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Motivation

e Safety
o Data privacy, transfer of sensitive data
e Efficiency
o Federated learning, federated computing
e Development
o New possibilities of use (ad hoc encryption, mobile
communication, others)
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Federated learning?

Data processing is increasingly done on end devices

Improving responsiveness
Benefits of data security
Analytics

o
o
o
e Learning
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Federated learning?
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https://app.diagrams.net/?page-id=V7_bCQx0-eDrEPW80i0A&scale=auto#G16hXr9R-g9rQrLHzRch4S9qq_jg6Omtk7

Federated learning?

Specifically defined in 2019 in the publication

Advances and Open Problems in Federated Learning (https://arxiv.org/abs/1912.049770)

Citation:

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or
whole organizations) collaboratively train a model under the orchestration of a central server (e.g.
service provider), while keeping the training data decentralized. FL embodies the principles of
focused data collection and minimization, and can mitigate many of the systemic privacy risks and
costs resulting from traditional, centralized machine learning and data science approaches.
Motivated by the explosive growth in FL research, this paper discusses recent advances and
presents an extensive collection of open problems and challenges.
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Federated learning — characteristic

Data is generated locally

Data remains decentralized

Data is not shared and distributed

A central orchestrator coordinates training,
but never sees its own data
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Federated learning — basic types

Cross-silo federated learning (between objects, institutions)

smaller number of clients, high availability

object identity

each object participates in each round of learning
computational complexity is the primary weak point

Cross-device federated learning (between end devices)

e hundreds of temporarily available clients
e no identification

e usually each client participates only once
e communication is the primary weak point

Decentralized learning

e peer-to-peer, without a centralized orchestrator
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Federated learning — terminology

e C(Client
o Computing entity holding local data (mobile device, |oT,
institution, ...)
e Server
o Federated learning coordinator, nowadays, more than
one device
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Federated learning
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Federated learning — basic algorithm

e Client
o The current state of the model is sent to the client from the central element
o The client trains it with local data
o The principle of training with the SGD (Stochastic Gradient Descent) method or its
derivation as a function of evaluation
o Theresult is model parameter weights that are sent to the central element
e Server
o It obtains parameter weights from clients and performs averaging (Federated
Average) and updates the original model
o The next procedure already depends on the specific solution (cross-silo,
cross-device)
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Federated learning — basic principles

e Optimization of the objective function for the purpose of
convergence of weights

fz(wz)

flwy, ..., wk) =

gt

1
K

e Hyperparameters
o number of epochs, learning rate, batch size
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Federated learning — list of variations

e Federated stochastic gradient descent (FedSGD)
o transpose SGD, swap gradients, random number of clients, gradients are
averaged and gradient step performed
e Federated averaging (FedAvg)
o generalization of FedSGD, exchange of updated weights, not gradients
e Federated Learning with Dynamic Regularization (FedDyn)

o 2021(Acar, et al.), the issue of heterogeneous data distribution. It addresses the
dilemma of the difference between device error minimization and global error
minimization. Using dynamic control to converge local and global error.

e Hybrid Federated Dual Coordinate Ascent (HyFDCA)

o 2022 (Overman et al.), solves the problems of hybrid federated learning, where

each client solves only a certain subset of data samples (features, samples).
e KafkaFed

o An example of a design of a federated learning algorithm using Apache Kafka as

a communication medium
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Federated learning — frameworks

e TensorFlow Federated — opensource Google Brain 2019, use TFLite flatbuffer files, mostly
focused on simulations, still in development, FedAvg integration

e FederatedAlTechnologyEnabler(FATE) — Webank, the first open source at an industrial level —
in the area of credit risk control, object detection and anti-money laundering

e |IBM Federated Learning — possible to use for free, tools for implementation in real situations

e PySyft — the open source solution OpenMined, originally using PyTorch, then also using
TensorFlow

e Deeplearningd) — opensource Konduit for JVM, Python, C++

e Visioner - based on TensorFlow, uses inference graph* files,
org.tensorflow:tensorflow-android)

e Flower — uses TensorFlow, possibility of use on AWS, Azure, Android, iOS, Raspberry, Nvidia

Jetson

FedML — cross platform solution
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Federated learning
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Federated learning — com

munication

An example cross-device federated learning protocol
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On-device training is performed,
model update is reported back

Server aggregates updates into
the global model as they arrive

Server writes global model
checkpoint into persistent storage

Bonawitz, et. al. Towards Federated Learning
at Scale: System Design. MLSys 2019.

17



Federated learning — communication

Transmission of updated data

e most often gRPC (HTTP/2 and protocol buffer, Google 2015)
e also REST HTTP API (Ktor, Retrofit2, others)

e or Apache Kafka, dynamic databases like Google Firebase

https://www.tensorflow.org/federated/tutorials/building your own federated lear

ning algorithm
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Federated learning — communication

ooooooooooo Global model

Mobile client ~ Mobile client
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Federated learning — communication
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Federated learning — proposed

communication protocol

Compatible with both, Apache Kafka and Realtime database
Using a text format for the transmission of messages
Automatic selection of central nodes

Seemless communication
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Federated learning — proposed
communication protocol

Server
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Federated learning — proposed
communication protocol

J. Michalek, V. Skorpil and V. Oujezsky, "Federated Learning on Android - Highlights from Recent Developments," 2022
14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Valencia,
Spain, 2022, pp. 27-30, doi: 10.1109/ICUMT57764.2022.9943382.

J. Michalek, V. Oujezsky, and V. Skorpil An Android Federated Learning Framework for Emergency Management
Applications, 2023, ICUMT.
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Federated learning — research project

Android federated learning framework for crisis
management applications
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Current challenges

Communication problems

e Security risks
o Transfer of model, weights

e Principles of data transfer, protocols, synchronization
synchronization

e Decentralized learning
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Federated learning — appendix
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Federated learning — FedSGD

e Federated stochastic gradient descent (FedSGD)

o transpose SGD, swap gradients, random number of clients, gradients are
averaged and gradient step performed
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Federated learning — FedAvg

e Federated averaging (FedAvg)
o generalization of FedSGD, exchange of updated weights, not gradients

VEk, ’wfﬂ —|wt — NGk
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The server updates the model with a weighted average of the weights

In practice, calculations are performed on clients in batches of data
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