NXP Semiconductors Document identifier: MCSDKGSUG
User's Guide Rev. 13, 01 June 2021

Getting Started with Multicore SDK (MCSDK)

NXP Semiconductors

Contents

Chapter 1 OVEIVIEW.......cccoo it e e nnn e e e e e eees 3

Chapter 2 Multicore SDK (MCSDK) components...........cccccvvieereerrninmnssssnnennsneeeens 4
2.1 Embedded Remote Procedure Call (ERPC)..........uuiiiiiiiiieee e 4
2.2 Multicore Manager (MCIMGR)........ooiiiiiiiiieee et e e ettt e e e e s s e e e e e e e annes 5
2.3 Remote Processor Messaging Lite (RPMSG-Lite).......cccoiiiiiiiiiiiiiiiiiiiiieeeeee e 5

Chapter 3 MCSDK demo applications............coeeiieieuiccee e e 7

Chapter 4 Inter Processor Communication (IPC) levels...........cccccvvmueecciiienninnnnn. 8

Chapter 5 Revision NIStOry..........cccccceiiiiii et eneeaas 9

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 2/10

NXP Semiconductors

Chapter 1
Overview

Multicore Software Development Kit (MCSDK) is a Software Development Kit that provides comprehensive software support for
NXP dual/multicore devices. The MCSDK is combined with the MCUXpresso SDK to make the software framework for easy
development of multicore applications.

The following figure highlights the layers and main software components of the MCSDK.

eRPC

Multicore
Manager

RPMsg-Lite

MCUXpresso Drivers

Hardware

Figure 1. MCSDK layers

All the MCSDK-related files are located in <MCUXpressoSDK_install_dir>/middleware/multicore folder.

For supported toolchain versions, see the Mulficore SDK v.2. 10.0 Release Notes (document MCSDKRN). For the latest version
of this and other MCSDK documents, visit www.nxp.com.

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 3/10

http://www.nxp.com

NXP Semiconductors

Chapter 2
Multicore SDK (MCSDK) components

The MCSDK consists of the following software components:

» Embedded Remote Procedure Call (eRPC): This component is a combination of a library and code generator tool that
implements a transparent function call interface to remote services (running on a different core).

» Multicore Manager (MCMGR): This library maintains information about all cores and starts up secondary/auxiliary core(s).

» Remote Processor Messaging - Lite (RPMsg-Lite): Inter Processor Communication library.

> D [bOﬂ'dS]
- [[CM5I5]
4 [[middleware]
- [[emwin]
> D ﬂnﬁ.’fﬁ]
4 || [multicore]
> [Jlerpc]
» [J [mcmar]
> [J[rpmsg_lite]
> D [tDDIS]
> [usb]
> [Jlrntes]
> D [tDDIS]

Figure 2. Multicore folder structure

2.1 Embedded Remote Procedure Call (eRPC)

The Embedded Remote Procedure Call (eRPC) is the RPC system created by NXP. The RPC is a mechanism used to invoke a
software routine on a remote system via a simple local function call.

When a remote function is called by the client, the function's parameters and an identifier for the called routine are marshalled (or
serialized) into a stream of bytes. This byte stream is transported to the server through a communications channel (IPC, TPC/IP,
UART, etc). The server unmarshalls the parameters, determines which function was invoked, and calls it. If the function returns
a value, it is marshalled and sent back to the client.

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 4/10

NXP Semiconductors

Multicore SDK (MCSDK) components

Client Server

Application calls % T
remaote_function() ramota_function() Application Layer

Sarver shim calls requested
function

l e e f SO £33 e e T

remote_function() shim Generated Shim Code

Marshal invocation and Unmarshal invocation and Prot [Li
parameters paramalers TOMGLE Layer

Byta
Stream

Transport layer sands data

L

Transport layer receives data

Transport Layer

Figure 3. eRPC block diagram

RPC implementations typically use a combination of a tool (erpcgen) and IDL (interface definition language) file to generate source
code to handle the details of marshalling a function's parameters and building the data stream.

Main eRPC features:
« Scalable from bare metal to Linux® OS - configurable memory and threading policies.
» Focus on embedded systems - intrinsic support for C, modular, and lightweight implementation.

