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Chapter 1
Overview
This document describes steps to implement a host that supports multiple devices based on the MCUXpresso SDK USB stack.

The USB Stack provides one host demo that supports HID mouse + HID keyboard. A user may need a host to meet its
requirements, such as the ability to support different class devices like supporting an HID and an MSD device simultaneously.
This document provides a step-by-step guide to create a customizable host that supports multiple devices.
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Chapter 2
Introduction
Unlike the composite device that requires many steps, implementing a host that supports multiple devices is simple. The event
callback function of host and class can handle attach, enumeration, and detach processing for all the devices. The process flow
for this is shown in Figure 1. This figure shows a host supporting two classes, which is the same as a host supporting one class.
All class-specific functionality for the devices is achieved in the class-specific task polling in the main function. The user only
needs to focus on the modification of these two points.

Figure 1. Process flow of event callback
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Chapter 3
Detailed steps
Before developing the host that supports multiple devices, the user needs to determine:

1. How many classes this host needs to support.

2. How many subclasses for every class. For example, the HID class may include HID mouse and HID keyboard.

The code change for the host that supports HID mouse and HID keyboard is similar to that of the host supporting CDC virtual
com and HID mouse.

3.1 Host event handle function
The USB_HostEvent is a common handle function for attach, unsupported device, enumeration, and detach event. This function
needs to call the class-specific event handle function. When the host only supports CDC devices, the USB_HostEvent function
is the following:

usb_status_t USB_HostEvent(usb_device_handle deviceHandle,
usb_host_configuration_handle configurationHandle,
uint32_t event_code)
{
usb_status_t status;
status = kStatus_USB_Success;
switch (event_code)
{
case kUSB_HostEventAttach:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
case kUSB_HostEventNotSupported:
usb_echo("device not supported.\r\n");
break;
case kUSB_HostEventEnumerationDone:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
case kUSB_HostEventDetach:
status = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);
/* here add the new device’s event handle function */
break;
default:
break;
}
return status;
}

To support other devices, add the corresponding class-specific event handle function. Additionally, it is necessary to add the local
variable to receive the return value of every event handle function. The return value of USB_HostEvent should be changed
according to the following occasions:

1. kUSB_HostEventAttach: if the return values for all of the class-specific event handle functions are
kUSB_HostEventNotSupported, the return value of USB_HostEvent is kUSB_HostEventNotSupported.

2. kUSB_HostEventNotSupported: no change.

3. kUSB_HostEventEnumerationDone: if the return values for all of the class-specific event handle functions are not
kStatus_USB_Success, the return value of USB_HostEvent is kStatus_USB_Error.
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4. kUSB_HostEventDetach: if the return values for all of the class-specific event handle functions are not
kStatus_USB_Success, the return value of USB_HostEvent is kStatus_USB_Error.

3.2 Class-specific device task
The main function needs to schedule every supported device’s task. If the host only supports CDC devices, the class-specific
task in the main function is as follows:

int main(void)
{
BOARD_InitHardware();
APP_init();
while (1)
{
USB_HostTaskFn(g_hostHandle);
/* cdc class task */
USB_HosCdcTask(&g_cdc);
/* here add the new device’s task */
}
}
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Chapter 4
Host MSD command + CDC virtual com example
This section provides a step-by-step example for how to implement a host that supports CDC virtual com and MSD command.
This example is based on the existing host CDC virtual com example.

4.1 USB component files
Add the usb_host_msd component files, the usb_host_msd_ufi source file, and the host_msd_command component files into the
current project. Normally, the host_msd_command component should be in the source folder, shown in Figure 2. The
usb_host_msd component and the usb_host_msd_ufi source file should be located in the class folder showing in the Figure 3.

Figure 2. Source folder

Figure 3. Class folder

4.2 USB_HostEvent function
Add the USB_HostMsdEvent function into the USB_HostEvent function.

usb_status_t USB_HostEvent(usb_device_handle deviceHandle,                           
                           usb_host_configuration_handle 
configurationHandle,                          
                           uint32_t event_code)
{    
    usb_status_t status1;    
    usb_status_t status2;    
    usb_status_t status = kStatus_USB_Success;     

    switch (event_code)    
    {        
        case kUSB_HostEventAttach:            
            status1 = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);            
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            status2 = USB_HostMsdEvent(deviceHandle, configurationHandle, event_code);            
            if ((status1 == kStatus_USB_NotSupported) && (status2 == 
kStatus_USB_NotSupported))            
            {                
                status = kStatus_USB_NotSupported;            
            }           
            break;        
        case kUSB_HostEventNotSupported:            
            usb_echo("device not supported.\r\n");           
            break;     
    
        case kUSB_HostEventEnumerationDone:            
            status1 = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);            
            status2 = USB_HostMsdEvent(deviceHandle, configurationHandle, event_code);            
            if ((status1 != kStatus_USB_Success) && (status2 != kStatus_USB_Success))            
            {                
                status = kStatus_USB_Error;            
            }           
            break;         

        case kUSB_HostEventDetach:            
            status1 = USB_HostCdcEvent(deviceHandle, configurationHandle, event_code);            
            status2 = USB_HostMsdEvent(deviceHandle, configurationHandle, event_code);            
            if ((status1 != kStatus_USB_Success) && (status2 != kStatus_USB_Success))            
        {                
            status = kStatus_USB_Error;            
        }           
        break;         

    default:           
        break;    
    }    
    return status;
}

4.3 Main function task
Add the USB_HostMsdTask function into the main function. The modified code should look like this:

int main(void)
{    
    gpio_pin_config_t pinConfig;     
    BOARD_InitPins();   
    BOARD_BootClockRUN();    
    BOARD_InitDebugConsole();
    /* enable usb host vbus */    
    pinConfig.pinDirection = kGPIO_DigitalOutput;    
    pinConfig.outputLogic = 1U;     

    GPIO_PinInit(PTD, 8U, &pinConfig);     

    APP_init();     

    while (1)    
    {       
        USB_HostTaskFn(g_HostHandle);        
        /* cdc class task */       
        USB_HosCdcTask(&g_cdc);        
        /* msd class task */       
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        USB_HostMsdTask(&g_MsdCommandInstance);    
    }
}
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Chapter 5
Revision history
The following table summarizes the changes done to this document since the initial release.

Table 1. Revision history

Revision number Date Substantive changes

0 11/2018 Initial release

1 12/2018 2.4.0 vs 2.5.0

2 05/2020 Updated for MCUXpresso SDK v2.8.0
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