
MCUXpresso SDK USB Stack Composite Host
User's Guide

NXP Semiconductors Document identifier: MCUXSDKUSBSHOSTCOMPUG
User's Guide Rev. 2, 20 May 2020

Contents
Chapter 1 Overview... 3

Chapter 2 Introduction... 4

Chapter 3 Detailed steps... 5
3.1 Host event handle function..5
3.2 Class-specific device task... 6

Chapter 4 Host MSD command + CDC virtual com example................................ 7
4.1 USB component files...7
4.2 USB_HostEvent function... 7
4.3 Main function task..8

Chapter 5 Revision history...10

NXP Semiconductors

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 2 / 11

Chapter 1
Overview
This document describes steps to implement a host that supports multiple devices based on the MCUXpresso SDK USB stack.

The USB Stack provides one host demo that supports HID mouse + HID keyboard. A user may need a host to meet its
requirements, such as the ability to support different class devices like supporting an HID and an MSD device simultaneously.
This document provides a step-by-step guide to create a customizable host that supports multiple devices.

NXP Semiconductors

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 3 / 11

Chapter 2
Introduction
Unlike the composite device that requires many steps, implementing a host that supports multiple devices is simple. The event
callback function of host and class can handle attach, enumeration, and detach processing for all the devices. The process flow
for this is shown in Figure 1. This figure shows a host supporting two classes, which is the same as a host supporting one class.
All class-specific functionality for the devices is achieved in the class-specific task polling in the main function. The user only
needs to focus on the modification of these two points.

Figure 1. Process flow of event callback

NXP Semiconductors

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 4 / 11

Chapter 3
Detailed steps
Before developing the host that supports multiple devices, the user needs to determine:

1. How many classes this host needs to support.

2. How many subclasses for every class. For example, the HID class may include HID mouse and HID keyboard.

The code change for the host that supports HID mouse and HID keyboard is similar to that of the host supporting CDC virtual
com and HID mouse.

3.1 Host event handle function
The USB_HostEvent is a common handle function for attach, unsupported device, enumeration, and detach event. This function
needs to call the class-specific event handle function. When the host only supports CDC devices, the USB_HostEvent function
is the following:

usb_status_t USB_HostEvent(usb_device_handle deviceHandle,
usb_host_configuration_handle configurationHandle,
uint32_t event_code)
{
usb_status_t status;
status = kStatus_USB_Success;
switch (event_code)
{
case kUSB_HostEventAttach:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
case kUSB_HostEventNotSupported:
usb_echo("device not supported.\r\n");
break;
case kUSB_HostEventEnumerationDone:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
case kUSB_HostEventDetach:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
default:
break;
}
return status;
}

To support other devices, add the corresponding class-specific event handle function. Additionally, it is necessary to add the local
variable to receive the return value of every event handle function. The return value of USB_HostEvent should be changed
according to the following occasions:

1. kUSB_HostEventAttach: if the return values for all of the class-specific event handle functions are
kUSB_HostEventNotSupported, the return value of USB_HostEvent is kUSB_HostEventNotSupported.

2. kUSB_HostEventNotSupported: no change.

3. kUSB_HostEventEnumerationDone: if the return values for all of the class-specific event handle functions are not
kStatus_USB_Success, the return value of USB_HostEvent is kStatus_USB_Error.

NXP Semiconductors

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 5 / 11

4. kUSB_HostEventDetach: if the return values for all of the class-specific event handle functions are not
kStatus_USB_Success, the return value of USB_HostEvent is kStatus_USB_Error.

3.2 Class-specific device task
The main function needs to schedule every supported device’s task. If the host only supports CDC devices, the class-specific
task in the main function is as follows:

int main(void)
{
BOARD_InitHardware();
APP_init();
while (1)
{
USB_HostTaskFn(g_hostHandle);
/* cdc class task */
USB_HosCdcTask(&g_cdc);
/* here add the new device’s task */
}
}

NXP Semiconductors
Detailed steps

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 6 / 11

Chapter 4
Host MSD command + CDC virtual com example
This section provides a step-by-step example for how to implement a host that supports CDC virtual com and MSD command.
This example is based on the existing host CDC virtual com example.

4.1 USB component files
Add the usb_host_msd component files, the usb_host_msd_ufi source file, and the host_msd_command component files into the
current project. Normally, the host_msd_command component should be in the source folder, shown in Figure 2. The
usb_host_msd component and the usb_host_msd_ufi source file should be located in the class folder showing in the Figure 3.

