
Flood maps dRMSD Acceleration

Flood Maps, dRMSD Computation
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Introduction

Artificial problem, was solved as a project PV197 in 2010

various formulations of algorithm possible with very different
performance

The input of the problem is height map, source of water and
elevation of the source. The output is the map of flooded area.

the water source has infinite amount of the water, the ground
is waterproof

so, we need to found a continuous region containing the water
source, where the ground is under the water source level

this is analogy to searching for a connected component in
special form of a graph
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Naive Algorithm

Probably the simplest version to implement

a thread is created for each point in the map

each thread periodically checks its neighbourhood points, if
there is a water and thread’s point is under water source level,
thread puts water into its point

algorithm iterates until no points are flooded

Extremely inefficient

let’s consider trivial example – the whole map will be flooded

in an iteration, we perform n2 operations, we need 2n
iterations

complexity is O(n3), but sequential algorithm has O(n2)
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Moving Line

How to distribute more water within a single iteration?

we will create a ”moving line”(each line point is processed by
a thread)

the line is moved through a picture horizontaly and vertically
in both directions

if a thread hits a water source, it inserts water until the heigh
of processed points is higher than the water source level

the line iterativelly passes the map until no water is written in
all directions of line processing
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Moving Line

Efficiency

we perform n2 steps in one iteration, where we can flood at
most n2 points

low performance if the height map is complicated (the water
is spread by river basins)

we need at least 2 iterations, each consisting of 4 line
movements (left, right, up, down), but often we need more

complexity is O(i · n2), where i is number of iterations

The second stage of the project requires 250Mpix/s performance

if the line access memory coalesced (vertical line needs to use
shared memory), we overcome the required performance
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Tiled Access

Issues with the moving line

we are processing already flooded points many times

no temporal locality in data access

We can process the tiles which fits into the shared memory

the tile is loaded into shared memory and the moving line is
processing the tile iterativelly

we can do more work without accessing the global memory

if some tile do not have newly flooded neighbours in an
iteration, it can be ommited in the iteration

can suffer from insufficient parallelism
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Tiled Access

Better efficiency

much less replications of global memory accesses

replicated accesses mainly into fast shared memory

Some tricks

blocks completely under/above vater source level handled by
special code
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Construction of Regions

In nature, the water is moved sequentially

but do we need to respect it in our algorithm?

We can found continuous regions under the water source level in
parallel

but we do not know, which are to be flooded

we need to connect those regions with the one containing
water source

So we have transformed sequential spread of the water to a
problem of connecting regions

the number of steps is logarithmic with respect to map size
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Evaluation

What we get from students

various implementations, various algorithms (only main ideas
presented here)

Performance

4 orders of magnitude difference between the fastest and the
slowest implementation

mainly by using different algorithm

CUDA optimizations and various tricks creates high spread of
performance (so there is no clear distinction of algorithms
seen in performance)
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Evaluation
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RMSD

RMSD (root-mean-square deviation) is used in computational
chemistry to compare different structures of a molecule

tell us how similar are two structures of a molecule (i.e., we
have two structures with the same atoms, but different spatial
organization)

used to cluster similar molecules (many outputs of a
simulation, some of them very similar)

used to trace convergence of simulations
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dRMSD

dRMSD is one possible variant of RMSD computation, it measures
average difference between corresponding pairs of atoms of two
molecules

dRMSD =

√
2

n(n−1)

n−1∑
i=1

n∑
j=i+1

(dA
ij − dB

ij )
2

where dA
ij is the Euclidean distance between i-th and j-th atom in

molecule A.
GPU acceleration is part of publication:

Jǐŕı Filipovič, Jan Plhák, David Sťrelák. Acceleration of dRMSD Calculation and
Efficient Usage of GPU Caches. In Proceedings of IEEE International
Conference on High Performance Computing & Simulation. 2015.
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Memory locality

Flop-to-word ratio

an iteration of inner sum performs 21 flops and transfers 6
numbers

flop-to-word ratio 0.875 for single precision, so memory
locality needs to be exploited

Improving memory locality

we store n atoms in registers of threads within a thread block

when new atom is loaded into shared memory, it can be used
to compute n distances

compute intensity required to saturate GPU can be easily
reached
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Parallelization

1D parallelization

only outer sum is parallelized:
n−1∑
i=1

n∑
j=i+1

(dA
ij − dB

ij )
2

straightforward naive implementation (inner sum transformed
into kernel code)

quite good cache locality, so even naive algorithm works well

when shared memory is utilized

sliding window is not efficient
threads within the block can be synchronized to access the
same atom in the same time
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Parallelization

2D parallelization

both outer and inner sums are parallelized:
n−1∑
i=1

n∑
j=i+1

(dA
ij − dB

ij )
2

better strong scaling

higher memory workload
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Optimizations

When shared memory is utilized, the algorithm is
instruction-bound.

we will optimize instructions

Block size and loop unrolling factor balance

balance latency hiding and instruction efficiency

when properly set, we reach 95% occupancy of compute units
(according to profiler at Fermi and Maxwell)
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Optimizations

SFU instructions optimization

with -use fast math compiler flag, sqrtf(x) is transformed
to 1/rsqrtf(x)

it may generate too high workload for SFU units (both
reciprocal square root and reciprocal are computed on SFU)

can be manually optimized by using x * rsqrtf(x)

speed up computation on Fermi, no effect on Maxwell (it has
2× higher speed of SFUs relative to SPs)
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Optimizations

Overhead instructions

after loop unrolling and SFU optimizations, about 90% of
instructions are FP32

most of instructions in remaining 10% are shared memory
loads (6 128-bit loads per 4 iterations)

to reduce load instructions, we can unroll outer loop

Outer loop unrolling

unrolling factor u means thread process u iterations of outer
sum and thus reduces number of load instructions to 1

u

u has to be small to keep registers consumption at reasonable
level

we set u to 4 for Maxwell and 2 for Fermi

reduces strong scaling
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Performance

GPU Utilization

we have tested the performance on GeForce GTX480 (Fermi)
and GeForce GTX750 (Maxwell)

we are able to reach 95 % utilization of ALUs, where 95 % of
executed instructions are floating point ones

Comparison with CPU

dRMSD computation 62.7× faster than ClusCo computation
on Core i7-3820

13.4× faster than clustering in ClusCo running on Core
i7-3820

performance boost not proportional to theoretical performance
difference – the main reason is poor vectorization of ClusCo
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Scaling with Fermi
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Scaling with Maxwell
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