coulomb 3D   | $95.8\% \pm 6.5\%$ | 67%   | 0      |  |
| GEMM         | 83.6%±16.4%        | 31%   | 0      |  |
| GEMM batched | 85.4%±17%          | 37%   | 0      |  |
| Hotspot      | 80.3%±17.5%        | 46%   | 3      |  |
| Transpose    | 85.0%±21.9%        | 8%    | 3      |  |
| N-body       | 78.8%±24.2%        | 2%    | 3      |  |
| Reduction    | 88.4%±24%          | 12%   | 3      |  |
| Fourier      | 74.5%±30%          | 31%   | 0      |  |

Table: Relative performance of benchmarks ported across GPU architectures without re-tuning.



# Dynamic autotuining of Batched GEMM

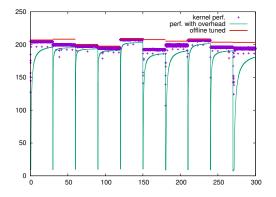


Figure: Batched GEMM on GeForce GTX 1070.

# Dynamic autotuining of Batched GEMM

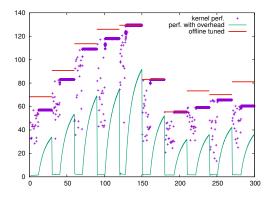


Figure: Batched GEMM on Tesla K20.



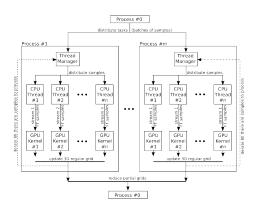


Figure: Performance of dynamic tuned 3D Fourier reconstruction.



### 3D Fourier Reconstruction

Introduction

|        | 2080Ti | 1070 | 750  | 680  |
|--------|--------|------|------|------|
| 2080Ti | 100%   | 99%  | 31%  | 49%  |
| 1070   | 99%    | 100% | 31%  | 50%  |
| 750    | 43%    | 67%  | 100% | 94%  |
| 680    | 60%    | 72%  | 71%  | 100% |

Table: Performance portability of 3D Fourier reconstruction with  $128 \times 128$  samples.

### 3D Fourier Reconstruction

Introduction

|         | 128×128 | 91×91 | 64×64 | 50×50 | 32×32 |
|---------|---------|-------|-------|-------|-------|
| 128×128 | 100%    | 100%  | 77%   | 70%   | 32%   |
| 91×91   | 100%    | 100%  | 76%   | 68%   | 33%   |
| 64×64   | 94%     | 94%   | 100%  | 91%   | 67%   |
| 50×50   | 79%     | 78%   | 98%   | 100%  | 86%   |
| 32x32   | 65%     | 67%   | 80%   | 92%   | 100%  |

Table: Performance portability on GeForce GTX1070 for different samples.

## 3D Fourier Reconstruction

Introduction

|        | best runtime | tuning 50      | tuning full |
|--------|--------------|----------------|-------------|
| 2080Ti | 1m40s        | 88% ± 3%       | 54%         |
| 1070   | 5m49s        | $96\%\pm2\%$   | 79%         |
| 750    | 16m59s       | $92\% \pm 4\%$ | 72%         |
| 680    | 15m12s       | $94\%\pm2\%$   | 75%         |

Table: The relative performance of dynamically-tuned 3D Fourier reconstruction.

### What do we use KTT for?

Introduction

So we have developed fancy autotuning framework...

 which is interesting work anyway, but we can use it also for something more...