» Abstracted transport interface - RPMsg is the primary transport for multicore, UART, or SPI-based solutions can be used
for multichip.

The eRPC library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/erpc folder. For detailed information
about the eRPC, see the documentation available in the <MCUXpressoSDK_install_dir>/middleware/multicore/erpc/doc folder.

2.2 Multicore Manager (MCMGR)
The Multicore Manager (MCMGR) software library provides a number of services for multicore systems.
The main MCMGR features:

» Maintains information about all cores in system.

» Secondary/auxiliary core(s) startup and shutdown.

* Remote core monitoring and event handling.

The MCMGR library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/mcmgrfolder. For detailed
information about the MCMGR library, see the documentation available in the <MCUXpressoSDK _install_dir>/middleware/
multicore/mcmgr/doc folder.

2.3 Remote Processor Messaging Lite (RPMsg-Lite)

RPMsg-Lite is a lightweight implementation of the RPMsg protocol. The RPMsg protocol defines a standardized binary interface
used to communicate between multiple cores in a heterogeneous multicore system. Compared to the legacy OpenAMP
implementation, RPMsg-Lite offers a code size reduction, API simplification, and improved modularity.

The main RPMsg protocol features:

» Shared memory interprocessor communication.

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 5/10

NXP Semiconductors

Multicore SDK (MCSDK) components

* Virtio-based messaging bus.

» Application-defined messages sent between endpoints.
» Portable to different environments/platforms.

» Available in upstream Linux OS.

The RPMsg-Lite library is located in the <MCUXpressoSDK_install_dir>/middleware/multicore/romsg-lite folder. For detailed
information about the RPMsg-Lite, see the RPMSG-Lite User’s Guide located in the <MCUXpressoSDK _install_dir>/middleware/
multicore/romsg_lite/doc folder.

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 6/10

NXP Semiconductors

Chapter 3

MCSDK demo applications

Multicore and multiprocessor example applications are stored together with other MCUXpresso SDK examples, in the dedicated

multicore subfolder.

Table 1. Multicore example applications

Location

Folder

Multicore example projects

<MCUXpressoSDK _install_dir>/boards/<board_name>/
multicore_examples/<application_name>/
<core_type>/ <toolchain>

Multiprocessor example projects <MCUXpressoSDK _install_dir>/boards/<board_name>/

multiprocessor_examples/<application_name>/
<core_type>/ <toolchain>

See the Getting Started with MCUXpresso SDK (document MCUXSDKGSUG) and Getting Started with MCUXpresso SDK for
XXX Derivatives documents for more information about the MCUXpresso SDK example folder structure and the location of

individual files that form the example application projects. These documents also contain information about building, running, and
debugging multicore demo applications in individual supported IDEs. Each example application also contains a readme file that
describes the operation of the example and required setup steps.

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021

User's Guide

7/10

NXP Semiconductors

Chapter 4
Inter Processor Communication (IPC) levels

The MCSDK provides several mechanisms for Inter Processor Communication (IPC). Particular ways and levels of IPC are
described in this chapter.

IPC using low-level drivers

The NXP multicore SoCs are equipped with peripheral modules dedicated for data exchange between individual cores. They deal
with the Mailbox peripheral for LPC parts and the Messaging Unit (MU) peripheral for Kinetis and i.MX parts. The common attribute
of both modules is the ability to provide a means of IPC, allowing multiple CPUs to share resources and communicate with each
other in a simple manner. The most lightweight method of IPC uses the MCUXpresso SDK lowlevel drivers for these peripherals.
Using the Mailbox/MU driver API functions, it is possible to pass a value from core to core via the dedicated registers (could

be a scalar or a pointer to shared memory) and also to trigger inter-core interrupts for notifications. For details about individual
driver API functions see the MCUXpresso SDK API Reference Manual of the specific multicore device. The MCUXpresso SDK
is accompanied by the RPMsg-Lite documentation that shows how to use this APl in multicore applications.