Figure 2. Source folder

Figure 3. Class folder

4.2 USB_HostEvent function
Add the USB_HostMsdEvent function into the USB_HostEvent function.

usb_status_t USB_HostEvent(usb_device_handle deviceHandle,
 usb_host_configuration_handle
configurationHandle,
 uint32_t event_code)
{
 usb_status_t status1;
 usb_status_t status2;
 usb_status_t status = kStatus_USB_Success;

 switch (event_code)
 {
 case kUSB_HostEventAttach:
 status1 = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);

NXP Semiconductors

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 7 / 11

 status2 = USB_HostMsdEvent(deviceHandle, configurationHandle, event_code);
 if ((status1 == kStatus_USB_NotSupported) && (status2 ==
kStatus_USB_NotSupported))
 {
 status = kStatus_USB_NotSupported;
 }
 break;
 case kUSB_HostEventNotSupported:
 usb_echo("device not supported.\r\n");
 break;

 case kUSB_HostEventEnumerationDone:
 status1 = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
 status2 = USB_HostMsdEvent(deviceHandle, configurationHandle, event_code);
 if ((status1 != kStatus_USB_Success) && (status2 != kStatus_USB_Success))
 {
 status = kStatus_USB_Error;
 }
 break;

 case kUSB_HostEventDetach:
 status1 = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
 status2 = USB_HostMsdEvent(deviceHandle, configurationHandle, event_code);
 if ((status1 != kStatus_USB_Success) && (status2 != kStatus_USB_Success))
 {
 status = kStatus_USB_Error;
 }
 break;

 default:
 break;
 }
 return status;
}

4.3 Main function task
Add the USB_HostMsdTask function into the main function. The modified code should look like this:

int main(void)
{
 gpio_pin_config_t pinConfig;
 BOARD_InitPins();
 BOARD_BootClockRUN();
 BOARD_InitDebugConsole();
 /* enable usb host vbus */
 pinConfig.pinDirection = kGPIO_DigitalOutput;
 pinConfig.outputLogic = 1U;

 GPIO_PinInit(PTD, 8U, &pinConfig);

 APP_init();

 while (1)
 {
 USB_HostTaskFn(g_HostHandle);
 /* cdc class task */
 USB_HosCdcTask(&g_cdc);
 /* msd class task */

NXP Semiconductors
Host MSD command + CDC virtual com example

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 8 / 11

 USB_HostMsdTask(&g_MsdCommandInstance);
 }
}

NXP Semiconductors
Host MSD command + CDC virtual com example

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 9 / 11

Chapter 5
Revision history
The following table summarizes the changes done to this document since the initial release.

Table 1. Revision history

Revision number Date Substantive changes

0 11/2018 Initial release

1 12/2018 2.4.0 vs 2.5.0

2 05/2020 Updated for MCUXpresso SDK v2.8.0

NXP Semiconductors

MCUXpresso SDK USB Stack Composite Host User's Guide, Rev. 2, 20 May 2020
User's Guide 10 / 11

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

© NXP B.V. 2018-2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 May 2020
Document identifier: MCUXSDKUSBSHOSTCOMPUG

Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP reserves the right to make changes without
further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in NXP data sheets and/or specifications can and do vary in different
applications, and actual performance may vary over time. All operating parameters, including “typicals,” must
be validated for each customer application by customer's technical experts. NXP does not convey any license
under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of
sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Security — Customer understands that all NXP products may be subject to unidentified or documented
vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout
their lifecycles to reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s
responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in
customer’s applications. NXP accepts no liability for any vulnerability. Customer should regularly check security
updates from NXP and follow up appropriately. Customer shall select products with security features that best
meet rules, regulations, and standards of the intended application and make the ultimate design decisions
regarding its products and is solely responsible for compliance with all legal, regulatory, and security related
requirements concerning its products, regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages
the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,
AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package,
QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI,
Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil,
Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks
of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by Power.org.

http://www.nxp.com
http://www.nxp.com/support

	Contents
	1 Overview
	2 Introduction
	3 Detailed steps
	3.1 Host event handle function
	3.2 Class-specific device task

	4 Host MSD command + CDC virtual com example
	4.1 USB component files
	4.2 USB_HostEvent function
	4.3 Main function task

	5 Revision history