In GPU-accelerated applications

- used during program development (exploration of possible) optimizations)
- manually added into applications to enable dynamic tuning
- used in cryo-electron microscopy suite Xmipp



Evaluation

### What do we use KTT for?

Some more theoretical (but still with clear practical usage) tasks

- searching tuning space
- tuning budget estimation
- interoperability with other tools

Introduction

### Why is searching tuning spaces important and difficult?

- important to speed-up autotuning convergence
- discrete many-dimensional non-convex spaces are hard to optimize with mathematical optimization
- as spaces changes with hardware or input, it is also hard task for machine learning (if ML model relates tuning parameters to runtime, it becomes invalid)

#### Our method

- decomposing relation between tuning parameters and runtime: ML used for relating tuning parameters to performance counters, expert system used steer optimization method
- ML model is independent on HW and input



# Searching tuning space

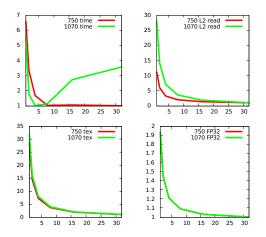


Figure: Dependence between a tuning parameter and various properties of the Coulomb 3D kernel running with large gridbox on GeForce GTX 750 and with small gridbox on GeForce GTX 1070. The x-axis shows a tuning parameter changing thread coarsening. The y-axis shows normalized values of selected properties: kernel runtime, L2 cache read transactions, texture cache read transactions and 32-bit floating-point operations.

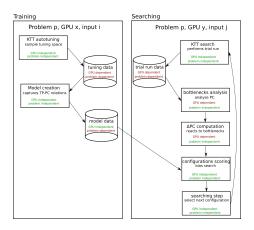
# Searching tuning space

#### Main idea behind the searcher

- relation between tuning parameters and performance counters measuring amount of operations remains stable - can be captured by ML model
- relation between tuning parameters and performance counters measuring stress of GPU subsystems depend on GPU and input – can be observed during tuning and used to identify bottlenecks
- an expert system asks ML model which tuning parameters to change to supress bottlenecks
- mimics what programmers are doing
  - they profile the code to observe bottlenecks, and use their understanding of the code to introduce changes supressing the bottlenecks



Introduction



**Evaluation** 

Figure: Schematic view of the searcher workflow. The boxes show program components, cylinders show data objects.



# Searching tuning space

Introduction

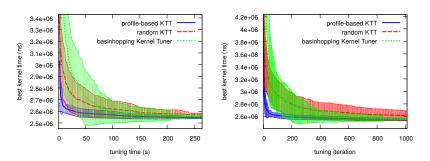


Figure: Convergence of the GEMM benchmark using KTT and Kernel Tuner. Left: convergence speed in time. Right: comparison of iterations (empirical tests).

### Tuning budget estimation

- the problem: as autotuning itself requires computational resources, it is also subject of optimization
- therefore, estimating when to stop autotuning is crucial, as it balances
  - overhead of tuning process (number of tuning steps × average time of tuned kernel with re-compilation)
  - expected improvement of speed of tuned kernel
- we believe it is possible to guess from historical data and regression of tuning searching convergence

Introduction

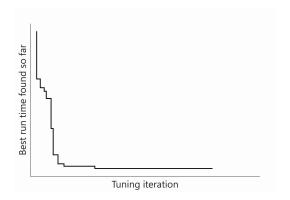
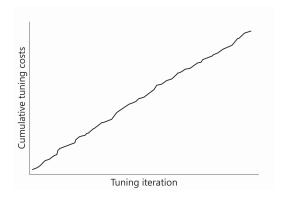


Figure: Example of tuning space searer convergence.



Evaluation

Figure: Example of tuning cost.

Introduction

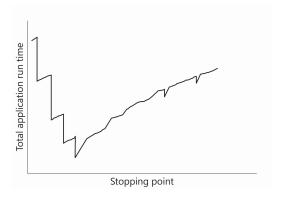


Figure: Example of total runtime depending on performed tuning steps.

### What do we use KTT for?

### Interoperability

 programming heterogeneous nodes is generally challenging: distribution of work among multiple accelerators and CPU, data distribution

Evaluation

- we work on connection of KTT with StarPU
- StarPU implements task-based parallelism, it executes DAG of data-dependent tasks on heterogeneous nodes
  - alternative implementation of tasks
  - StarPU schedules data movement and task execution across the node
- KTT makes tasks tunable