Messaging mechanism

On top of Mailbox/MU drivers, a messaging system can be implemented, allowing messages to send between multiple endpoints
created on each of the CPUs. The RPMsg-Lite library of the MCSDK provides this ability and serves as the preferred MCUXpresso
SDK messaging library. It implements ring buffers in shared memory for messages exchange without the need of a locking
mechanism. The RPMsg-Lite provides the abstraction layer and can be easily ported to different multicore platforms and
environments (Operating Systems). The advantages of such a messaging system are ease of use (there is no need to study
behavior of the used underlying hardware) and smooth application code portability between platforms due to unified messaging
API. However, this costs several KB of code and data memory. The MCUXpresso SDK is accompanied by the RPMsg-Lite
documentation and several multicore examples. You can also obtain the latest RPMsg- Lite code from the GitHub account
github.com/NXPmicro/rpmsg-lite.

Remote procedure calls

To facilitate the IPC even more and to allow the remote functions invocation, the remote procedure call mechanism can be
implemented. The eRPC of the MCSDK serves for these purposes and allows the ability to invoke a software routine on a remote
system via a simple local function call. Utilizing different transport layers, it is possible to communicate between individual cores
of multicore SoCs (via RPMsg-Lite) or between separate processors (via SPI, UART, or TCP/IP). The eRPC is mostly applicable
to the MPU parts with enough of memory resources like i.MX parts.

The eRPC library allows to export existing C functions without having to change their prototypes (in most cases). Itis accompanied
by the code generator tool that generates the shim code for serialization and invocation based on the IDL file with definitions of
data types and remote interfaces (API). The generated code can be either C/C++ or Python (In case the communicating peer is
running as a Linux OS user-space application).

Using the eRPC simplifies the access to services implemented on individual cores. This way, the following types of applications
running on dedicated cores can be easily interfaced:

» Communication stacks (USB, Thread, BLE, Zigbee)
» Sensor aggregation/fusion applications

» Encryption algorithms

 Virtual peripherals

The eRPC is publicly available from the following GitHub account: github.com/EmbeddedRPC/erpc. Also, the MCUXpresso SDK
is accompanied by the eRPC code and several multicore and multiprocessor eRPC examples.

The mentioned IPC levels demonstrate the scalability of the Multicore SDK library. Based on application needs, different IPC
techniques can be used. It depends on the complexity, required speed, memory resources, system design, and so on. The
MCSDK brings users the possibility for quick and easy development of multicore and multiprocessor applications.

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 8/10

https://github.com/NXPmicro/rpmsg-lite
https://github.com/EmbeddedRPC/erpc

NXP Semiconductors

Chapter 5
Revision history

This table summarizes revisions to this document.

Table 2. Revision history

Revision number Date Substantive changes

0 09/2015 Initial release

1 03/2016 Updated for the SDK 2.0.0 and the
MCSDK 1.1.0

2 09/2016 Updated for the MCSDK 2.0.0 and the
LPCXpresso54114 support

3 09/2016 Updated for the MCSDK 2.1.0

4 3/2017 Updated for the MCSDK 2.2.0

5 05/2017 Updated for the MCSDK 2.2.1,

added Chapter 4, "Inter Processor
Communication Levels"

6 11/2017 Updated for the MCSDK 2.3.0
7 05/2018 Updated for the MCSDK 2.4.0
8 12/2018 Updated for the MCSDK 2.5.0
9 06/2019 Updated for the MCSDK 2.6.0
10 12/2019 Updated for the MCSDK 2.7.0
11 04/2020 Updated for the MCSDK 2.8.0
12 11/2020 Updated for the MCSDK 2.9.0
13 06/2021 Updated for the MCSDK 2.10.0

Getting Started with Multicore SDK (MCSDK), Rev. 13, 01 June 2021
User's Guide 9/10

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, Dynam|Q, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2015-2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 01 June 2021
Document identifier: MCSDKGSUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 Multicore SDK (MCSDK) components
	2.1 Embedded Remote Procedure Call (eRPC)
	2.2 Multicore Manager (MCMGR)
	2.3 Remote Processor Messaging Lite (RPMsg-Lite)

	3 MCSDK demo applications
	4 Inter Processor Communication (IPC) levels
	5 Revision history

